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Guiding and Trapping Cracks
With Compliant Inclusions for
Enhancing Toughness of Brittle
Composite Materials
The problem of toughening heterogeneous materials with a stiff matrix and compliant inclu-
sions is investigated through numerical simulations and experiments. Specifically, the
problem of optimizing a combination of effective toughness and effective elastic modulus
in the context of a square array of compliant inclusions in a stiff matrix is explored.
Crack propagation in the heterogeneous material is simulated using a variational phase-
field approach. It is found that the crack can meander between or get attracted to and
trapped in the inclusions. Composite specimens with a stiff matrix and compliant circular
inclusions were 3D printed, and their fracture toughness was measured using a specially
designed loading fixture. The experimental results show agreement with the numerical pre-
dictions by demonstrating the attraction and trapping of cracks in the inclusions. This study
demonstrates the potential for significant enhancement of toughness through elastic compli-
ance contrast between the matrix and the inclusion without notably compromising the effec-
tive elastic modulus of the composite material. [DOI: 10.1115/1.4045682]
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1 Introduction
It is understood that the microstructure of a material can have a

significant influence on its fracture toughness although the relation-
ship between the two is not always straightforward. In many cases,
complexity arises from the introduction of heterogeneous micro-
structural features that affect failure response differently depending
on their shape, size, and chemistry. The toughening benefits of
some of these types of features have been explored in different
forms in brittle ceramics [1–7]. Heterogeneous structures have
also been exploited by nature as a means to improve toughness in
materials such as bone and nacre, which has led to numerous
bio-inspired composites [8–13].
One of the greatest challenges in developing heterogeneous struc-

tures is utilizing the interaction between constituent materials in a
beneficial way. If we consider the elastic modulus versus toughness
space, as shown in Fig. 1, most materials that demonstrate high
toughness also demonstrate high stiffness. However, looking
closely at the figure reveals another trend: among brittle materials
—polymers and ceramics, the critical energy release rate Gc is
inversely proportional to stiffness, and it is challenging to find mate-
rials that deviate from this general trend. Many composites depart
from this trend with high stiffness and critical energy release rate,
but this is still limited due to processing constraints that reduce

both the topological freedom and placement control of microstruc-
tural features in heterogeneous systems. This limited control means
that studying crack interactions with microstructural features in het-
erogeneous materials is often restricted to statistical characteriza-
tions of bulk composite properties. To this extent, the relationship
between random microstructures and observable features has been
explored in brittle systems [14–18].
In this study, we look to reach beyond the limitations of tradi-

tional composite processing and explore the design space of hetero-
geneous structures with straightforward methods that can be readily
understood and expanded. Here, 3D printing is used to produce con-
trolled and repeatable arrangements of compliant, low-toughness
inclusions that can attract and trap cracks within the structure. To
mitigate the effect of interfaces, the compliant inclusions were
made through reductions in thickness in an otherwise two-
dimensional composite structure. This ensured perfect material
compatibility and also allowed for relative material properties to
be precisely tailored through thickness. Using this configuration,
we demonstrate that the introduction of inclusions into a homoge-
neous structure can provide significant toughening to the system
even when the inclusions are of lower toughness than the matrix
itself, allowing this heterogeneous structure to extend well
beyond the traditional rule of mixtures behavior seen in many com-
posite systems. Additionally, we demonstrate that the precise
control afforded by 3D printing allows for the fabrication of com-
posite structures with higher toughness at little cost to the stiffness
of the structure.
First, we consider how a composite structure with a specific

arrangement of circular inclusions might be explored from a numer-
ical sense using a variational phase-field fracture model. We then
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examine how this same composite design can be produced and char-
acterized with similar material properties using 3D printing. Some
different examples of the phase-field model are used to demonstrate
how inclusion properties, namely the stiffness and toughness, can
influence the properties of the overall structure when incorporated
into the chosen arrangement. Finally, the numerical analyses are
compared with experimental results, and increased toughness is
demonstrated from the incorporation of inclusions that guide and
trap cracks through a combination of compliance contrast and geo-
metric effects.

2 Computational Approach
Both the computation and experimental analyses in this work

focus on a face-centered-square array of inclusions, as shown in
Fig. 2. Simulations are performed using the phase-field fracture
method following Bourdin et al. [19–22] to study crack propagation
numerically. This is a regularized method that introduces a dimen-
sionless scalar fracture field α taking values in [0, 1] to describe the
material state. The intact material is represented as α= 0 and regu-
larized cracks are represented by regions where α localizes with
peak value 1. The computation proceeds by alternately minimizing
the functional

Eℓ(u, α) =
∫
Ω
(1 − α)2 + η
( )

W(e(u)) +
3Gc

8
α

ℓ
+ ℓ|∇α|2

( )
dx (1)

over the displacement field u and the fracture field α subject to the
constraints 0≤ α≤ 1 and α̇ ≥ 0; the latter representing the fact that
cracks cannot heal. Above,W is the elastic energy density, Gc is the
toughness (critical energy release rate), and η is a dimensionless
small parameter for numerical convenience. The parameter ℓ > 0
is an internal length over which the cracks are regularized,
meaning that cracks are represented by regions of width O(ℓ)
along the center of which α= 1. The specific expression of (1)
was introduced in Ref. [23] following the analysis in Ref. [24,25]
and has been shown [26] to better account to crack nucleation in

a variety of settings that the classical models originally introduced
in Refs. [20,22]. We use the software vDef [27] for the numerical
simulations.
The effective toughness of a heterogeneous material is computed

using the surfing boundary method following Hossain et al. [28]. In
this method, a large domain (comprising of a large number of unit
cells) is considered and subjected to a time-dependent displacement
boundary condition corresponding to a translating crack opening
displacement,

u*(x1, x2, t) = U(x1 − ct, x2) (2)

where U is some displacement field that opens the crack, x1 is the
macroscopic crack propagation direction, x2 is the normal to x1, c
is the macroscopically prescribed velocity of the boundary condi-
tion, and t is the time. In this work, we take the mode-I crack

Fig. 1 Materials design space showing the tradeoff between toughness and elastic modulus
across material and composite systems. Image created using GRANTA CES EduPack Software
from ANSYS Inc. Ⓒ 2010.

Fig. 2 The face-centered-square array of compliant inclusions
in a stiff matrix with the unit cell, the computational domain for
fracture and the experimental region marked
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opening displacement

U(x1, x2) =
KI

2μ

���
r

2π

√
κ − cos θ( ) cos

θ

2
ê1 + sin

θ

2
ê2

( )
(3)

where U is the crack opening displacement field, KI is the stress
intensity factor, μ is the shear modulus, κ is a function of Poisson’s
ratio, r is the polar distance to the origin, and θ is the polar angle. At
each time increment, we find the displacement and fracture fields
using the method outlined above. Note that the fracture process is
unconstrained within the domain—the crack may grow as it
chooses (it may deflect, kink, pin, jump) or new cracks may be
nucleated depending on the heterogeneity. The driving force at
the boundary required to continue the fracture process fluctuates
as the process proceeds, and this can be calculated using the
J-integral on a contour at the boundary of the computational
domain. The effective toughness of the material is the peak value
of the J-integral. This value is independent of the domain, the
imposed macroscopic translation velocity, andU as long as the frac-
ture process is confined away from the boundaries.
We study particular composites where circular compliant isotro-

pic inclusions are embedded in a stiff isotropic matrix. We non-
dimensionalize our parameters so that the toughness (Gc) and
elastic (Young’s) modulus are unity in the matrix. The effective
elastic modulus of the periodic composite containing compliant
inclusions is computed on a unit cell using a fast Fourier transform
(FFT) method following Moulinec et al. [29–31]. In cases where the
inclusion and matrix toughness vary, the interfacial toughness is
always equal to the smaller of the values of the two materials sep-
arated by the interface. The nucleation length is set as ℓ= 0.45. To
establish a crack position, a small pre-crack is inserted into the com-
putational domain as indicated. Further details can be found in
Ref. [32].

3 Experimental Design
3.1 Composite Design. Designs of traditional brittle materials

often use volume fraction when describing the quantity of inclu-
sions, dispersoids, pores, or toughening phases present in a partic-
ular composite design. This volume fraction, along with a
description of the size and structure of the inclusions as well as
the assumption that the inclusion phase is randomly distributed,
gives a clear description of heterogeneous structure within the com-
posite. However, because additive manufacturing allows for control
of the exact location of heterogeneities, volume fraction is an inad-
equate descriptor, as there is an infinite number of configurations of
inclusions within a bulk structure, both uniform and nonuniform,
that can be described by the same bulk volume fraction. This
same principle holds with inclusion structure. In conventional com-
posite theory, the influence of both structure and spacing of inclu-
sions on fracture behavior has been explored for the most
common inclusion shapes, including rods, spheres, and plates [2].

However, if inclusions can be readily designed to be any shape or
structure, this together with spacing make the design space for com-
posites with designed anisotropic structures very large.
To better constrain the design space for the composite structure,

we minimized the number of geometric and material parameters
while ensuring two-dimensional studies. Previously, layered
printed structures were explored in double cantilever beam
testing, but all structure and geometry in that study were effectively
constrained to one dimension [33]. We chose to investigate arrays
of circular inclusions in a face-centered-square array oriented
such that the edges of the square are parallel to the unperturbed
direction of crack growth, as shown in Fig. 2.
In addition to a fixed arrangement with variable radius, elastic

contrast was varied by changing the thickness of inclusion, as
shown in Fig. 3(b). This ensured that the effective elastic
modulus could be varied without unintended interfacial interactions
or material incompatabilities. Furthermore, this allowed the entire
composite to be printed from the same photopolymer. The effective
elastic modulus of the inclusion Einc is related to the thickness con-
trast as follows:

Einc ∝
tinclusion

tmatrix
(4)

where tinclusion is the inclusion thickness and tmatrix is the matrix
material thickness. Note that this is not an actual change in material
properties, as the material is the same for both the matrix and inclu-
sions. However, because both thin and thick regions are both sub-
jected to the same far-field loading, the inclusions will experience
greater stress for the same loading. Consequently, they will effec-
tively behave as though they have greater compliance than the sur-
rounding matrix. This same principle applies to toughness,

Ginc
c =

(Kinc
Ic )2

Einc
∝
tinclusion

tmatrix
(5)

where Ginc
c is the effective critical energy release rate of the inclu-

sion and Kinc
Ic is the effective fracture toughness, which, like stiff-

ness, scales with the applied stress. Again, similar to the stiffness,
no material properties are actually changing, but because thickness
variation changes the stress response to equivalent far-field loading,
the relative toughnesses of the inclusion and matrix are different
with respect to one another. Once the effective modulus and tough-
ness of the inclusions are determined, these values can be incorpo-
rated into the composite design for a given geometry and unit cell
arrangement. From here, the effective elastic modulus of the com-
posite Eeff can be determined using FFT, and the effective strain
energy release rate of the composite Geff

c can be determined from
the macroscopic J-integral [29–31].

3.2 Specimen Fabrication. All samples investigated in this
study were fabricated using digital light processing on an Ember

Fig. 3 Schematic design of (a) a surfing load specimen and (b) the compliant inclusion cross-section
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3D Printer (Autodesk, San Rafael, CA). All were printed using
either a clear system, PR48 or an opaque pigmented system,
PR57 (Autodesk, San Rafael, CA). Both polymers are urethane
acrylate photopolymer blends with compositions reported in
Ref. [34]. Both polymers also have similar elastic moduli of
about 750 MPa and similar fracture toughnesses of about 0.2 MPa���
m

√
. Using either polymer, the Autodesk Ember has a print voxel

size of 50 × 50 × 50 μm3 which is well suited to printing surfing
load specimens with high fidelity. The design for the surfing load
specimens is shown in Fig. 3.
Fracture specimens for surfing load conditions (described below)

were printed to be 90 mm×64 mm by 2.5 mm (Fig. 3), with some
additional thickness reinforcement present around the pinholes to
prevent failure at the loading points. Printed samples, which were
2.5 mm thick, were sufficiently thin to prevent any unwanted
bending moments due to the thickness variation in the inclusions.
Inclusion thickness was chosen to be one-fifth of the “bulk”
sample thickness. The inclusion and matrix layers were also made
flush with one another on one face of the sample, as shown in
Fig. 3(b) to provide a single planar face for displacement
mapping with the grid method [35]. The inclusions were designed
to have a fixed unit cell spacing of 8 mm (Fig. 2). Within this
fixed spacing, the inclusion radius was varied (0.25–1.5 mm) to
change the effective inclusion concentration while maintaining a
standardized design. In order to minimize transient effects and
ensure that characterization occurred well into the crack propaga-
tion regime of the experiment, all of the composite designs investi-
gated in this study had their inclusions confined to a single region of
interest, as shown as a box in Fig. 3(a). This region was chosen to be
25–30 mm away from the leading edge of the sample to allow suf-
ficient space for crack nucleation. The region was kept small
enough to allow for macroscopic evaluation of toughness using a
far-field J-integral in the homogeneous domain surrounding the
inclusions.

3.3 Mechanical Characterization by Surfing Load and
J-Integral Analysis. Based on the mathematically described
surfing boundary condition, a surfing load fixture, shown in
Fig. 4, was devised to produce stable macroscopic crack growth
in heterogeneous specimens containing arbitrary composite struc-
tures. Unlike traditional testing methods, which are designed to
apply loads at a fixed position of the specimen during the entire
test, here displacement is continuously adjusted along the specimen

as the crack extends. More critically, the resultant load is always a
local tensile opening load that does not rely on either a bending
moment or specimen geometry to maintain stability. This implies
that the crack can change path within the specimen without creating
distortion in the far-field loading.
The experimental surfing boundary condition is applied through a

combination of rollers and rails. The rail assembly, shown in
Fig. 4(a), consists of two parallel sections of rail connected by a
diverging zone. The size and angle of the diverging section are
chosen such that, so long as the sample is sufficiently plate-like, a
tensile opening displacement is prescribed which is large enough
to propagate a crack in the specimen, but sufficiently small to
prevent instability during crack growth. The rail itself is assembled
with two spacers (A2 and A3 in Fig. 4(a)), the thickness of which is
chosen so that out of plane motion and specimen drift are mini-
mized. The specimen, shown schematically in Fig. 3(a), is installed
between the two rails (Fig. 4(b)) and held in place with rods and
rollers (parts C1 and C3 in Fig. 4(b)). The rollers are intended to
move smoothly along the rail such that the width of the rail along
the divergent section controls the applied opening displacement
by controlling the exact position of the rods. The rails are connected
to a linear stage controlled by a vertical stepping motor (Fig. 4(c)).
As a result, when the linear stage is moved downward, the rollers
slide along the rail. With this arrangement, the applied displacement
field is controlled through the outer profile of the rail, and the rate of
crack growth is controlled by the velocity at which the linear actu-
ators move the rail. Further details regarding this assembly can be
found in Ref. [36].
In order to measure the driving force on the crack, this experi-

mental configuration can be integrated with non-contact full-field
measurement methods such as the digital image correlation and
the grid method. In our work, we employed the grid method,
which is reviewed in greater detail in Ref. [37]. In this study, a
powder-based grid method was used to measure the displacement
and strain field, as this approach minimizes the impact of the
mounted grid on the resultant toughness measurement, especially
for materials with low toughness or high compliance [35]. The mea-
sured full-field displacement and the computed strain fields were
then used in the area J-integral formulation to calculate the macro-
scopic driving force on the crack [32]. Because toughening due to
compliance contrast happens at discrete locations within the com-
posite structure, namely at the interfaces between regions of differ-
ent compliance, it is not reasonable to treat composites with
macroscopic compliance contrast as effectively homogeneous

Fig. 4 Schematic description of the experimental configuration: (a) rail assembly, (b) rail and specimen assembly, and (c) overall
configuration
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materials when evaluating failure behavior. For this reason, when
evaluating toughness, only macroscopic J-integrals encompassing
the entirety of the composite structure were considered.

4 Guiding and Trapping Cracks
To explore the influence of inclusions on guiding and trapping

cracks, simulations were done with normalized matrix and inclusion
properties. For these simulations, inclusion size and spacing were
scaled relative to the domain size, rather than in absolute dimen-
sional units. We start with an example where toughness is
uniform, but the effective Young’s modulus of the inclusions is one-
tenth of that of the matrix. Figure 5 shows the situation where the
radius of the inclusions is 0.95. As the initial crack is driven to
the right, the inhomogeneous elastic field due to the compliant
inclusion attracts the crack toward the inclusion. However, this het-
erogeneity is not strong enough and the crack never reaches the
inclusion. Therefore, the crack goes on a zig-zag path between
the inclusions. We also see that the normalized J-integral increases
with a peak value of 1.348 as the crack passes near the inclusions;
consequently, the effective toughness of this medium is 1.348: note
that this is strictly higher than the uniform point-wise values. This
example shows that compliant inclusions attract the crack and
that can lead to toughening.
We now slightly increase the size of the inclusions to a radius of

1.0, and the results are shown in Fig. 6. The crack is attracted by the
compliant inclusions and initially goes very close to the inclusions,
almost but not quite reaching the inclusion. However, as the prop-
agation proceeds, the crack deflects sufficiently to touch the inclu-
sion. The crack then propagates along the interface deflecting
further, but has a difficult time reentering the matrix. It is trapped
and the J-integral rises steadily until it reaches a critical value of

1.857 before it breaks free of the interface, reenters the matrix,
and tries to recenter. However, it gets attracted and trapped by the
next inclusion and the cycle repeats. This example shows not
only that compliant inclusions attract the crack, but cracks can get
trapped at the interface between the stiff matrix and compliant inclu-
sions leading to additional toughening.
This trapping and toughening increases further when the radius of

the inclusions increases to 1.5 as shown in Fig. 7. Now the crack is
attracted to the compliant inclusion very quickly and is pinned at the
interface for longer periods leading to an even larger effective
toughness of 2.009.
Finally, we close with a comment about the intermediate case of

radius 1 shown in Fig. 6. This example also shows that a small per-
turbation to the crack path while it is in the matrix can lead to a
change in its further propagation and required driving force.
However, once it gets trapped, small perturbations do not have a
significant effect. So, a proper definition of effective toughness
should be the smallest possible value over all possible starting
points. This is the reason that our simulations always start the
crack at the midpoint between two rows of inclusions: all other
starting points lead to an equal or lower value of effective
toughness.

5 Improved Properties
The simulations in Figs. 5–7 demonstrate that compliant inclu-

sions can be used to guide and trap cracks, and this can lead to
improved toughness. However, the inclusions also reduce the stiff-
ness of the composite media, so it is important to optimize the com-
bination of properties. Figure 8(a) shows the results of simulations
with varying radii of inclusion. The moduli of inclusions and matrix
are 0.1 and 1, respectively, and the toughness is uniformly

Fig. 5 (a) Simulation of material with a staggered array of inclusions where the radius of inclu-
sion is 0.95 (inclusion size and spacing chosen relative to domain size) and (b) normalized mac-
roscopic J-integral showing the toughness increase due to interaction between cracks and
compliant inclusions (the value of the critical energy release rate (Jc) for the basematerials is nor-
malized to 1, and the effective toughness is the maximum value of the normalized J-integral)
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Fig. 6 (a) Simulation of material with a staggered array of inclusions where the radius of
inclusion is 1.0 (inclusion size and spacing chosen relative to domain size) and (b) normal-
ized macroscopic J-integral showing the toughness increase due to interaction between
cracks and compliant inclusions (the value of the critical energy release rate (Jc) for the
base materials is normalized to 1, and the effective toughness is the maximum value of
the normalized J-integral)

Fig. 7 (a) Simulation of material with a staggered array of inclusions where the radius of
inclusion is 1.5 (inclusion size and spacing chosen relative to domain size) and (b) normal-
ized macroscopic J-integral showing the toughness increase due to interaction between
cracks and compliant inclusions (the value of the critical energy release rate (Jc) for the
base materials is normalized to 1, and the effective toughness is the maximum value of
the normalized J-integral)
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1 (dashed line). The square dot is the matrix material and the square
dot is the inclusion material. The circular dots are the effective
toughness of the heterogeneous materials for various radii, and con-
sequently, varying effective moduli. The results show that when the
inclusion radius is increased, the effective stiffness decreases and
the effective toughness increases. Moreover, there is clearly a tran-
sition zone (the vertical line) across which the effective toughness
has a dramatic jump with little change in effective modulus. This
coincides exactly with the transition from attraction to trapping
(recall Figs. 5 and 6). The peak value of the toughness is 2.09
(Fig. 7).
These simulations are repeated for various values of the elastic

moduli of the inclusion (while holding the elastic modulus of the
matrix fixed at 1.0 and the toughness uniform at 1.0 as before).
The results are consolidated in Fig. 8(c) where each geometric
shape represents a set of simulations for various inclusion radii
having a particular value of inclusion modulus. Note that each set
shows a transition behavior from a small effective toughness to
large effective toughness (shaded region), and the transition is asso-
ciated with the change from deflection to trapping. We also observe
that in each case, the toughness eventually falls after peaking with a
further increase in inclusion radius. This is associated with the fact
that the inclusions become sufficiently large that cracks do not have
to deviate too much to reach consecutive inclusions. Thus, the
trapped cracks have a large mode-I driving force, and find it
easier to penetrate into the matrix.

Finally, we study the relation between the inclusion toughness
and the effective toughness. In this study, we fix the inclusion stiff-
ness at 0.1 and vary the toughness of the inclusions. We use inclu-
sion toughnesses of 0.1, 0.5, 1.0, 1.5, and 2.0 and plot the effective
toughness as a function of effective modulus in Fig. 8(c). The inclu-
sion is shown as the dots on vertical dashed line in the figure. We
see that there is a transition zone around an effective stiffness of
0.8. The effective toughness is largely independent for radii that
are small enough that the cracks do not touch the inclusion, as
shown by effective stiffness values to the right of the transition
zone. However, the inclusion toughness can significantly influence
the effective behavior left of the transition zone. Furthermore,
higher inclusion toughness leads to higher effective toughness for
larger inclusions (left of the transition zone). To understand the
true enhancement of the toughness, we define

Toughening ratio

=
Effective toughness

Max
(
matrix toughness, inclusion toughness

) (6)

and plot the toughening ratio in Fig. 8(d ) for these simulations. We
see that there is an optimal toughness ratio between the matrix and
inclusions (= 1) to maximize the toughening ratio.

Fig. 8 Effective toughness and toughening ratio as a function of the effective elastic modulus of the composite material with
square array of inclusions. (a) Toughness response for a single system with differing inclusion radii, with square markers indicat-
ing matrix and inclusion properties. (b) Toughness response for several systems of differing inclusion stiffness, with points along
the toughness =1 line indicating inclusion and matrix properties. Highlighted region indicates a transition zone where inclusions
begin trapping cracks. (c) Toughness response for several systems of inclusions with fixed stiffness of 0.1 and differing tough-
ness, with inclusion properties for each system shown along the dotted line. Highlighted region indicates transition zone where
inclusions begin trapping cracks. (d) Toughening ratio for inclusions of fixed stiffness 0.1 and differing toughness values, where
the ratio is the magnitude of the composite toughening normalized to the toughness of the inclusion.

Journal of Applied Mechanics MARCH 2020, Vol. 87 / 031018-7

D
ow

nloaded from
 https://asm

edigitalcollection.asm
e.org/appliedm

echanics/article-pdf/6482926/jam
_87_3_031018.pdf by Louisiana State U

niversity user on 19 February 2020



6 Comparison Between Theory and Experiment
We conducted a series of experiments to examine whether com-

pliant inclusions do indeed attract and trap cracks as suggested by
the computations above. Figure 9 shows the results of one such
experiment conducted on a 3D-printed specimen, the design of
which is shown in Fig. 3. Figure 9(a) shows the experimentally
observed crack path while Figs. 9(b) and 9(c) show a comparison
between the observed and simulated path. These simulations were
conducted with the modulus and toughness of the inclusions to
taken to be 0.3 times that of the matrix, in accordance with the
experimental parameters. We see reasonably good agreement. The
first inclusion attracts the crack slightly but the crack path recovers
to nearly its original trajectory. The second inclusion then further
attracts it, and in fact, traps it. While there is a good overall agree-
ment, there are two issues to note. First, the observed and computed
crack paths deviate as they negotiate the inclusion. Second, Figs.
9(a) and 9(b) highlight the sensitivity of the initial crack position:
if the computational crack is off-set by as little as 300 μm, the
crack is no longer trapped.
We now turn to the effective toughness, and the results of the

computation and experiment are shown in Fig. 10. As anticipated
the toughness of the composite material increases with the presence
of the inclusion. However, there are two major differences between
simulation and experiment. First, the transition associated with trap-
ping occurs much earlier than predicted. As noted for Figs. 9(a) and
9(b), small changes in the location of the initial crack can lead to
different propagation scenarios. As evidenced, small misalignment
of the specimen leads to a modified crack path which leads to trap-
ping. Thus, the regime where the crack meanders between the inclu-
sions is difficult to achieve in the experiment.

Second, the effective toughness is higher than that predicted for
the composite medium. We hypothesize that this is a result of the
difference between the way inclusions are modeled in the computa-
tions and the way they are introduced in the experiment. In our 2D
computations, we assume plane stress conditions, in which both
matrix and inclusion are assumed to be of equal thickness. In

Fig. 9 Comparison of theory and experiment: guiding and trapping cracks. (a) Com-
parison between experiment and simulation for inclusions of radius R=0.5 mm
showing a difference in behavior due to difference in crack position. (b) Comparison
of experiment and simulation for R=0.5 mm after alignment of crack position in
simulation. (c) Experiment showing crack interaction with inclusions at a larger
radius R=1 mm. (d) Comparison of experiment and simulation for R=1 mm.

Fig. 10 Comparison of effective stiffness and effective energy
release rate (normalized to the matrix material) for composite
structures with staggered patterns off isotropic circular inclu-
sions made by varying sample thickness. Comparison shows
both expected toughness from simulation as well as toughness
measured in experiment.
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contrast, in the experiments, inclusions are introduced by changing
material thickness. As a crack negotiates the transition from low
stiffness (thin) to high stiffness (thick) sections, the three-
dimensional aspect of crack propagation must be considered. This
is clear in the fractograph in Fig. 11 where the crack has propagated
from the inclusion (thin region) to the matrix (thick region) and
shows clear evidence of crack bowing. This introduces additional
trapping at the interface and is responsible for the higher effective
toughness. We further note that the difference in the crack path in
Fig. 9(b) is also likely the result of this difference between compu-
tational assumption and experimental design.
Finally, we note that there are no experimental data for inclusions

of larger radii (EEff < 0.83. As inclusion size increases, the amount
of matrix material decreases, such that cracks regularly jump
across multiple inclusions.

7 Conclusion
We examined the role of microstructure in determining the

overall or effective toughness of a heterogeneous material in a
model composite. The model system consisting of elastic heteroge-
neities with a stiff matrix and compliant inclusions made of the
same material was investigated using both numerical simulations
and experiments. Phase-field numerical simulations were per-
formed of a crack initiating and propagating in a heterogeneous
material of a square face-centered array of circular compliant
inclusions in a stiff matrix. The simulations showed that substan-
tial toughening could be achieved based purely on the elastic het-
erogeneity (difference in elastic modulus) between the matrix and
the inclusions. It was observed that the crack either meanders or is
attracted and trapped by the inclusions depending on the spacing
of the inclusions relative to the size of the heterogeneity for a
given stiffness. Brittle composite specimens were 3D printed
with inclusions of higher compliance introduced through a
change in thickness, which resulted in elastic heterogeneity
without introducing heterogeneity in toughness. Fracture experi-
ments were performed using a specially designed fixture to main-
tain stable crack growth, and the J-integral was evaluated using the
full-field displacement measurements of displacements using the
grid method. Cracks were attracted and trapped in the compliant
inclusions, which was in accordance with the predictions of the
simulations. However, the measured energy release rates were
higher than the predicted values, which is attributed to the 3D
effects associated with crack bowing while transitioning from
thin to thick sections in the 3D printed specimens. This study pro-
vides guidelines for optimal elastic contrast and inclusion geome-
try for significantly enhancing the toughness without much
compromise in the effective elastic modulus of heterogeneous
materials.
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for Nacre Fracture Simulation,” Phys. Rev. E – Stat., Nonlinear, Soft Matter
Phys., 72(4), pp. 1–9.

[11] Dirr, N., and Yip, N. K., 2006, “Pinning and De-Pinning Phenomena in Front
Propagation in Heterogeneous Media,” Interfaces Free Boundaries, 8(1),
pp. 79–109.

[12] Barthelat, F., and Espinosa, H. D., 2007, “An Experimental Investigation of
Deformation and Fracture of Nacre-Mother of Pearl,” Exp. Mech., 47(3),
pp. 311–324.

[13] Begley, M. R., Philips, N. R., Compton, B. G., Wilbrink, D. V., Ritchie, R. O.,
and Utz, M., 2012, “Micromechanical Models to Guide the Development of
Synthetic ’brick and Mortar’ Composites,” J. Mech. Phys. Solids, 60(8),
pp. 1545–1560.

[14] Bouchaud, E., 1997, “Scaling Properties of Cracks,” J. Phys.: Condens. Matter,
9(21), pp. 4319–4344.
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