
 

Fracture Diodes: Directional Asymmetry of Fracture Toughness
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Toughness describes the ability of a material to resist fracture or crack propagation. It is demonstrated
here that fracture toughness of a material can be asymmetric, i.e., the resistance of a medium to a crack
propagating from right to left can be significantly different from that to a crack propagating from left to
right. Such asymmetry is unknown in natural materials, but we show that it can be built into artificial
materials through the proper control of microstructure. This paves the way for control of crack paths and
direction, where fracture—when unavoidable—can be guided through predesigned paths to minimize loss
of critical components.
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It is not uncommon for a material system to exhibit
anisotropy or orientation dependence in its mechanical
properties. It can arise from the anisotropy of electronic
interaction and atomic arrangement, as in the elastic moduli
and fracture toughness of crystalline solids. It can also arise
from the anisotropy of the heterogeneous structure as in
both natural (e.g., sea shells, wood) and engineered (e.g.,
fiber-reinforced composite) materials. A straightforward
example is layered composite systems: here, both elastic
stiffness and failure strength can be drastically different
depending on whether or not the direction of loading is into
or out of the plane of lamination.
While anisotropy is common, it is generally centro-

symmetric; the property is invariant with reversal of
direction. However, recent work has provided examples
of interfacial phenomena where this symmetry is broken.
Inspired by nature where textured surfaces enable butter-
flies to shed water from their wings, water striders to glide
on water, and plants to collect water, various researchers
have developed gradient surfaces (periodic channels with
increasing width [1,2]), textured surfaces (with pillars of
increasing spacing [3] or with asymmetric sawtooth pat-
terns [4]), or surfaces with a unidirectionally slanted
nanorod array [5] to transport droplets preferentially in
one direction (see Ref. [6] for a recent review). Textured
surfaces have been used in tribology for directional friction
coefficients [7]. Similarly, it was recently shown that
adhesion can be direction specific (Refs. [8–10] in adhesive
tapes and Ref. [11] using subsurface liquid filled micro-
channels). However, all of these works concern interfacial
phenomena.
In this Letter, we show that directional asymmetry

extends to bulk phenomena, and in particular, to fracture.

This was suggested in numerical simulations of Hossain
et al. [12]. We do so in the context of composites or
metamaterials where the scale of the microstructure is small
compared to the scale of the application. The advent of
additive manufacturing and 3D printing has enabled fine
control of material structure giving rise to what is now often
referred to as “metamaterials.” This precise control of
microstructure has been exploited to develop metamaterials
with unusual mechanical properties including those with
chiral character [13] or topologically protected modes [14]
(see Ref. [15] for a comprehensive review of 3D meta-
materials). However, these concern deformation modes and
wave propagation, and the study of failure is limited.
Failure of a heterogeneous medium like a metamaterial is

a complicated process. At the microscale, the stress is not
uniform, and so the driving force on a crack tip depends on
position, as does the resistance to crack growth (toughness).
Interfaces may pin or deflect cracks, and daughter cracks
can nucleate distally. The stress at any point in time
depends on prior history or prior crack trajectory. So,
the fracture process is neither uniform nor steady, one can
have microscopic damage without macroscopic failure, and
a sufficiently large macroscopic driving force is necessary
for the fracture process to progress at a macroscopic scale.
We define the effective toughness (effective critical energy
release rate) as the smallest driving force (energy release
rate) necessary at the macroscale to drive the fracture
process on the macroscale. Unlike elastic moduli and
plastic strength, the effective toughness can be larger than
those of the constituent materials, and has been exploited to
toughen ceramics [16] and composites [17]. This Letter
shows that microstructure can lead to unexpected fracture
properties like asymmetry.
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The asymmetry of fracture toughness is demonstrated in
a metamaterial consisting of a two-dimensional array of
voids shown in Fig. 1 and loaded in uniaxial tension. Even
though the specimen and loading are symmetric on a scale
large compared to that of individual voids (microscale), the
crack propagates from left to right indicating that the
effective toughness is smaller in one direction compared
to that in the other.
To understand this, we numerically compute the effective

toughness of the metamaterial following Hossain et al. [12].
We take a region large compared to the microstructure and
rip it apart at a constant macroscopic rate by applying a
surfing boundary condition. This is a steadily translating
opening displacement uðx; y; tÞ ¼ Uðx − Vt; yÞ imposed on
the boundary. Here, we take U to be the displacement of a
mode-I crack in plane-stress state [18] with steady velocity
V ¼ 1 (See Fig. S1 in the Supplemental Material [19]).
We compute the fracture process using a phase field method
(see methods) with no restrictions on the crack set: pinning,
kinking, branching, distal nucleation are all allowed. We
compute the macroscopic driving force on the boundary
using the J integral [20]. While the J integral can be path
dependent at the scale of the heterogeneities, it reaches an
asymptotic limit for large paths distal from the crack tip;
further, this limit is path independent on paths that are
sufficiently large compared to the underlying microstructure
and far away from the crack [21]. The driving force (J)
fluctuates as the fracture process negotiates the microstruc-
ture, but eventually reaches a steady pattern. The effective
toughness is the maximum of this steady pattern JðtÞ since
this is the smallest driving force necessary to drive the crack
set macroscopically. The approach has been extensively
tested [12] and experimentally verified [22,23] (See Fig. S2
in Supplemental Material [19]). Importantly, the effective
toughness depends only on the material and overall direction
and is independent of U and V.

The computed effective toughness of a metamaterial of
the type shown in Fig. 1 is shown in Fig. 2 for various cases
(See Supplemental Material [19], Fig. S3 for details).
Briefly, the crack propagates intermittantly at the micro-
scale: it is pinned at each inclusion until a higher applied
driving force unpins it, following which it jumps to the next
inclusion. The effective toughness in the forward direction
is significantly lower than that in the backward direction
resulting in the asymmetry of toughness. Importantly, both
values are larger than that of the base material. Thus, the
asymmetry of toughness is not achieved by embrittling the
material in one direction, but rather by asymmetrically
toughening the material in both directions.
It is known from the study of layered materials that

cracks are pinned and have to renucleate at compliant-to-
stiff interfaces [17,22], but not by stiff-to-compliant inter-
faces. So, at the microscale, the crack can easily enter the
inclusion but has difficulty exiting it. In the forward
direction, it sees a notch where it can renucleate relatively
easily. However, in the backward direction, it sees a flat
interface that it has difficulty penetrating. This causes
asymmetry while retaining superior toughness in both
directions. Designed properly, the asymmetry or difference
in effective toughness can be about twice as large as the
toughness of the original medium. Finally, the effective
toughness in both directions depends on length scales or
spacing, and this is well understood [12]. Briefly, at very
small spacing (smaller than the length scale of the so-called
macroscopic K-dominant zone where the macroscopic
crack tip senses and explores the stress field), the crack
sees a homogeneous medium and is not pinned. The
amount of pinning, and therefore, the effective properties
increase with spacing before eventually saturating.
To test this idea, specimens of poly-methyl-methacrylate

(PMMA) with a row of triangular voids were loaded on a
rail where the loading device seeks to rip the material apart
from one end as in the surfing boundary conditions (see
Methods and Supplemental Material [19], Fig. S4 for
details). It is convenient to work with a specimen with a
single row of voids instead of a metamaterial for experi-
mental reasons, but we have verified numerically that the
former is representative of the latter. The load-extension

FIG. 1. Snapshots of the crack evolution in a metamaterial
consisting of a two-dimensional array of voids exhibiting direc-
tional asymmetry of its effective toughness.

FIG. 2. Asymmetry in toughness in a metamaterial consisting
of a two-dimensional array of voids computed using the surfing
boundary conditions. Effective toughness is normalized by the
value of the base material.
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curves in both the forward and backward directions are
shown in Fig. 3. In the forward direction, the force
increases steadily until it reaches a critical value at which
point a crack nucleates at the notch and rapidly advances to
the first inclusion where it is pinned. Subsequently, the
crack propagates in an intermittent manner being succes-
sively pinned and advancing rapidly to the next inclusion.
Each jump is accompanied by a load drop and each pinning
phase by a load increase. The propagation in the backward
direction is markedly different: the initial crack is nucleated
as before but it is strongly pinned by the first inclusion and
the load increases to almost twice the value required in the
forward direction. At this point, the sample fails cata-
strophically as a crack nucleates at one of the corners of the
inclusion. While the peak load is always higher, the crack
path in the backward direction may vary (and is sensitive to
the alignment in the loading device). Nonetheless, these
data confirm the fracture diode concept, in which the
favored fracture direction in this metamaterial design is
in the forward orientation.
The asymmetry is further established by subjecting a

series of metamaterial designs to uniaxial tension tests as in
Fig. 1. Again, we focus on a single row of voids though it is
representative of the metamaterial. A centrosymmetric
design would fail with a crack propagating in either
direction, but an asymmetric specimen would only fail
with the crack propagating in the forward direction. Four
designs were 3D printed with an array of triangular
inclusions as shown in Fig. 4 and tested in uniaxial tension
(see Methods and Supplemental Material [19], Fig. S5 for
details). Figure 4(e) shows a series of time lapse images of
the crack propagating in the forward direction. The figure
also shows the statistics of failure: the vast majority of
specimens failed with the crack propagating exclusively in
the forward direction. Further, fractography (Supplemental
Material [19], Fig. S6) indicates that even the local
propagation is in the forward direction; the crack nucleates
at the tip of the inclusion and propagates locally in the
forward direction to the next inclusion. In fact, even in
specimens that did not completely fail in the forward
direction, local failure occurred in the forward direction.

While these results show that the microstructure does
generally “rectify” the crack propagation direction, it does
not always do so.
In other words, true fracture rectification behavior is

somewhat subtle. To understand this, we study the state
of stress in three computational examples shown in Fig. 4(g)
under uniaxial tension. The specimens have the same width,
but have different numbers of inclusions (see details in
Supplemental Material [19], Fig. S7). The first and the last
inclusions are at the same location relative to the edge so that
the spacing between inclusions change with the number. If
the first and last inclusions are close to the edge, the
ligaments between the inclusions and edges break early
as shown in Fig. S7(a). As this stage, we compute the
generalized stress intensity factor (GSIF) that determines
crack nucleation [24] (also Supplemental Material [19]) at
the tip of each inclusion. We find that the GSIF is higher on
the first notch from the left, and roughly equal in every other
notch (see Ref. [19]). However, the difference between the
GSIF at the first notch and the rest increases with decreasing
spacing. In other words, as the spacing between inclusions
increases further, the overall direction of crack growth
becomes indeterminate; cracks nucleate at inclusion tips
but the order in which the ligaments between inclusions
break is sensitive to material and manufacturing defects. So,
we need small spacing. However, if the spacing becomes too
small, the stress fields of the different inclusions overlap and
the crack does not see each inclusion individually. Thus, the
overall toughness and asymmetry decrease as we saw earlier
in Fig. 2. Therefore, there is an optimal spacing between the
inclusions for sequential cracking. Finally, it is useful to
round out the two corners of the inclusion that are distal from
the crack path.
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FIG. 3. Asymmetry in toughness in PMMA specimens tested
on a rail. The insets show failed specimens.

FIG. 4. Asymmetry in toughness in 3D printed specimens
tested in uniaxial tension tests. (a)–(d) Specimen geometries.
(e) Time lapse sequence of images of a test on a uniaxial
specimen (The clock begins at crack initiation). (f) Table of
observed crack propagation direction for all tests performed
(For: ¼ Forward, Indet. ¼ Indeterminate). (g) Specimen geom-
etries used for computations. Images of all specimens (a)–(e),(g)
are cropped to show the operative section.
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These principles lead to the design with a rounded
triangular void and spacing to control nucleation, shown
in Fig. 5 (also Supplemental Material [19], Fig. S8). Twelve
specimens were printed and tested. All twelve specimens
failed with the crack propagating intermittently—being
pinned at an inclusion and then jumping to the next
inclusion where it is again pinned—in the forward direc-
tion. Snapshots from a representative tensile test are shown
in Fig. 5. In fact, two of the twelve specimens were
precracked at the opposite end with a razor blade, but this
did not prevent the crack from propagating in the forward
direction.
In summary, in this Letter we have established the

directional asymmetry or the lack of centrosymmetry in
fracture, and more broadly in bulk mechanical properties.
We are unaware of any natural materials possessing this
asymmetry. Importantly, the asymmetry arises from the
enhancement of toughness in one direction rather than by
the embrittlement in the other directions. The experiments
presented here included a single row of voids, but the idea

easily generalizes to a periodic array of 3D-printed
partially filled voids [23], inclusions or other asymmetric
microstructures. Likewise, directional asymmetry would
be preserved in the two- or three-dimensional metamate-
rials, as noted in Fig. 1. However, the design of such
microstructures requires one to account for the delicate
interplay between macroscopic loading, structural
response, the microstructural response and the various
length scales (local and global stress field, nucleation
length, etc.).
The observed asymmetry in toughness opens the way for

various applications because it enables the control of crack
paths and directions. This control can be exploited to build
resilience in structures by shielding sensitive components
and function by guiding cracks away from critical regions.
In other words, we can prescribe the failure path when
failure is inevitable. Further, the prescription of the failure
path can enhance health monitoring of structures. The
control of crack paths can also enable new functionality by
enabling a particular sequence of failure events without
careful control of loads.
Methods.—Variational phase-field approach to

fracture.—Crack propagation in heterogeneous samples
is investigated numerically through the variational phase-
field fracture approach of Bourdin et al. [25,26]. An elastic
or perfectly brittle material is considered, with isotropic
elastic tensorC (expressed in terms of the Young’s modulus
E and Poisson’s ratio ν) and critical energy-release rate Gc,
occupying a region Ω ∈ R2. In this approach, the crack is
regularized on a length scale l by introducing a continuous
(damage or fracture) field α ∈ ½0; 1� such that α ¼ 0
describes the intact material and fracture is represented
by regions of width proportional to l, where α transitions
from 0 to 1. At each time step, the state of the material is
determined by minimizing the energy functional

Elðu; αÞ ¼
Z
Ω

ð1 − αÞ2 þ ηl
2

ϵ∶C∶ϵdΩþ 3Gc

8

Z
Ω

�
α

l
þ lj∇αj2

�
dΩ; ð1Þ

under a growth condition _α > 0 to account for the irre-
versible nature of the fracture process. Above,
ϵ ¼ ð∇uþ∇utÞ=2 is the strain associated with the dis-
placement u, while ηl is a small residual stiffness intro-
duced for numerical convenience. A finite element
discretization at mesh size δ leads to a numerical toughness
equal to Gnum

c ¼ Gcð1þ 3δ=8lÞ for the intact material
[26]. This approach has been shown to properly account for
crack propagation, nucleation, and renucleation in a wide
range of situations, provided that the small parameter l be
correlated with the crack nucleation threshold [24]. The
fracture problem is solved by alternatively minimizing the
total energy functional in Eq. (1) with respect the two state
variables u and α. The constrained minimization with

respect to the fracture field α is implemented using the
variational inequality solvers provided by PETSc [27,28],
whereas the minimization with respect to displacement
field u is a linear problem, solved by using a preconditioned
conjugated gradient method. All computations are per-
formed by means of the open source code MEF90 [29]. The
equations are nondimensionalized and the nondimensional
parameters are chosen to be l ¼ 0.07, δ ¼ 0.028,
ηl ¼ 10−6, Gc ¼ 1, E ¼ 1, ν ¼ 0.2.
Specimen fabrication.—The PMMA specimens for the

tests in Fig. 3 were fabricated from a 3.175 mm thick sheet
using a Universal ILS9 (Tech-Labs, Katy, TX) laser cutter.
The specimen geometry is shown in the Supplemental
Material [19]. The 3D printed specimens were printed using

FIG. 5. Asymmetry in toughness in the designed fracture diode
metamaterial tested in uniaxial tension tests. The first image
shows the undeformed geometry. The inclusions have a period of
4.05 mm. The subsequent images show snapshots at 0.5 second
intervals (The clock begins at crack initiation at the first
inclusion).
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digital light processing (DLP) printing on an Autodesk
Ember 3D Printer (Autodesk, San Rafael, CA). Samples
were made from commercially available Standard Clear
PR48 printing resin, a urethane acrylate photopolymer. For
the uniaxial specimens in Fig. 4, the gauge length is 60 mm
and the triangle has a base of length 3 mm and spacings of
0.5, 1, and 1.5 mm. The dimensions of the fracture diode in
Fig. 5 are provided in the Supplemental Material [19].
Mechanical testing.—We use two different modes of

mechanical testing. The first is conventional uniaxial
loading where a rectangular specimen is gripped along
two edges and a uniform displacement is applied across
each edge. These were performed on an Instron 5892 load
frame (Instron, Norwood, MA) at a constant displacement
rate of 1 mmmin−1 and replicates of each sample type were
rotated and mirrored randomly to ensure that no bias was
introduced due to the innate directionality of the DLP
printing process. For each test, the load and displacement
were recorded using data from the load cell and the failure
behavior of the sample itself was recorded with a Nikon
D7500 (Nikon, Tokyo, Japan) digital camera at a rate of
30 frames= sec : Loading data and video were synchronized
through visible failure events. After testing, video record-
ings of failure were then reviewed frame by frame using
the postproduction film software DaVinci Resolve
(Blackmagic Design, Port Melbourne, Australia) to classify
failure based on criteria of forward or indeterminate failure
based on behavior predicted by analogous simulations.
The second mode of mechanical testing is an unconven-

tional method that seeks to rip a specimen apart from one end
using a rail following Hsueh et al. [22] (see Supplemental
Material [19]). The rectangular specimen contains a row of
circular holes near two opposing edges. A bushing passes
through each hole, and the bushings are guided along a
wedge shaped rail system so that pairs of opposing holes are
pulled apart sequentially. The wedge-shaped rail has an
angle of 2.2°) and is loaded using an Instron 5892 load frame
at a constant displacement rate of 6 mmmin−1.
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