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Abstract

Hydraulic fracturing has persisted through the use of simple numerical models to describe

fracture geometry and propagation. Field tests provide evidence of interaction and merging

of multiple fractures, complex fracture geometry and propagation paths. These complicated

behaviors suggest that the simple models are incapable of serving as predictive tools for

treatment designs. In addition, other commonly used models have been designed without

considering poroelastic effects even though a propagating hydraulic fracture induces defor-

mation of the surrounding porous media. This deformation couples with fluid loss from

fracture to reservoir to generate poroelastic effects which generally tends to oppose fracture

deformation. One reason for continued use of the simple models is the difficulty associated

with numerical hydraulic fracture modeling. A rigorous hydraulic fracturing model capable

of reproducing realistic fracture behaviors should couple rock deformation, fracture propa-

gation and fluid flow in the fracture. In addition, it should account for the coupled effects

of fluid diffusion into the reservoir and the associated reservoir deformation. Advanced nu-

merical techniques capable of handling the distinct computational domains of fracture and

reservoir will be required for solution of the respective flow and deformation models in each

domain.

In this dissertation, a fully coupled hydraulic fracturing simulator was developed by cou-

pling reservoir-fracture flow models with reservoir-fracture deformation. Reservoir-fracture

deformation was modeled using the variational fracture model which provides a unified frame-

work for simultaneous description of fracture deformation and propagation, and reservoir de-

formation. The numerical implementation is based on a phase-field regularized model. This

approach avoids the need for explicit knowledge of fracture location and permits the use

of a single computational domain for fracture and reservoir representation. Verification of

the variational fracture model was carried out by solving the classical problem of fracture

xi



propagation in impermeable reservoirs due to injection of an inviscid fluid. The solution of

a fluid flow model was not required and the uniform fluid pressure was computed solely

upon consideration of global volume balance. Results showed decreasing fluid pressure dur-

ing fracture propagation and fracture path dependence on in situ stresses. For the purpose

of flow modeling in the poroelastic media, reservoir and fracture fluid flow models were cou-

pled through fluid loss from fracture to reservoir and the unified flow model was regularized

using the phase field variable. The inherent ability of the variational fracture model to pre-

dict initiation, propagation, termination of arbitrary number of fractures is leveraged by the

developed coupled model to simulate complex hydraulic fracture behaviors.

A numerical implementation of the variational fracture model developed by Dr. Blaise

Bourdin of the Mathematics department at the Louisiana State University, Baton Rouge is

used in this work. Iterative solution of the variational fracture model and the coupled flow

model provided a simplified framework for simultaneous modeling of rock deformation and

fluid flow during hydraulic fracturing. Since the phase field technique for fracture represen-

tation removes the limitation of knowing a priori, fracture direction, the numerical solutions

provide a means of evaluating the role of reservoir and fluid properties on fracture geometry

and propagation paths. Results showed that fracture length, fracture width and fluid pres-

sure are controlled by injected fluid viscosity and reservoir properties. Numerical simulation

results highlighted the role of stress shadowing effect on the distribution of multiple frac-

tures. Further analysis showed that fractures propagate orthogonal to the minimum insitu

stress direction while variation of the mechanical properties of layered reservoirs can limit

fracture height growth during hydraulic fracturing.
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Chapter 1
Introduction

1.1 Introduction To Hydraulic Fracturing

Hydraulic fracturing is traced to the 1860s when liquid nitroglycerin (NG) was used to sim-

ulate shallow, hard rock formations in Pennsylvania, New York, Kentucky and west Virginia

(Montgomery and Smith 2010). Not until 1949 was it introduced to the petroleum indus-

try and since then over 2.5 million fracture treatments have been performed worldwide and

about 60% of all wells drilled today are fractured (Montgomery and Smith 2010). These

numbers underscore the increasing value of hydraulic fracturing to the petroleum industry

and continued interest has galvanized its evolution from a simple low volume technique using

gasoline gelled with napalm to a highly complex engineering procedure that uses improved

fluids like delayed cross-linkers, improved mathematical models and imaging methods for

post fracture analysis. Fundamentally, hydraulic fracturing is the process of fracture initi-

ation and propagation in the subsurface, driven by hydraulic loading or fluid pressure of

viscous fluids acting on the surfaces of the fracture (Barter et al. 2000; Sarris and Papanas-

tasiou 2012). It is the primary technique used in the oil industry to increase recovery in

production declining wells and to enable production in low permeable and tight formations

of unconventional resources, like shale gas. The high permeable paths created by fractures

extend the reach of wellbores beyond damaged areas around the bottomhole and improve

productivity by changing reservoir fluid flow patterns from radial to linear. Apart from pro-

ductivity increase, it finds utility in other areas including measurement of fracture gradient

and in situ stresses necessary for wellbore stability analysis and for increasing heat transfer

areas through fully engineered geothermal reservoirs for heat extraction from hot dry rocks

(Smith 1979; Zyvoloski 1985; Fomin et al. 2003; Albright and Pearson 1982). Its use for stress
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measurements is particularly attractive since knowledge of the elastic properties of the earth

region is not required.

Hydraulic fracturing procedure involves first pumping a pad, which in most cases is a clean

fluid like water, at pressures and rates high enough to initiate and extend fractures. Although

fracture initiation pressure is hugely influenced by the least principal in-situ stress, it also

depends on the values of the other principal in-situ stresses, formation mechanical properties

and the mechanical tensile strength of the formation. During fluid injection, fractures are

kept open by the increasing pressure of the injected fluid. Once injection stops, pressure

depletion occurs and the fractures start to to close as fracturing fluid is lost either due to

fluid leak-off into the formation or fluid flow back into the wellbore. To keep the fractures

open and permeable for formation fluid flow to the wellbore, a slurry, which is fluid mixed

with proppant, is injected following the pad.

Engineering design of a fracture treatment involves estimates of fluid volume, injection

rate, volume and concentration of proppants, surface and bottomhole injection pressures

and hydraulic horsepower requirement at the surface for a proposed fracture geometry. The

major post treatment task is prediction of the dimensions of the created fracture. According

to Hubbert and Willis (1957) and supported by numerous field evidence, most subsurface

fractures are vertical, they propagate in the direction perpendicular to the least principal

stress direction and their geometries are quantified by height, half length/radius and width.

Fracture half length is the distance from wellbore to one of the fracture tips, fracture width

is the separation between the two faces of the fracture while fracture height is the distance

between the top and bottom of the fracture, for vertical fractures. These parameters are

crucial in estimating how much production gains are derivable from the fracturing process and

engineers have devoted the better part of the time since the inception of hydraulic fracturing

to trying to infer these quantities and their inter-relationships from a given treatment.
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1.1.1 Importance of Hydraulic Fracturing

Even though hydraulic fracturing has been in existence for over a century, the reason for the

present renewed interest in the method is to enable production in unconventional reservoirs.

This interest is facilitated by advances in drilling and completion technologies and advanced

production strategies that has allowed hydraulic fractures to be used in horizontal wells to

create large drainage areas in unconventional reservoirs, especially in shales. Unconventionals

have been identified as very viable alternatives to conventional oil and gas reservoirs because

of their abundance around the world. For example, the US has significant shale resources

which the Energy Information Administration (EIA) (Kuuskraa, Stevens, and Moodhe 2013)

estimates to be about 58 billion barrels of technically recoverable shale oil and 665 trillion

cubic feet of technically recoverable shale gas. These resources are contained in several dis-

covered shale plays scattered around the United States, including important ones like the

Marcellus, Haynesville, Fayetteville, Barnett, Eagle Ford and Bakken as shown in Figure 1.1.

The shale boom is a global phenomena, with resources existing in about 41 other countries.

Those with significant resources includes Russia, China, Argentina, Algeria, Canada and

Mexico. China with 1115 trillion cubic feet of recoverable shale gas tops the list of countries

with shale gas resources while Russia tops shale oil countries with 75 billion barrels of recov-

erable oil. Despite the relative abundance of shale oil and gas resources, a common feature

of all shale plays around the world is low formation permeability which makes economic pro-

duction of their resources almost impossible. The key, therefore, to unlocking and tapping

the enormous resources contained in shale is hydraulic fracturing.

The benefits of hydraulic fracturing of shale resources is already reaping dividends in the

US as shale gas contributes significantly to meeting the growing demand for gas. As a result,

the US economy is experiencing rapid growth in domestic natural gas supplies and significant

decreases in prices. In fact, the EIA projects that natural gas from shale formations will be

the primary driver of growth in domestic natural gas production through 2035, growing

3



Figure 1.1: Over 58 billion barrels and 665 trillion cubic feet of recoverable shale oil and gas
reserves in the Lower 48 shale formations

from 16% of supply in 2009 to 49% in 2035 as shown in Figure 1.2, and more than offsetting

declining production from other sources (EIA 2014). Given these statistics, it is obvious that

hydraulic fracturing has a huge role to play in bringing these projections to fruition. Thus,

improvements in hydraulic fracturing technology through continuous research is necessary to

provide the industry with better knowledge on how to make the process even more efficient.

1.2 Motivation and Objective

Realistic hydraulic fracture behaviors are characterized by interaction and merging of mul-

tiple fractures, complicated fracture geometries from non-planar propagation and complex

propagation paths due to insitu stresses and heterogeneity in reservoir properties. Modeling

and computational challenges have hindered the development of robust numerical models

capable of reproducing this complicated fracture behaviors. To simplify modeling of the hy-
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Figure 1.2: Shale gas production to drastically increase beyond the contribution of other
sources, becoming the dominant source of dry gas in the US and eventually resulting in
lower natural gas prices.

draulic fracturing process, many previous works have made numerous assumptions including

simplifying fracture geometries, constraining fracture propagation paths to known directions

and assuming propagation of single planar fractures. In addition, fracture fluid loss is nor-

mally assumed unidirectional while the coupled effect of fluid loss and reservoir compaction

on fracture propagation is rarely considered. The computational challenges stem from the

fact that fracture propagation is a moving boundary problem in which the fractures are

considered as surfaces. For hydraulic fracturing applications, the issues are unique since it is

not a trivial task developing efficient ways of numerically represent fractures and reservoir

domains in the same computational framework while still ensuring hydraulic and mechan-

ical coupling between both subdomains. Where attempt has been made to represent both

fracture and reservoir, the computational cost is been expensive and the numerics cum-

bersome, characterized by continuous remeshing to provide grids that explicitly match the
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evolving fracture surface. Some of these challenges can be overcome by using a phase field

representation for fractures.

The primary objective of this dissertation is to develop a hydraulic fracture simulation

model using the variational approach to fracture as the mechanical model. The variational

fracture model is a phase field based approach to fracture simulation. It was proposed by

Francfort and Marigo (1998) and further developed by Bourdin, Francfort, and Marigo

(2000). Fracture representation in the model is implemented using a smooth scalar field,

often called the v-field. The v-field allows for a single computational domain to be used for

both fracture and reservoir representation and removes the necessity for explicit identifica-

tion of fracture and propagation directions. Other advantages of the model are summarized

as follows.

1. It uses a fixed computational grids to represent fractured domain and discretize model

equations. Computational domains may be composed of simple elements like triangles,

rectangles and cuboids.

2. It can handle propagation of multiple fractures since explicit fracture representation is

not required.

3. Heterogeneity in material properties are easily handled by the model.

4. It is easy to incorporate thermal and hydraulic energy contributions to fracturing,

leading to applications in thermal and hydraulic fracturing.

5. The numerical algorithm is parallelizable. Therefore, can be run on high performance

computing resources to speed up fracture simulations.

6. No additional modeling cost for fracture propagation in 2D or 3D domains.

Although the variational fracture model is relatively new, it has found application in ther-

mal fracturing (Bourdin et al. 2014) and thin film fracturing (Mesgarnejad 2014). Application
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in hydraulic fracturing (Bourdin, Chukwudozie, and Yoshioka 2012; Chukwudozie, Bourdin,

and Yoshioka 2013; Wick, Singh, and Wheeler 2014; Mikelic, Wheeler, and Wick 2013) is at

an early stage and this work aims to push the frontier in this area even further. This disser-

tation solves the hydraulic fracturing problem by coupling the variational fracture model to

a coupled model for fluid flow in both fracture and reservoir. The fracturing fluid pressure,

hydraulic fracture geometry and propagation paths are solutions of the coupled flow and

mechanical models. A three dimensional numerical solution of the coupled model is imple-

mented and can be applied to two dimensional cases under plain stress/strain conditions.

The specific objectives of this dissertation are therefore:

1. To develop and implement a parallel hydraulic fracturing simulation that couples reser-

voir and fracture fluid flow to the variational fracture model that describes reservoir

and fracture deformation. The variational fracture model used in this dissertation is a

finite element implementation. The coupled flow model will be solved using the stan-

dard finite element method on structured grids and implemented within the PETSc

(Portable, Extensible Toolkit for Scientific Computation) (Balay et al. 2011) frame-

work. PETSc also provides the framework for parallel implementation.

2. To derive fracture width equation using the mechanical variables and develop numer-

ical algorithm for its computation. Fracture width is an important component of the

fracture flow model since it defines fracture permeability and volume.

3. To analyze fluid pressure and fracture geometric properties like length, radius, width,

volume and propagation paths for different reservoir and fluid properties.

4. To highlight effect of insitu stresses on hydraulic fracture propagation, understand

interaction between multiple propagating fractures and investigate the role of reservoir

layers on fracture height growth.
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1.3 Fundamentals of Hydraulic Fracturing Modeling

Given that hydraulic fractures do not exist in isolation but propagate in deformable porous

media, hydraulic fracturing is the result of several complex processes occurring simulta-

neously in the subsurface. A comprehensive mathematical model for hydraulic fracturing

analysis will require incorporation of all of the following five mechanisms (Yuan 1997; Ghas-

semi 1996; Boone and Ingraffea 1989); fracture fluid flow, fluid flow in reservoir, fracture

mechanics, solid deformation and poroelasticity.

1.3.1 Fracture Fluid Flow Modeling

An appropriate flow model is required to predict the fluid pressure that drives fracture prop-

agation for given fluid rheological properties while also considering the possibility of fluid

loss. The choice of flow model is guided by a number of assumptions about fracture geom-

etry, flow conditions and fluid properties summarized as follows. Fractures are considered

to be planar objects since their widths are much less than their lengths i.e w << L. This

assumption implies that flow during fracturing is only in the plane of the fracture with no

component across the fracture face. In addition, laminar flow is commonly assumed so that

with the planar geometry assumption, fluid flow follows the cubic law of Poiseuille’s equation

and is also governed by Reynolds equation from lubrication theory (Batchelor 1967). For a

2D fractures in the x− y plane, the cubic law and Reynold’s equation for flow modeling are

shown below.

qfx = − w2

12µ

∂pf
∂x

qfy = − w2

12µ

∂pf
∂y

(1.1)

∂w

∂t
+
∂(wqfx)

∂x
+
∂(wqfy)

∂y
− q` = qfs (1.2)

qfx , qfy are the x and y components of fluid flux, qfs and q` are injection flow rate and leak-off

rate respectively while w is fracture aperture.
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Equation 1.1 is similar to Poiseuille equation for fluid flow between parallel plates. There-

fore, fracture permeability is kf = w2

12
. Equation 1.2 is the continuity equation describing

local mass conservation in the fracture. Considering that a fracture can have different ori-

entations along different points on its surface, surface gradient and surface divergence are

necessary to project the classical gradient and divergence in Rd onto the plane of the fracture

in Rd−1. This will eliminate the contribution of the normal component of these operators

that are perpendicular to the fracture faces. Thus, using these operators, the fracture flow

equations can be represented in a general form for any fracture surface orientation as given

below (see Serres et al. (2002), Martin, Jaffré, and Roberts (2005)).

~qf = − w2

12µ
∇Γpf (1.3)

∂w

∂t
+∇Γ · (w~qf ) + ql = qfs (1.4)

∇Γpf and ∇Γ · w~qf are surface pressure gradient and surface divergence of fluid flux.

Leak-off is a complex process (Fakoya et al. 2013; Fakoya et al. 2014) and mathematical

description of its behavior is not a trivial task. The widely used Carters’ model assumes leak-

off is one-dimensional and perpendicular to the fracture face. According to Adachi, Siebrits,

and Desroches (2007), this approximation is reasonable provided fracture is propagating

sufficiently rapidly that non-orthogonal leak-off is negligible. Although Carter’s model works

well in low-permeability formations, van de Hoek (2000) notes that in high permeability

formations, leak-off rates may be high compared to fracture propagation rates. Under this

conditions, the 1D leak-off model will be insufficient to capture the full dimensional fluid

loss pattern.

1.3.2 Reservoir Fluid Flow, Reservoir Deformation and Poroelas-
ticity

Fluid loss from fracture to reservoir has significant consequences on hydraulic fracturing

beyond reducing fluid efficiency. As fluid source term to the deformable medium, it induces
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what is called poroelastic effects. Poroelastic effects reflect the interaction between defor-

mation of the porous solid matrix and diffusion of pore fluid and their mutual effects on

hydraulic fracturing. The major implication of poroelastic effects on fracturing is an increase

in wellbore pressure than is obtained when poroelasticity is not considered (Smith 1985;

Vandamme and Detournay 1989; Kovalyshen 2010). This is due to the fact that fluid loss to

the regions adjacent to fractures cause dilation of the poroelastic media which then generates

compressive stress that acts against the fracture. The result is an increase in fluid pressure

for a given injected fluid volume. In hydraulic fracturing literature, this generated compres-

sive stress is called back stress. According to Aghighi (2007), the back stress also decelerates

fracture growth and the resulting higher treatment pressure leads to more fluid loss. Other

effects of poroelasticity on hydraulic fracturing include, increase in rock breakdown pres-

sure (Kovalyshen 2010), fracture pressure higher than minimum in situ stress (Smith 1985;

Kovalyshen 2010; Ghassemi 1996) and a reduction in fracture aperture which is a direct

consequence of the back stresses acting on the fractures. It is important to note that poroe-

lastic effects are less significant when fracturing is carried out with high viscous fluids and in

deforming media with low permeability since fluid loss is minimized under these conditions.

The mutual interaction between fluid diffusion and reservoir deformation is handled by

linear poroelasticity theory developed by Biot (1941). The theory consists of a set of two

equations: the equilibrium equation with constitutive relations for solid deformation and the

continuity equation with Darcy’s law for fluid diffusion in the reservoir. The equations can

be written as an elastic Navier equation with a coupling term for pore pressure and as a

diffusion equation for pore pressure with a coupling term for the dilation.

G∇2ui +
G

1− 2ν
uk,ki = αpr,i − Fi (1.5)

∂pr
∂t
− kM∇2pr = −αM ∂εvol

∂t
+Mqrs (1.6)

G, ν, Fi, α and ~u are shear modulus, Poisson ratio, body force, Biot’s coefficient and displace-

ment respectively while k, M , εvol, qrs and pr are permeability, Biot’s modulus, volumetric
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strain, fluid source term and reservoir pressure respectively. Equations 1.5 and 1.6 are in-

corporated into hydraulic fracturing modeling to account for the effect of poroelasticity on

hydraulic fracturing.

Solution Methods for Coupled Flow and Deformation in Poroelastic Media

Coupled numerical solution of Equations 1.5 and 1.6 is necessary to obtain accurate solutions

of pressure and displacement in a poroelastic domain. Based on the level of coupling in the

numerical technique, the approaches can be broadly classified into fully coupled, explicit

coupling, loose coupling and sequential coupling (Kim 2010; Kim, Tchelepi, and Juanes

2009; Kim, Tchelepi, and Juanes 2011; Jha and Juanes 2006; Wan 2002; Hameyer et al.

1999). Sequential approaches are further divided into iterative, explicit and loose coupling.

Fully Coupling Approach

In the fully coupled approach, ~u and pr are solved for simultaneously by generating a single

matrix that contains coefficients of Equations 1.5, 1.6 and their coupling terms. It is common

practice to use a single numerical technique to discretize the poroelasticity equations and

generate the single matrix. Lewis (1998) has described a consistent way of doing this using

the finite element method and numerical implementation of the finite element discretization

has been carried out by several authors including Jha and Juanes (2006, Zheng, Burridge,

and Burns (2003). Different numerical methods can also be used to discretize the equations.

For example, Wan (2002) used stabilized the finite element method for the force balance

equation and the finite difference method for the flow equation. The fully coupled approach

is unconditional stable but requires sophisticated mathematical techniques and development

of robust geomechanical simulators for all problems even if the contribution of one of the

phenomena (deformation or flow) is not important in describing the overall behavior of the

reservoir system.
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Partial Coupling Approach

In this method, Equations 1.5 and 1.6 are decoupled to allow them to be solved separately.

The coupling terms are passed between the two solvers. Depending on the degree of numerical

coupling, these techniques are further classified as sequential/iterative, explicit and loose

coupling.

Sequential/Iterative Coupling

This techniques involve successive solution of Equations 1.5 and 1.6 during which ~u and

pr are exchanged to update the coupling terms in each model. Both equations are solved

iteratively at each time step until the solution converges. Since each equation is solved sep-

arately, sequential methods allow for the possibility of different numerical techniques for

discretizing the equations. In addition, different grids over the computational domain can be

used for the different equations but with a platform for mapping from one grid to another,

variables/quantities that are shared between the models. As a result of these flexibilities,

numerical implementation of each model can be developed as standalone packages. If the nu-

merical solution of each model is reliable and the coupling algorithm properly implemented,

sequential solutions converge to the fully coupled solution.

Sequential solution methods for poroelasticity are further categorized into drained split,

undrained split, fixed strain and fixed stress methods depending on whether Equation 1.5

is solved before Equation 1.6 during the iteration, or vice versa (Kim 2010; Kim, Tchelepi,

and Juanes 2009). In drained and undrained split coupling methods, Equation 1.5 is first

solved and then ~u is transferred to Equation 1.6 to update volumetric strain rate contribution

to flow. As the names suggest, during the solution of Equation 1.5, changes in pr over the

computational domain is frozen in the drained split while no change in fluid content is

imposed in the undrained split method. Conversely, the flow model is first solved in the fixed

stress and fixed strain techniques to obtain the reservoir pressure which is then transferred
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to the mechanics equation. Changes in volumetric strain rate and mean stress are frozen in

the fixed strain and fixed stress methods respectively.

Stability analysis carried out by Kim (2010) show fixed strain and drained split methods

are conditionally stable while fixed stress and undrained split are unconditionally stable.

The stability for these methods is not a function of the numerical time step size, Rather,

it is defined by the magnitude of the coupling terms given by τ = α2 M
Kdr

< 1, where Kdr is

constrained/drained bulk modulus.

Loose coupling

In this method, either a fixed number of iterations is carried out at each time step or the

coupled problem is not solved at every time step but only after a specified times of the

computation (Minkoff et al. 1999; Settari and Walters 2001; Minkoff et al. 2003).

Explicitly coupling

This is a non iterative approach as only a single solution of the flow and deformation equations

are carried out at each time step (Dean et al. 2006). The solutions from this method are

obviously not accurate but can offer computational savings if the contribution of flow to

deformation or vice versa is not strong.

1.3.3 Solid Deformation and Fracture Mechanics

Fracture mechanics aspect deals with fracture propagation by predicting when (initiation),

where (direction) and how (stable or unstable) fractures propagate. The widely used theory

in this regard is linear elastic fracture mechanics (LEFM) which is founded on the work

of Griffith (1921). According to this theory, the elastic energy of a material that contains a

fracture dissipates during fracture creation. An energy release rate, G, is defined which quan-

tifies the rate of change of the elastic energy (E) with length/area for fracture propagating

along a pre-existing path.

G = −dE
d`

(1.7)
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Fracture will propagate in a stable manner when the energy release rate reaches a critical

value, Gc, called the fracture toughness. i.e.

G = Gc (1.8)

For mixed mode deformation

G = GI +GII +GIII (1.9)

Fracture toughness is a material property and measures the resistance of the material to

grow fractures.

GI =
K2
I

E ′

GII =
K2
II

E ′

GIII =
(1 + ν)K2

III

E

(1.10)

Considering that fracture toughness is related to the stress intensity factor by Irwin’s formula

(Irwin 1957) of Equation 1.10, the propagation criteria can also be expressed in terms of stress

intensity factor i.e.

K = Kc (1.11)

where Kc is the critical stress intensity factor. Again, superposition of all modes leads to

K = KI +KII +KIII (1.12)

KI , KII , KIII are mode-I, II and III stress intensity factors. E ′ = E for plane stress and

E ′ = E
(1−ν2)

for plane strain problems. Formulas for stress intensity factors for different

fracture configurations and loading conditions have been derived in the literature (Tada,

Paris, and Irwin 2000). By using Equation 1.10, the corresponding fracture toughness can

be obtained.

Another approach for predicting fracture propagation is based on the cohesive zone model

(Barenblatt 1962; Dugdale 1960). This model does not use the parameters (stress intensity

factor) employed by LEFM since it avoids stress singularity at fracture tip by adding a zone

14



of vanishing thickness, called the cohesive zone, ahead of the crack tip. The zone which also

acts as a transition region between the open fracture and the intact material ahead of the

fracture tip as shown in Figure 1.3, consists of upper and lower surfaces held by a cohesive

traction. According to the general model, as fractures are subjected to external loading, the

separation between the cohesive surfaces increases until it reaches a critical value at which

point the fracture grows. A cohesive law describes the behavior of the cohesive fracture by

defining the relationship between cohesive traction and separation of the cohesive surfaces

in terms of their respective critical values. The material properties in these laws are the

critical stress/traction, critical separation and cohesive energy. Only two of these properties

are necessary to completely define a cohesive law.

Solving the mathematical models of each of the phenomena described above is not a trivial

task by any means. This invariably means that hydraulic fracturing based on the coupling of

all the mechanisms described above will even be more daunting. The complexity is increased

by the non-linear relationship between fracture permeability and fracture aperture. More

often than not, one or more of the mechanisms are left out during hydraulic fracturing

modeling. On the basis of the complexity of the interaction between diffusion of fracturing

fluid into the reservoir and rock deformation modeled by poroelasticity, Vandamme and

Detournay (1989) has classified hydraulic fracturing into uncoupled, partial coupling and

fully coupled.

In the uncoupled approach (Perkins and Kern 1961; Kristianovic and Zheltov 1955; Nord-

gren 1972; Adachi, Siebrits, and Desroches 2007; Geertsma and de Klerk 1969; Detournay

and Garagash 2003), poroelasticity is not incorporated as the rock is considered to be elastic

and experiences no fluid diffusion and the associated deformation. Fracture opening as a

function of fracturing fluid pressure and insitu stress is modeled using the elasticity equation

while fracture fluid flow is modeled using Reynold’s equation and the cubic law. However,

models in this category acknowledge that some fluid is lost during hydraulic fracturing. The

fluid loss is assumed to be unidirectional and modeled using an empirical equation, Carter’s
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Figure 1.3: cohesive element

unidirectional diffusion model. Carter’s model is an approximation in itself and the non

consideration of poroelasticity in this type of approach means that fluid loss only accounts

for volume balance and has no role in activating the influence of rock dilation on hydraulic

fracturing.

Partial coupling has some of the features of uncoupled approach, including the assumption

of linear elasticity for the rock and Reynolds equation for fracture flow modeling. However,

leak-off is modeled more rigorously by assuming linear diffusion from fracture to reservoir

while interaction between diffusion and solid deformation due to fluid loss to the formation

is also considered. Although these methods (Tran, Settari, and Nghiem 2013; Settari and

Price 1984; Kovalyshen 2010) consider interaction between fluid flow and solid deformation

initiated by the fluid loss, poroelasticity is not rigorously modeled using Biot’s theorem.

Rather, the additional stress generated due to rock dilation is calculated and applied to the

elasticity equation in the form of the back stress.

Fully coupled approach accounts for solid deformation and fluid interaction using Biot’s

poroelasticity theory. The models in this category (Mohammadnejad and Khoei 2013; Boone

and Ingraffea 1990; Carrier and Granet 2012) make no assumption about the dimensionality

of the fluid loss. Rather, fluid loss is a consequence of the coupling between fracture and

reservoir flow and is modeled according to linear diffusion. The flow coupling introduces
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a time scale in the fracturing problem and allows the effects of reservoir properties like

permeability and Biot’s coefficient on hydraulic fracturing to be investigated.

1.4 Review of Hydraulic Fracture Modeling

The difficulty of hydraulic fracturing modeling posed by the need to incorporate several

processes simultaneously and the need to extract properties for an unknown geometry has

been highlighted. To keep the problem tractable, engineers simplified fracture geometry to

2D, pseudo-3D (P3D) and 3D and considered hydraulic fracturing as the propagation of

these geometries in a permeable or impermeable media. Consequently, fracture design is

based on analytically calculating geometric parameters of these simple models for given

treatment parameters and fluid/rock properties. Although these models are approximate

solutions for certain fracture problems (Savitski and Detournay 2002), recently, they have

had limited success in field treatment designs due to their inability to reproduce realistic

behaviors that are prevalent in the widely fractured unconventional reservoirs. A number of

such approximated geometries have been in existence since the onset of hydraulic fracture

study and the history of fracture development will be incomplete without alluding to the

works of the pioneers (Perkins and Kern 1961; Kristianovic and Zheltov 1955; Nordgren 1972;

Geertsma and de Klerk 1969). On the assumption of plain strain, Perkins and Kern (1961)

considered hydraulic fracturing in elastic materials that fail in a brittle manner when stresses

are applied rapidly. In proposing their fracture model, they considered that conditions such

as zones with horizontal stress higher than in the pay zone are sometimes found above and

below the pay zone and higher horizontal stresses in impermeable sections than in permeable

sections cause vertical fractures to be limited in growth in the vertical direction. Given these

conditions, fracture will grow until it reaches the boundary zones and then will be restricted

in vertical growth. Although fracture continues to extend laterally away from the wellbore,

the high stress at the top and bottom tend to close the fracture in those locations. The

result is a fracture geometry with length far greater than height, as shown in Figure 1.4.
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The fracture width in this model has an elliptical cross-section on a horizontal plane. For

Newtonian fluid flow under laminar flow conditions, the width of this model on a horizontal

plane through its center has been calculated using the crack opening equation by Sneddon

and Elliott (1946) and is shown in Equation 1.13. No estimate of the fracture length was

proposed.

w(x) =
2(1− ν2)Hp

E
(1.13)

w(x) is fracture width profile through the middle of the fracture. ν, E, p are Poisson’s ratio,

Young’s modulus and fluid pressure respectively while xf is the fracture half length and x

is location along the fracture length. Nordgren (1972) extended the work of Perkins and

Kern (1961) to include the effects of fluid loss through a continuity equation to calculate

fracture length. For all their significant contributions, the model is today called the PKN

(Perkins-Kern-Nordgren) model.

A complementary 2D hydraulic fracture geometry is the KGD (Kristinovic-Geertsma-de

Klerk) model shown in Figure 1.5. Again, it assumes a constant fracture height equal to the

height of the oil bearing formation it propagates in. It was proposed by (Kristianovic and

Zheltov 1955; Geertsma and de Klerk 1969) with a closed form solution of the fracture width

given by

w(x) =
4(1− ν2)Lp

E
(1.14)

The constant height of both KDG and PKN models, constrained by thickness of the frac-

turing layer, limits their ability to predict vertical propagation of hydraulic fractures. In

addition, rigorous fracture mechanics is not captured in the formulations since fracture ge-

ometry is predetermined, independent of fluid flow and variations in reservoir properties. On

the positive side, however, they have been used to verify new hydraulic fracture simulators

because of the simplicity of their geometries and analytical solutions. Pseudo-3D models

(P3D), the evolutionary step after 2D modeling were introduced (Settari and Cleary 1986;

Advani, Lee, and Lee 1990; Morales 1989) to remove the constant and uniform height as-
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Figure 1.4: Perkin-Kern-Nordgren
(PKN) fracture model geometry for
xf >> hf

Figure 1.5: Kristianovic-Geertsma-de Klerk
(KGD) fracture model geometry for xf << hf

sumptions of the 2D models. By extending these 2D models, particularly the PKN geometry,

to include in-situ stress variation in the top and bottom bounding layers, variation in fracture

height during hydraulic fracturing were modeled.

General 3D fracture modeling considers fractures as planar objects that are oriented or-

thogonal to the minimum in situ stress. These models place no restriction on fracture length

and height growth. In addition, they allow fluid flow along the fracture length and height

directions. Fracture width is a function of fluid pressure and given the 2D nature of fluid

flow, modeling requires coupling between equations for fluid flow and linear elasticity. Three

dimensional fracture modeling can be grouped into two categories. The first category in-

volves analytical and numerical solution to a coupled model that includes integral equations

for fracture width as a function of fluid pressure on fracture faces the fracture fluid flow

model (Clifton and Abou-Sayed 1981; Barree 1983; Savitski and Detournay 2002; Detournay

and Garagash 2003; Bunger, Detournay, and Garagash 2005; Adachi, Siebrits, and Desroches

19



2007; Ribeiro and Sharma 2012; Kovalyshen 2010; Yuan 1997; Bui 1977; Ghassemi 1996).

Equation 1.15 is the commonly used elasticity integral for fracture width computation, where

R(t) is the domain of the fracture, σc is the local minimum in situ stress while C contains

all the elastic properties of the layered rock. As evident in Equation 1.15, these methods

only solve for fracture opening displacement and height along planes perpendicular to the

propagation direction without describing deformation in the poroelastic media outside the

fracture.

∫
R(t)

C(x, y, ξ, η)w(η, t) dξdη = p(x, y, t)− σc(x, y) (1.15)

In the second group, fracture width is not explicitly calculated from some integral equations

like in the previous group, but is inferred from displacement solution of the hydromechanical

models. Solution of coupled flow and mechanical problem requires specialized computational

grids which not only permits solution of the fracture flow model at discrete points along the

fracture but also allows application of this fracture fluid pressure on the boundary of the

reservoir at the fracture/reservoir interface. Early attempts simply treated the fractures as

external boundaries of the reservoir computational domain (Ji, Settari, and Sullivan 2009;

Dean and Schmidt 2009). Initiation and propagation of the fracture was represented by

gradual release of the original fixed nodes on the fracture boundary plane and the fracture

width then became the displacement of the released node. Some authors have used special

interface elements called zero-thickness elements to handle fluid flow in fractures embedded

in continuum media (see Carrier and Granet (2012), Segura and Carol (2004), Segura and

Carol (2008a), Segura and Carol (2008b), Boone and Ingraffea (1990), Lobão et al. (2010)).

An example is shown in Figure 1.6 and was proposed by Carrier and Granet (2012). It

is a degenerate 8-node quadrangle. Fracture flow equation is discretized and solved on the

mid-plane nodes. This means that fracture fluid pressure, pf , is defined on nodes 6 and

8. The outer segments of the element defined by lines through nodes 4-7-3 and through
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nodes 1-5-2 are the connection between fracture and reservoir. This outer edges also serve

as the reservoir-fracture interface for the mechanical model. Fracture aperture defined in the

middle edge, is the difference between the displacement of the upper and the lower segments.

Hydraulic continuity is ensured by specifying that fracture fluid pressure in the mid-plane

nodes is equal to the reservoir fluid pressure on the outer segments. i.e pf on node 6 is equal

to p on node 2 and 3 and pf on node 8 is equal to p on 1 and 4. The use of this type of

elements allow for explicit fracture representation and easy solution of reservoir and fracture

models on their respective computational domains. However, since the interface elements

for fracture representation are inserted along the edges of continuum grids, the fracture

propagation direction is known a priori and limited to the edges of grids, which in most

cases is one of the principal coordinate directions of the computational grid. In addition, 3D

computations using this meshes have not been reported.

The extended finite element method (XFEM) and the generalized finite element method

(GFEM) have also been used to facilitate fracture representation in the reservoir domain. In

the XFEM, the level set method or any of its variants is used to track the fracture location.

Mohammadnejad and Khoei (2013) modeled hydraulic fracturing propagation in poroelastic

media with the XFEM. The coupled effect of fluid flow and deformation in the surrounding

reservoir was incorporated. Dahi (2009) also used the XFEM for hydraulic fracturing model

but did not consider poroelasticity. Both applications were for line fractures in 2D reservoirs.

On the other hand, the GFEM uses separate computational grids for fracture and reservoir

representation. In applying the GFEM for hydraulic fracturing modeling, Gupta and Duarte

(2014) and Gupta and Duarte (2015) used fixed grids for the reservoir while the embed-

ded mesh for fracture representation was updated and continuously refined during fracture

propagation. For both XFEM and GFEM, the additional degrees of freedom due to the en-

richment functions significantly increases the computational cost. In addition, the frequent

interpolation of numerical data between reservoir and fracture meshes reduces the accuracy

of the GFEM which affects convergence of the method. Recently, the phase field method
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Figure 1.6: Zero-thickness interface element for solution of the coupled mechanical and flow
models used in (Carrier and Granet 2012) for hydraulic fracturing modeling

has been applied to hydraulic fracturing. The seminal work by Bourdin, Chukwudozie, and

Yoshioka (2012, Chukwudozie, Bourdin, and Yoshioka (2013) led developments in this area.

Bourdin, Chukwudozie, and Yoshioka (2012) introduced the phase field based variational

fracture model for hydraulic fracturing and verified it by simulating fracture propagation in

elastic domains due to inviscid fluid injection. Chukwudozie, Bourdin, and Yoshioka (2013)

the initial work to account for the effects of insitu stresses on propagation patterns. Hy-

draulic fracture propagation in two and three dimensional reservoirs were simulated in both

publications. However, fracture and reservoir fluid flow were not considered. Following these

initial works, interests in applying the phase field methods for hydraulic fracturing model-

ing has increased. Although Mikelic, Wheeler, and Wick (2013), Wick, Singh, and Wheeler

(2014), Mikelic, Wheeler, and Wick (2015) have incorporated reservoir-fracture fluid flow in

phase field hydraulic fracturing model, they considered fractures as being of the same dimen-

sion as the reservoir. As a result a single poroelastic flow model was developed, obtained by

weighting and adding reservoir and fracture flow models. The phase field variable was used

as the indicator function for weighting the flow models. In addition, fracture width was not

computed to update fracture permeability. Rather, predefined values of permeability were

assigned to fracture regions.
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1.4.1 Dissertation Outline

The previous sections introduced hydraulic fracturing, discussed the important phenomena

that influence fracturing in deformable porous media and reviewed the important develop-

ments and contributions on the subject. The remaining part of this dissertation consists of

four chapters with the following organization.

Chapter 2 focuses on the mechanical component. The variational fracture model

is presented while fracture representation using the phase field approach is intro-

duced. A phase field calculus is developed for converting surface integrals to volume

integrals and examples of its application in fracture width and volume computations

are shown. Thereafter, the variational fracture model is verified by solving the clas-

sical problem of hydraulic fracturing in impermeable media. This problem has been

studied by several authors and is equivalent to injection of an inviscid fluid.

Chapter 3 introduces the flow component of the hydraulic fracturing model.

The approach for coupling reservoir and fracture fluid flow models is presented

while phase field calculus is used to regularize the developed coupled flow model. A

modified fixed stress split algorithm for numerically coupling the flow and mechanical

models is also presented. The numerical technique for fracture width computation is

discussed in details. Thereafter, the classical Mandel’s and Terzaghi’s consolidation

problems are solved to verify the geomechanics aspect of the coupling.

Chapter 4 solves hydraulic fracturing problems using the coupled model developed

in Chapter 3. The model is first verified by solving problems with known solutions.

Thereafter, the effects of reservoir properties on fracture path and geometry is stud-

ied. In situ stresses are incorporated while hydraulic fracture propagation in layered

reservoirs is simulated.

Chapter 5 concludes the dissertation and recommends directions for continued

research.
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Chapter 2
Variational Fracture Modeling

2.1 Introduction

Fracture deformation and propagation make up the mechanical components of a hydraulic

fracturing simulation while the flow component consists of reservoir and fracture fluid flow

modeling. The objective of this chapter is to review and verify the general formulation of

the variational fracture model used as the mechanical component of this dissertation. First,

fracture representation using the phase field approach is described while the associated phase

field calculus that accounts for cracks in integral quantities is presented. Some basic features

of the numerical code will be highlighted and results from numerical verification experiments

for fluid driven fractures and natural fractures will be presented and discussed.

2.2 General Fracture and Deformation Models in Poroe-

lastic Media

Reservoir deformation is traditionally modeled according to the theory of linear poroelastic-

ity developed by Biot (1941). The theory addresses coupling between deformation of fluid

saturated porous media and transient fluid diffusion using two equations for solid defor-

mation and fluid flow Lewis (1998). Since fractures are boundaries of poroelastic domains,

their deformation also follow the poroelasticity theory. In its basic form, solid deformation is

modeled by the equilibrium equation derived from momentum conservation with linear elas-

tic stress-strain constitutive relation. The mathematical formulation of poroelastic reservoir

deformation and fracture propagation are described as follows.

A poroelastic media, Ω in Rd; d = 2 or 3, containing a fracture is shown in Figure 2.1,

where Ω \ Γ ⊂ Rd is the unfractured part of the reservoir while Γ ⊂ Rd−1 is the fracture.

Although the domain of the poroelastic media is bounded externally by ∂Ω = ∂DΩ ∪ ∂NΩ,
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(a) Reference configuration for a poroelastic

medium containing a fracture. The fracture, Γ is
a surface defined by a single normal, ~nΓ

(b) Deformed configuration for a poroelastic

medium containing a fracture. The crack has two
surfaces defined by Γ+ and Γ−. The spacing be-

tween both fracture faces is the fracture width

Figure 2.1: Schematic of reservoir and fracture as components that make up the poroelastic
media. The fracture is an internal boundary of the porous media with normal ~nΓ

where ∂DΩ and ∂NΩ are the displacement and traction boundaries respectively, the fracture

can also be considered as part of its boundary. Therefore, in principle, ∂Ω = Γ ∪ ∂DΩ ∪

∂NΩ. In linearized elasticity, the reference configuration (e.g Figure 2.1a) is always used for

mathematical modeling. However, in the deformed geometry (Figure 2.1) of the poroelastic

medium, the fracture is considered as a discontinuity with two surfaces Γ+ and Γ−, where ±

represent the top and bottom of the fracture with normals ~n+ and ~n− pointing away from

the fracture and into the reservoir. Geometrically, these surfaces are assumed to coincide in

the reference configuration so that ~n+ = -~n− = ~nΓ.

Linear poroelasticity is applied to Ω \ Γ in Figure 2.1a. Application of traction forces on

the fracture deforms it, creating displacement discontinuity across its surfaces. In hydraulic

fracturing, the traction force is the fluid pressure of the injected fracturing fluid. Since fluid

flow occurs in Ω \ Γ and Γ, additional deformation as predicted by poroelasticity through

Biot’s coefficient (α) is experienced by both fracture and reservoir.
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Reservoir Deformation Model

For effective stress, σ′, defined as

σ′ = σ − α Ipr (2.1)

the stress-strain relationship from linear elasticity is given below

σ = A ε (2.2)

where A is the elasticity tensor that contains the mechanical properties of the reservoir while

ε is the small strain tensor defined as

ε =
(∇ ~u+∇ ~uT )

2

Under quasi-static, small strain, isothermal equilibrium and negligible inertial assumptions,

the governing equation is the result of linear momentum balance for the solid and liquid

phases.

∇ · σ′ − ρb ~g = f in Ω \ Γ (2.3)

where

ρb = (1− φ) ρs + φ ρf

ρb, ρs, ρf are the bulk densities of the porous media, density of the solid grains and density

of the fluid respectively. f is body forces while φ is the true porosity defined (relative to the

deformed configuration) as the ratio of pore volume to the total volume of the porous media.

Boundary Conditions

The governing equation is completed with boundary conditions that specifies either a known

displacement, ~ud on ∂ΩD or a known traction, ~τ on ∂ΩN .

~u = ~ud on ∂Ωd

σ′ · ~n = ~τ on ∂ΩN

(2.4)
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Fracture Deformation

Fractures are traction boundaries of the poroelastic domain, where the force is the fluid

pressure. Therefore, the deformation equation is

σ′ · ~nΓ = −pf~nΓ in Γ (2.5)

The model components described above has been used by numerous authors to describe

reservoir and fracture deformation in poroelastic media (Dahi 2009; Rungamornrat, Wheeler,

and Mear 2005; Yuan 1997; Detournay 1991; Aghighi 2007; Shen 2014).

Propagation Criteria

Prediction of fracture extension in the variational fracture model is based on Griffith’s energy

criterion for fracturing of a brittle material. Thus, the use of variational fracture model

in this work assumes the poroelastic material is brittle and experiences no plastic strains

during deformation. According to Griffith’s criterion, fracture extension occurs if the energy

available for fracture growth (energy release rate, G) is equal to the fracture toughness (Gc).

That is, fracture propagates if

G = Gc (2.6)

The criterion above can also be stated in terms of the criticality of the stress intensity factor

as

K = Kc (2.7)

where G and K are related by (Irwin 1957).

G =
(1− ν2)

E

(
K2
I +K2

II +
K2
III

1− ν

)
(plane strain)

G =
1

E

(
K2
I +K2

II + (1 + ν)K2
III

)
(plane stress)

(2.8)

2.3 Variational Fracture Model

Fracture and reservoir deformation in the variational fracture model is based on linear poroe-

lasticity. The fracture model reformulates the fracture deformation, propagation and reser-
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voir deformation models described above into a single variational form that is built on the

foundation of Griffith’s energy criterion. A brief review of the development of the model is

presented below. However, for an in-depth analysis of the method, see Bourdin, Francfort,

and Marigo (2008) ,Bourdin, Francfort, and Marigo (2000).

Griffith’s theory for brittle fracture is at the heart of the variational fracture model. Ac-

cording to Griffith’s criterion, the existence and propagation of cracks is dependent on the

crack surface energy and the competition between that surface energy and change in potential

(bulk) energy during an infinitesimal increase of the crack length.

G = −∂P
∂l

; P : potential energy (2.9)

The energy release rate G, which according to Equation 2.9, shows that the energy dissi-

pated to propagate a crack is proportional to the length in two dimensions (area in three

dimensions) of the crack and is supplied by the release of bulk energy. Using Equation 2.6

as propagation criteria, Griffith proposed that the quasi-static evolution of a brittle crack

signified by an increasing function l̇(t) must obey the following criteria:

l̇(t) ≥ 0 (2.10)

G ≤ Gc (2.11)

(G−Gc)l̇(t) = 0 (2.12)

l̇(t) is a rate of change of length with time.

According to Equation 2.10, the fracture can only grow, prohibiting fracture healing during

deformation and propagation. Equation 2.11 is the stability criterion which states that the

energy release rate is bounded by the fracture toughness. Stable fracture propagation is

only possible if Equation 2.11 is satisfied while propagation will be unstable if Equation

2.11 is violated. Equation 2.12 is the energy balance. It is evident from this criterion that

if G < Gc, which occurs when the fracture is static, then obviously l̇(t) = 0. On the other

hand, during fracture growth, l̇(t) ≥ 0 so that G−Gc = 0. Again, the stability is achieved.
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As simple as the theory seems, Griffiths criterion however is incomplete on a number of

grounds. Foremost is the assumption of a known propagation path. In addition, it is unable

to handle crack initiation in the absence of strong singularities (Francfort and Marigo 1998;

Bourdin, Francfort, and Marigo 2000; Chambolle, Giacomini, and Ponsiglione 2008). To

overcome the shortcomings of Griffith’s, the variational approach (Francfort and Marigo

1998; Bourdin, Francfort, and Marigo 2000) recasts Griffiths criterion into a variational

setting, as the minimization over any crack set (any set of curves in two dimensions or surfaces

in three dimensions) and any kinematically admissible displacement field ~u, of a total energy

consisting of the sum of the stored elastic energy and a surface energy proportional to the

crack length in two dimensions or area in three dimensions. Considering a perfectly brittle

linear elastic material with Hooke’s law A and critical energy release rate Gc occupying a

region Ω, the total energy of this material for any arbitrary number of cracks (Γ) and any

kinematically admissible displacement is

F(~u,Γ) =

∫
Ω\Γ

W(ε(~u)) dV −
∫
∂ΩN

~τ · ~u ds−
∫

Ω

~f · ~u dΩ +GcHN−1(Γ) (2.13)

W is the elastic energy density function associated with the linearized strain field and is

given by W(ε(~u)) = 1
2
Aε(~u) : ε(~u),HN−1(Γ) is simply the fracture length for two dimensional

problems or its volume for three dimensional problems.

In the variational fracture setting (Francfort and Marigo 1998; Bourdin, Francfort, and

Marigo 2000), the unilateral minimization of the total energy (Equation 5.1) replaces Griffiths

condition of criticality of energy release rate for a crack to propagate. The model makes

no assumption on the number of cracks, the crack path and geometry but Equation 5.1

provides a unified setting that handles path determination, nucleation, activation and growth

of arbitrary number of cracks in two and three dimensions.

2.3.1 Phase Field Approximation

The discontinuity of fracture displacement fields and the unknown location of the discon-

tinuities present difficulties for numerical implementation of Equation 2.28. To solve this
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problem, a phase field representation of the fractures is introduced (Bourdin, Francfort, and

Marigo 2000). Fracture location is represented by a phase field function, v, which takes a

value of 0 close to the crack and 1 far away from the crack, as shown in Figure 2.2. A

transition region around the fracture exists with 0 < v < 1, the size of which depends on a

regularization length, ε.

Using the phase field variable to regularize the total energy and based on the work of

Ambrosio and Tortorelli (1990a) and Ambrosio and Tortorelli (1990b), Bourdin (1998) has

shown that Equation 5.7 converges to Equation 5.1 as ε→ 0. Thus, Equation 5.7 is the form

of the total energy that is minimized in the variational fracture model.

Fε(~u, v) =

∫
Ω

W(ε(~u), v)dV −
∫
∂NΩ

~τ · ~u d s−
∫

Ω

~f · ~u dV

+
Gc

4cn

∫
Ω

((1− v)n

ε
+ ε|∇v|2

)
dV

(2.14)

where

cn =

∫ 1

0

(1− s)n/2ds (2.15)

Numerical solution of Equation 5.7 is carried out by an alternate minimization scheme in

which the regularized energy functional (Equation 5.7) is successively minimized with respect

to the ~u and v fields until convergence is achieved.

Two different variants of the variational fracture model have been proposed. The models

are known as AT1 and AT2 obtained by setting n = 1 and n = 2 respectively in Equation 5.7

According to Bourdin, Francfort, and Marigo (2000), the equilibrium solution of the v-field

of a fracture for AT1 and AT2 are as follows:

For AT1:

v (~x) :=



0 if dΓ(~x) ≤ dTh

dΓ

ε
(1− dΓ

4ε
) else if dΓ(~x) < 2ε− dTh

1 otherwise,

(2.16)

For AT2:

30



v (~x) :=


0 if dΓ(~x) ≤ dTh

1− e−dΓ(~x)/2ε otherwise,

(2.17)

where dΓ(~x) is the distance of any point ~x from the fracture while dTh is the thickness of the

fracture region with v = 0.

The use of the regularized problem does not require explicit representation of fractures.

Rather, computation is carried out using structured or unstructured finite element fixed

meshes. The numerical algorithm is easy to parallelize and thus can take advantage of the

availability of high performance computing resources to speed up computation for memory

intensive problems.

2.3.2 Numerical Implementation

The variational fracture model used in this work is an implementation developed by Dr.

Blaise Bourdin of the Mathematics department of LSU. It is a parallel, structured finite

element code that is implemented using the PETSc library (Balay et al. 2011) and written

in C programming language. Its implementation is in modules so that there is a V-step and a

U-step to solve for fracture state (v) and displacement (~u) differently. This arrangement offers

flexibility in implementing the alternate minimization scheme which as earlier stated, requires

iteration between the V-step and U-step until the defined convergence level is achieved.

The structured finite element code uses the 8-node brick element type shown in Figure

2.3 and its associated shape function. Thus, it is a three dimensional code on regular paral-

lelepiped computational domains but can also solve two dimensional problems by assuming

plane strain conditions for the out-of-plane direction. The code has a handle for building

the v-field of a pre-existing line fracture, penny shaped and rectangular shaped fractures in

the computational domain using the equilibrium equation, Equation 2.17. With this feature,

fractures of arbitrary sizes and orientation can be incorporated into a poroelastic domain for

analysis.

31



Figure 2.2: Phase field (v−field) fracture representation

Inputs to the fracture code are material properties and simulation parameters. The mate-

rial properties include geometry of the physical domain, material elastic properties like E,

ν, Gc while from simulation parameters like number of cells in each direction, the resolution

of the computational domain is obtained. The choice of an important simulation parameter,

ε, is crucial in obtaining good numerical results for comparison with analytical or field data

and in producing the correct propagation paths of the growing fracture. It also affects the

actual value of fracture toughness used for simulation. According to Bourdin, Francfort, and

Marigo (2008), asymptotic analysis of the variational approximation of the surface energy

term in Equation 5.7 implemented over a structured grid with element size h shows that

the fracture toughness is amplified, yielding an effective toughness given by Equation 2.18

below.

Gc,eff =

 Gc

(
1 + 3h/8ε

)
for n = 1

Gc

(
1 + h/2ε

)
for n = 2

(2.18)

This amplification in the fracture toughness has to be accounted for in numerical simulations.

This means that in any computation and for a material of fracture toughness value Gc,

the input to the numerical simulation has to be scaled by a factor of 1/
(
1 + 3h/8ε

)
or

1/
(
1 + h/(2ε)

)
. For example, using the n = 2 variational fracture model for a computation
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Figure 2.3: 8-node brick finite element used in variational fracture code

with fracture toughness Gc = 1 at resolution of h = ε, the actual input to the numerical

simulator will be Gc = 0.667.

Since the variational approximation of the total potential energy (Equation 5.7) converges

to the actual energy (Equation 5.1) as ε → 0, an ideal choice will be to use a very small ε

value. However, for a finite computation, ε is related to the element size, h so that ε ≈ h

produces a sharp fracture profile as shown in Figures 2.4a and 2.4b for the v-field represen-

tation of a line fracture. Using this choice of ε does not reproduce the correct propagation

paths for fractures inclined at an angle to any of the coordinate directions or for complex

fractures that are branching, turning or merging. On the other hand, ε > h produces a

diffused fracture that leads to the softening effects in numerical simulation results but is

able to reproduce the correct behaviors associated with complex fractures. As seen in Figure

2.4c, the v-field representation of line fracture profile generated using ε = 4h is diffused

compared to those generated with smaller values of ε. A corresponding plot of the v-field

across the line fracture at different ε values is shown in Figure 2.5. One observes that the

profiles are sharper at small ε values while the profile at large ε values are diffused. In fact,

for ε = 8h, the transition region spreads well into the unfractured region and will definitely

have a large softening effect on numerical computations carried out at this resolution. With

this understanding of the numerical behaviors associated with the use of extreme values of

ε, the recommended trade-off is to use h ≤ ε ≤ 4h.
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(a) Line fracture at ε = 0.5h (b) Line fracture at ε = h (c) Line fracture at ε = 4h

Figure 2.4: Profile of v-field for line at different ε/h values.
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Figure 2.5: Plot of v-field across line fracture, at different ε/h values
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2.3.3 Phase Field Calculus

The phase field representation simplifies integration over the fractured (Γ) and unfractured

(Ω \ Γ) subdomains by providing an approximation for these integrals in terms of integrals

over the whole computational domain. By using the approximate integrals, knowledge of the

locations of Γ and Ω \ Γ is not required since all integrals can be computed over the whole

domain as described below.

• Fracture normal, ~nΓ: The normal to the fracture is related to the gradient of the phase

field. The gradient of the v-field is a vector quantity that points in the direction of the

greatest rate of change of the v-field. The largest changes in the v-field occurs in the

transition region with 0 < v < 1. Outside this region, the phase field has a constant

value of either 0 or 1 with zero slope. Using the gradient of the v-field, the fracture

normal is computed as

~nΓ '
∇v
|∇v|

(2.19)

• Integration over Γ: Let a discontinuous vector quantity ~ψ be defined on either side

of the fracture Γ. The jump of the normal component of the discontinuous function

([[~ψ]] · ~nΓ) is the difference of its values on either side of the fracture face. The integral

of the jump of the discontinuous function over Γ can be expressed in the form of an

approximate integral over Ω using the phase field by

∫
Γ

[[~ψ]] · ~nΓ ds '
∫

Ω

~ψ · ~nΓ |∇v| dV =

∫
Ω

~ψ · ∇v dV (2.20)

Examples of the application of this formula are in the computation of fracture width

(w), fracture volume (Vf ) and leak-off volume (Vl) in the variational fracture framework.

– Fracture width, w: The width of the fracture at a point ~x on the fracture surface

is the jump of the normal component of displacement at ~x. In the variational

framework, fracture width is obtained by applying Equation 2.20 to integrate the
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jump of displacement along a line s, that runs orthogonal to the fracture face

through ~x.

w = −[[~u]] · ~nΓ '
∫
s

~u · ∇v dx (2.21)

– Fracture volume, Vf : Fracture volume is the integral of fracture width along the

path of the fracture and by applying Equation 2.20 is computed as

Vf =

∫
Γ

w ds '
∫

Ω

~u · ∇v dV (2.22)

– Leak-off volume, Vl: An important quantity during hydraulic fracturing is the

amount of fluid loss. The fracturing fluid loss rate is a discontinuous quantity and

assuming ~qr is the flow velocity from the fracture, the total volume of fluid lost

during fracturing is

Vl = −
∫ t

0

∫
Γ

[[~qr]] · ~nΓ ds dτ '
∫ t

0

∫
Ω

~qr · ∇v dV dτ (2.23)

• Integration over Ω\Γ: The integral of a continuous/discontinuous function defined over

the unfractured region, Ω \ Γ, can be approximated by an integral over Ω as shown

below. ∫
Ω\Γ

ψ dV '
∫

Ω

v2 ψ dV (2.24)

2.3.4 Extension To Hydraulic Fracturing

During hydraulic fracture propagation, additional energy to extend fracture length is supplied

to the poroelastic material, through the pressure of the injected fracturing fluid. To account

for the fracture fluid pressure, the total energy functional of the variational model presented

in Equation 5.1 is extended to account for the contribution of the work done by pressure

force in increasing fracture volume. The work done by the fracturing fluid pressure, pf , in

increasing the fracture volume is ∫
Γ

pf [[~u]] · ~nΓ ds (2.25)
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and when expressed using phase field calculus is∫
Ω

p ~u · ∇v dV (2.26)

To obtain Equation 2.26 from Equation 2.25, the fracture fluid pressure pf is replaced with

p, where p is the fluid pressure acting in the whole computational domain. This is possible

due to fluid pressure continuity from fracture to reservoir in poroelastic media so that pf

and pr are related to p as follows

pr = p in Ω \ Γ

pf = pr = p on Γ

(2.27)

where pr is the fluid pressure in the reservoir. The work of the pressure forces (Equation

2.26) is added to Equation 5.1 to provide an updated total energy formulation applicable to

hydraulic fracturing, as shown below.

Fε(~u, v) =

∫
Ω

W(ε(~u), v)dV −
∫
∂NΩ

~τ · ~u d s−
∫

Ω

~f · ~u dV

+
Gc

4cn

∫
Ω

((1− v)n

ε
+ ε|∇v|2

)
dV +

∫
Ω

p ~u · ∇vdV
(2.28)

In addition, W(~u, v) = 1
2
A
(
vε(~u) − α

3κ
Ip
)

:
(
vε(~u) − α

3κ
Ip
)

becomes the poroelastic energy

density function since it accounts for pore pressure through the effective stress. κ is the

drained bulk modulus of the material. It is important to note that the work of the pressure

force is equivalent to applying a traction boundary condition on the fracture surface as

described in Equation 2.5 of Subsec. 2.2 in the classical poroelastic fracture model.

2.3.5 Scaling of Variational Fracture Model

To apply the variational fracture model to any problem, the input parameters must be in

consistent units. A consistent measurement system is the SI units. The typical value for

reservoir fracture toughness in SI units is ∼100 Pa m while the values for Young’s modulus

is E < 100 GPa. This means that several orders of magnitude exists between E and Gc for

petroleum reservoirs. Using the material parameters in SI units as units in the numerical

37



simulations can sometimes pose numerical challenges. To circumvent this, a dimensionless

form of the variational fracture model is used for numerical computations. This model is

shown in Equation 2.29 and has the same form as the regular variational fracture model.

The difference is that all inputs and variables are equipped with tilde to represent their

non-dimensionality.

Fε(~̃u, v) =
1

2

∫
Ω̃

Ã
(
vε(~̃u)− α

3κ̃
Ip̃
)

:
(
vε(~̃u)− α

3κ̃
Ip̃
)
dṼ −

∫
∂N Ω̃

~̃τ · ~̃u d s̃

−
∫

Ω̃

~̃f · ~̃u dṼ +
G̃c

4cn

∫
Ω̃

((1− v)n

ε̃
+ ε̃|∇̃v|2

)
dṼ +

∫
Ω̃

p̃ ~̃u · ∇̃v dṼ
(2.29)

From the numerical solutions of the dimensionless fracture model, the numerical results

can be scaled to realistic reservoir input values using Equation 2.30. The derivation of the

dimensionless variational fracture model and the scaling parameters for all the parameters

and inputs can be found in Appendix A. The subscript o represents conversion factors from

the dimensionless to the respective dimensional parameters.

Gc = GcoG̃c

~u = uo~̃u

p = pop̃

κ = Eoκ̃

α = αoα̃

A = EoÃ

~f = fo
~̃f

~τ = po~̃τ

Ω = xNo Ω̃

(2.30)

38



Where

uo =

√
Gcoxo
Eo

po =

√
GcoEo
xo

fo =

√
GcoEo
x3
o

αo = 1

(2.31)

2.4 Verification of Fracture Model

One of the simplest cases of hydraulic fracturing is injection of a zero viscosity fluid in an

infinite conductivity fracture. The implication of this assumption is that no pressure losses are

encountered inside the fracture as all the fluid energy is expended in mechanically deforming

the material. With no fluid pressure gradient inside the fracture, the fracturing fluid does

not flow and its pressure everywhere is uniform. Analytical solutions for this problem have

been derived and can be found in Sneddon and Lowengrub (1969), Detournay and Garagash

(2003).

The variational fracture model for hydraulic fracturing is verified by solving the elastic

deformation and propagation of fractures due to injection of an inviscid fluid. Specifically, the

crack opening displacements (COD), fracturing fluid pressure and fracture propagation paths

will be computed for the fluid injection process. The effect of in-situ stress on the numerical

results is also studied. Since the poroelastic material is assumed to be impermeable, fluid loss

in the form of fluid exchange between fracture and poroelastic material is not considered.

The numerical simulation results are compared against analytical expressions derived from

Sneddon and Lowengrub (1969), for fracture propagating in an impermeable domain when

G = Gc. First, the COD of a non propagating fracture acted upon by a known fluid pressure

is computed. Thereafter, pressure and volume driven hydraulic fracture propagation are

simulated. For all cases, spatially invariant fluid pressure is used, which implies that both
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Figure 2.6: Schematic of deformed line crack in a two dimensional domain

pf (~x) and pr(~x) are constant in space. A zero initial fluid pressure is assumed while the

reservoir is considered impermeable. These requirements are implemented by setting α = 0

for the computations.

2.4.1 Application To Static Fractures in Two and Three Dimen-
sions

This section simulates the deformation of a static line crack ( Γ) of length 2lo in an infinite two

dimensional domain ( Ω) in the x−y plane as shown in Figure 2.6. This is the classic problem

solved by Sneddon and Lowengrub (1969). The material is composed of a homogeneous

isotropic, linear elastic material with Young’s moduli E, Poisson’s ratio ν, fracture toughness

Gc. The domain is under plain strain conditions and the boundary conditions on the material

is such that displacement and stresses vanish at infinity while the crack surface is acted upon

by a uniform pressure p.
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Line Fracture in a Two Dimensional Domain

The pre-existing line crack is non propagating and the objective is to obtain the fracture

opening displacement and the fracture volume for a uniform pressure, p, acting on the crack

surface. For the condition where the crack is found in the region defined by y = 0, −lo ≤

x ≤ lo as in Figure 2.6, Sneddon and Lowengrub (1969) derived the following analytical

expression for the crack opening displacement in the y-direction.

uy(x, 0) = b

√
1− x2

l2o
(2.32)

where

b =
2∆plo
E ′

∆p = p− σmin
(2.33)

and

E ′ =
E

(1− ν2)
(2.34)

The fracture displacement profile is elliptic as evident from Equation 2.32. Thus, the fracture

volume is

Vf = πblo (2.35)

It is assumed that the reservoir domain and parameters are the same as in the dimensionless

model. Therefore, all conversion factors with subscript o are equal to 1. The static fracture

deformation experiment is reproduced using the variational fracture model on a computa-

tional domain of Ω = 4 m × 4 m with pre-existing line fracture of length lo = 0.2 m placed

centrally in the domain as in Figure 2.6. The mechanical properties of the material are E = 1

GPa and ν = 0. Since Sneddon’s case is for an infinite domain, a large computation domain

size relative to the initial fracture length is used, to minimize the effects of the boundary

condition on the numerical results. From numerical results of the variational fracture min-

imization algorithm, the opening displacement along the fracture length is computed using
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the relationship below

uy(x, 0) =
1

2

∫ ∞
−∞

~u (x, 0) · ∇v (x, 0) dy (2.36)

while fracture volume is given by

Vf =

∫ ∞
−∞

~u (x, y) · ∇v (x, y) dV (2.37)

For p = 1.0 MPa, lo = 0.2 m, Figures 2.7a, 2.7b, 2.7c show the v-field representation,

the displacement field across the fracture face and the deformed configuration of the static

fracture. In addition, Figures 2.8 a and 2.8 b show the fracture opening displacement obtained

using Equation 2.36 for different combinations of ε and h, compared with the analytical

model of Sneddon and Lowengrub (1969). The results at fixed h = 6.7× 10−3 and varying ε

of Figure 2.8 shows that numerical results deviate more from the analytical solution as h/ε

increases while the small deviations observed for opening displacement around the fracture

tip is due to the smoothening effect of the scalar crack v-field. On the other hand, there is

a better match between the numerical and analytical soutions for fixed ε = 1 × 10−2 and

varying h as shown inn Figure 2.8b, even though the effect of softening is still observed for

large h/ε ratios. Table 2.1 presents the computed fracture volume. There is good agreement

between the numerical values computed using Equation 2.37 at different values of h and

that computed using Equation 2.35. It is important to note that even though h is orders

of magnitude greater than the peak value of the crack opening displacement, the numerical

solution still captures the correct profile of the fracture opening.

Although a null displacement boundary condition was used for all the presented results,

the numerical simulation is insensitive to other types of displacement boundary conditions

since the computational domain is large relative to the fracture length.

Penny-Shaped Fracture in 3D

Numerical simulation of the propagation of a penny-shaped fracture in a three dimensional

computational domain is carried out. Again, the dimensionless parameters are assumed to
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(a) Line fracture representation by

scalar v-field

(b) Displacement field (c) Deformed configuration of line

crack in a two dimensional domain
(×150)

Figure 2.7: v, displacement and deformed configuration of pressurized static line fracture
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Figure 2.8: Line fracture opening displacement profile

Table 2.1: Static fracture volume (ε = 1× 10−2 m)

h (m) 1× 10−2 6.7× 10−3 5.7× 10−3 5× 10−3

Numerical fracture volume (m2) 2.4× 10−4 2.47× 10−4 2.49× 10−4 2.51× 10−4

Analytical fracture volume (m2) 2.513× 10−4
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be the same as the dimensional parameters. For this case, the analytical crack opening

displacement and fracture volume for the static penny shaped fracture acted upon by a

uniform pressure p have been derived by Sneddon and Lowengrub (1969) and are given

below.

uy(ρ, 0) = ε
√

(1− ρ); ρ =
r

R
(2.38)

where

ε =
4∆pR

πE ′
(2.39)

R is the radius of the penny fracture while r is the distance from the fracture inlet, of a

point along the fracture axis. The fracture volume is

V =
4

3
πR2w0 (2.40)

w0, opening displacement at fracture inlet (ρ = 0) is

w0 = uy(0, 0) =
4∆pR

πE ′
(2.41)

Variational fracture simulation of the problem is carried out on Ω = 4 m × 4 m × 4 m with

an existing penny shaped fracture of Ro = 0.2 m, oriented with normal (0, 1, 0) and placed

in the center of the computational domain. Elastic properties of the material are E = 1 GPa

and ν = 0 with p = 1.0 MPa. Due to the large computation cost required for the three

dimensional numerical simulations, only two cases with different domain resolutions were

considered, and the results are shown in Figures 2.9 and 2.10. The computational domain is

clipped in the center to reveal the penny shaped fractures. Figure 2.9a and Figure 2.9b are

respectively the v-field of the fracture and the contour of the v-field taken at v = 0.1. For both

figures, the fracture surface is perpendicular to the normal to the clip plane. Also, Figure

2.9c shows the x-component of the displacement field on the domain that is clipped so that

the fracture surface is parallel to the y-direction. As seen in Figure 2.10, good comparison

is obtained between the numerically obtained opening displacement along a diameter of the

fracture with that from the analytical formula (Equation 2.41). Since the material properties
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(a) v-field representation of fracture (b) Fracture contour, taken at v = 0.1 (c) x-component of displacement. Note
that the orientation here is different from

that for the other two figures

Figure 2.9: v-field and displacement field for penny-shaped fracture in three dimensional
computational grid

are homogeneous, the fracture opening displacements are isotropic and independent of the

orientation of the diameter through the fracture, along which they were computed.

2.4.2 Pressure Driven Fracture Propagation in a Two Dimensional
Domain

This section simulates propagation of a line fracture in an impermeable reservoir by specifying

the pressure of the injected inviscid fluid. Given that fluid pressure is easy to specify, the

simplest option for hydraulic fracturing is a pressure driven operation in which fluid pressure

is monotonically ramped up to drive fracture propagation. However, analytical results show

that this method of hydraulic fracturing propagation is unstable. The instability of the

operation is also numerically confirmed using the fracture model.

Griffith’s stability criteria provides the analytical basis that supports the instability of the

pressure driven hydraulic fracture propagation. According to Equation 2.10, G ≤ Gc must

be satisfied at all times to guarantee stable fracture propagation. Violation of this will lead

to unstable fracture propagation. Sneddon and Lowengrub (1969) derived the energy release

rate a line fracture with initial half-length lo, in an infinite two dimensional domain as

G =
π∆p2lo
E ′

(2.42)

45



0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Radius (m)

0.00

0.05

0.10

0.15

0.20

0.25

C
O

D
 (

m
m

)

Sneddon

h=2.0e−2

h=1.0e−2

Figure 2.10: Penny-shaped fracture opening displacement for ε = h

For a linearly increasing pressure modeled by p = pinit, where t is time and pini is the rate

of increase in pressure with time, Equation 2.42 becomes

G =
π∆p2

init
2lo

E ′
(2.43)

Therefore, the critical time to reach Griffith’s propagation criterion (G = Gc) is

tc =

√
GcE ′

π∆p2
inilo

(2.44)

On examining Equation 2.43, one observes that for t ≤ tc, G will be less than Gc. Hence, the

fracture will be static (i.e. l = lo). However, for t > tc, Equation 2.43 shows that G will be

greater than Gc. This condition fails the stability requirement of Equation 2.11, leading to

unstable hydraulic fracture propagation. Therefore, beyond the critical points, the analytical

solutions are undefined.

The instability of a pressure driven hydraulic fracture propagation is numerically confirmed

using the parameters in Table 2.2. The reservoir parameters are shown in the last column of

the table while the second column (D) shows the numerical/dimensionless simulation inputs.
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Table 2.2: Reservoir parameters and numerical inputs for pressure driven hydraulic fracturing
simulation. Column D is the dimensionless inputs to the numerical model while column o is
the scaling for converting dimensionless parameters to physical values

Parameter D o Physical

x 4 25 m 100 m
u - 3.54× 10−4 m -
p 0.283 MPa
pini 0.05/s 0.283 MPa/s 0.0141 MPa
E 1 20 GPa 20 GPa
Gc 1 1× 10−7 GPa m 100 Pa m
ν 0 1 0
α 0 1 0
lo 0.2 25 m 5 m

The third column (o) contains the scaling factors used for converting the dimensionless

properties to their respective reservoir quantities. The dimensionless computational domain

is Ω̃ = 4 × 4 while Ω = 100 m × 100 m. For pini = 0.0141 MPa/s, the analytical solutions

are tc = 25.8, pc = 0.357 MPa and Vc = 0.0028 m2 from Equations 2.44, 2.42 and 2.35. At

each time step, the dimensionless fluid pressure is applied to the fracture model to compute

~̃u, v and the corresponding fracture volume, Ṽf . Thereafter, the quantities are scaled using

Equation 2.30. Figure 2.11 plots the fluid pressure versus the computed fracture volume

for both numerical simulation and the analytical solution. One observes from the numerical

results that as the fluid pressure approaches the critical value, the numerical simulation

becomes unstable and completely breaks down. This behavior is highlighted in Figure 2.12

which shows the v-field of the fracture after 1 s, 24 s and 25 s respectively. The critical

pressure from the numerical simulation is reached after 24 s of pressure increase. At 25 s,

which is beyond the critical time, the unstable fracture propagation leads to a complete

breakdown of the v-field in the computational domain as seen in Figure 2.12c. This confirms

the analytical proposition that pressure driven hydraulic fracture propagation is unstable

and cannot be used to simulate the hydraulic fracturing process.
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2.4.3 Volume Driven Fracture Propagation in Two and Three Di-
mensional Domains

The variational fracture model of Equation 2.28 assumes that the fracturing fluid pressure

is known. As shown in the previous subsection, the pressure driven deformation leads to

unstable fracture propagation. On the other hand, field hydraulic fracturing treatments are

volume driven since an important requirement is that the sum of the fracture volume and

fluid lost to the surrounding reservoir must equal the amount of fluid injected. In this volume

driven operation, the fluid pressure is unknown and its computation must ensure volume

conservation. Solution of the problem for injection of an inviscid fluid in an impermeable

reservoir requires computing the uniform fluid pressure that deforms the fracture to create

a fracture volume equal to the volume of injected fluid. Ordinarily, this is achievable by

randomly sampling pressure values to find the one which when applied to the deformation

model, creates a fracture that satisfies volume conservation. This crude technique, however,

will require an infinite number of steps to find the correct pressure value. A solution technique

is derived for minimizing the energy subject to a volume constraint. The solution procedure

is as follows: If only the U-step is considered, the solution proceeds as follows: For α = 0,

find ~̃u that minimizes

E(~̃u) =
1

2

∫
Ω̃\Γ̃

Ã′ε(~̃u) : ε(~̃u) dṼ −
∫
∂N Ω̃

~̃τ · ~̃u ds̃ (2.45)

subject to

−
∫

Γ̃

[[~̃u]] · ~nΓ ds̃ = Ṽinj = Q̃ t̃ (2.46)

To solve the constrained optimization problem, a lagrangian multiplier, λ, is introduced

and a Lagrangian, L(~̃u, λ), is constructed to remove the volume constraint. Therefore, the

problem becomes: Find (~̃u, λ) that minimize

L(~̃u, λ) =
1

2

∫
Ω̃\Γ̃

Ã′ε(~̃u) : ε(~̃u) dṼ −
∫
∂N Ω̃

~̃τ · ~̃u ds̃− λ
(
−
∫

Γ̃

[[~̃u]] · ~nΓ ds̃− Ṽinj
)

(2.47)
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Figure 2.11: Numerical results for pressure driven experiment

(a) Fracture at t = 1 s (b) Fracture after 24 s, just before crit-

ical pressure is reached

(c) Fracture after 25 s. The completely

broken v-field is the result of unstable
fracture propagation

Figure 2.12: Fracture evolution during pressure driven experiment. The hydraulic fracture
is incapable of propagating in a stable manner when a pressure beyond the critical value is
imposed
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The first order optimality condition requires that the derivatives of L with respect to ~̃u and

λ be equal to zero. ∂λL = 0 is simply the volume balance (Equation 2.46) which has to be

satisfied. On the other hand, ∂~̃uL is

δ~̃uL(~̃u, λ;φ) =

∫
Ω̃\Γ̃

Ã′ε(~̃u) : ε(~φ) dṼ −
∫
∂N Ω̃

~̃τ · ~φ ds̃+ λ

∫
Γ̃

[[~φ]] · ~nΓ ds̃

=

∫
Ω̃\Γ̃

σ̃′ : ε(~φ) dṼ −
∫
∂N Ω̃

~̃τ · ~φ ds̃+ λ

∫
Γ̃

[[~φ]] · ~nΓ ds̃

= −
∫

Ω̃\Γ̃
∇̃ · σ̃′ · ~φ dṼ +

∫
∂N Ω̃

σ̃′ · ~n · ~φ ds+

∫
∂NΩ

~̃τ · ~φ ds̃

+

∫
Γ̃

σ̃′ · ~nΓ · [[~φ]] ds̃+ λ

∫
Γ̃

[[~φ]] · ~nΓ ds̃

= 0

(2.48)

The corresponding weak form is

−∇̃ · σ̃′ = in Ω̃

σ̃′ · ~n = ~̃τ on ∂N Ω̃

σ̃′ · ~nΓ = −λ~nΓ in Γ̃

(2.49)

On comparing the third part of Equation 2.49 with Equation 2.5, one notices that the

lagrangian multiplier is really the fracturing fluid pressure. That is p̃ = λ. If ~̃up is the

solution to

−∇̃ · σ̃′ = 0 in Ω̃

σ̃′ · ~n = 0 on ∂N Ω̃

σ̃′ · ~nΓ = −~nΓ in Γ̃

(2.50)

and ~̃us is the solution to

−∇̃ · σ̃′ = 0 in Ω̃

σ̃′ · ~n = ~̃τ on ∂N Ω̃

σ̃′ · ~nΓ = 0 in Γ̃

(2.51)

then by superposition, ~̃us + p̃ ~̃up is the solution to Equation 2.49. Therefore,

~̃u = ~̃us + p̃ ~̃up (2.52)

50



Upon substituting Equation 2.52 into Equation 2.46, one obtains

−
∫

Γ̃

[[~̃us]] · ~nΓ ds̃− p̃
∫

Γ̃

[[~̃up]] · ~nΓ ds̃ = Ṽinj (2.53)

Therefore, the fluid pressure is computed as

p̃ =
Ṽinj − Ṽfs

Ṽfp
(2.54)

where

Ṽfp = −
∫

Γ̃

[[~̃up]] · ~nΓ ds̃

Ṽfs = −
∫

Γ̃

[[~̃us]] · ~nΓ ds̃

(2.55)

Ṽfp and Ṽfs are the fracture volumes created due to application of unit fluid pressure and

in-situ stresses respectively. Using the phase field calculus

Ṽfp =

∫
Ω̃

~̃up · ∇̃v dṼ

Ṽfs =

∫
Ω̃

~̃us · ∇̃v dṼ
(2.56)

An overview of the developed algorithm to simulate volume driven hydraulic fracture

propagation is shown in Figure 2.13. The numerical solution algorithm requires alternating

between solving for ~̃u and v fields respectively. The fluid pressure is updated and iteration

is carried until concurrent convergence in U-V-P step is achieved. Convergence is measured

using the two quantities defined in Equations 2.57 and 2.58.

εv =‖ vn,k+1 − vn,k ‖∞ (2.57)

εp =
∣∣∣ p̃n,k+1 − p̃n,k

p̃n,k+1

∣∣∣ (2.58)

Scaling of the dimensionless fracture volume to reservoir scale is derived as follows∫
Ω

~u · ∇v dV = Vinj = Qt

uox
N−1
o

∫
Ω̃

~̃u · ∇̃v dṼ = VoṼinj = QoQ̃tot̃

(2.59)
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Figure 2.13: Numerical algorithm for hydraulic fracturing in impermeable rock
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Therefore

∫
Ω̃

~̃u · ∇̃v dṼ =
Vo

uoxN−1
o

Ṽinj =
Qoto
uoxN−1

o

Q̃t̃ (2.60)

By setting the coefficients to 1, one obtains

Vo = uox
N−1
o = Qoto (2.61)

Line Fracture Propagation

This case extends the static fracture formulation of Sneddon and Lowengrub (1969) to ac-

count for quasi-static crack evolution under an injected fluid volume with no fluid loss to

the elastic material. This problem is formulated following Griffith’s criterion of stable crack

propagation at critical energy release rate. The critical fracture volume at the onset of prop-

agation is obtained by coupling the critical pressure, Equation 2.42, with the analytical

solution for crack opening displacement, Equation 2.32, to obtain

Vfc =

√
4πl3oGc

E ′
(2.62)

Using Equation 2.62, the propagation criterion is expressed in terms of injected fluid volume.

According to the volume criterion, the hydraulic fracture remains in its initial static condition

if the injected fluid volume is less than the critical value but propagates in a stable manner

when the injected fluid volume exceeds the critical value, i.e.

criteria =

 if Vinj < Vfc : no propagation

if Vinj ≥ Vfc : stable propagation
(2.63)

The fracture length and injected fluid pressure as a function of the injected fluid volume are

therefore

p(Vinj < Vfc) =
E ′Vinj
2πl2o

+ σmin; l(Vinj < Vfc) = lo

p(Vinj ≥ Vfc) = 3

√
2G2

cE
′

πVinj
+ σmin; l(Vinj ≥ Vfc) =

3

√
E ′V 2

inj

4Gcπ

(2.64)
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One observes from Equation 2.64 that prior to fracture propagation, fluid pressure increases

linearly with injected volume at constant fracture length. On the other hand, fluid pressure

decreases as fracture propagates. The derivation of Equations 2.62 and 2.64 can be found in

Appendix C.

Numerical solution of this problem to compute fluid pressure and fracture length as func-

tions of injected fluid volume makes use of the algorithm in Figure 2.13. An initial fracture

of length lo = 12.5 m is contained in a computational domain of size of Ω = 100 m × 100 m.

The reservoir properties, simulation inputs and dimensional scaling parameters are shown

in Table 2.3. Fluid is injected at a constant rate into the fracture. Figure 2.14 compares the

fracture fluid pressure obtained from the variational hydraulic fracture model at h = ε with

the analytical solution (Equation 2.64). It is observed that fluid pressure increases linearly

prior to the fracture propagation at critical pressure and volume values of 0.52 MPa and 9.3

×10−4 m2 respectively, beyond which the pressure decreases as more fluid is injected to prop-

agate the fracture. The numerical solution compares favorably with the analytical results,

with some differences observed around the fracture propagation region. As the computa-

tional resolution increases, the differences between numerical and analytical results reduces.

In fact, from the plots for different resolutions, one can infer that the numerical results will

match the analytical model as h → 0. The numerical results are the same as the analytical

solution of Savitski and Detournay (2002) for the case of no fluid leak-off in the toughness

dominated hydraulic fracturing regime.

As the fracture propagates, its length increases to give a positive change in fracture length

as shown in Figure 2.15. Prior to fracture propagation however, the fracture is static and

experiences no change in length. For both pre- and post-fracture propagation, a good match

is obtained between the numerical simulation and analytical solution. The slight deviation

of numerical results from the analytical formula observed in both Figures 2.14 and 2.15 at

high injection volumes during the fracture propagation is attributed to the fact that the

analytical solution is derived for an infinite domain while the variational hydraulic fracture
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Table 2.3: Reservoir parameters and numerical inputs for simulation of line fracture propa-
gation. Column D is the dimensionless inputs to the numerical model while column o is the
scaling for converting dimensionless parameters to physical values

Parameter D o Physical

x 8 12.5 m 100 m
u - 2.5× 10−4 m -
p - 0.4 MPa -
Vo - 3.125× 10−3 m2 -
∆t 1 1 s 1 s
Q 0.02 3.125× 10−3 m2/s 6.25× 10−5 m2/s
E 1 20 GPa 20 GPa
Gc 1 1× 10−7 GPa m 100 Pa m
ν 0 1 0
α 0 1 0
lo 0.2 12.5 m 2.5 m

solution was carried out on a finite computation domain. Thus, as the fracture increases in

length, the numerical result becomes increasingly affected by the boundary conditions used.

Grid Orientation Impact

To simplify the complexities associated with unknown propagation paths of hydraulic frac-

tures, several authors have assumed a known propagation path that is limited to a coordinate

direction of the computational grid (Carrier and Granet 2012; Boone and Ingraffea 1990)

while some others have used massive mesh refinement and/or adaptation implemented after

each time step to track the known path of the hydraulic fractures (Gupta and Duarte 2015).

All of these are done at large computational expense.

One attraction of the variational fracture method is the use of a fixed mesh throughout the

computations, irrespective of the number of fractures, their orientation with respect to the

mesh grids and their propagation paths. This is possible since the continuous v-field is defined

on the fixed mesh and evolves on it as fracture deforms and propagates. In this subsection, it

is shown that using a fixed mesh, the hydraulic fracturing numerical results and propagation

paths are the same irrespective of fracture orientation with respect to the computational grid.

55



0.000 0.002 0.004 0.006 0.008 0.010
Vinj (m

2 )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
 (

M
P
a
)

Sneddon

h=8.0e−2

h=4.0e−2

h=2.7e−2

h=2.0e−2

h=1.0e−2

Figure 2.14: Line fracture fluid pressure as a function of injected volume for h/ε = 1.0
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Figure 2.15: Change in line fracture length as a function of injected volume for computations
at ε = h
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Figure 2.16: Fracturing fluid pressure as a function of injected fluid volume for line fracture
at different orientations. Computations for h = 0.01 and ε = 4h

The two dimensional hydraulic fracturing experiment is repeated using the same material

properties but with pre-existing fractures inclined at φ = 0◦, 15◦, 20◦, 30◦ and 45◦ with

respect to the x-direction of the grid. However, h = 0.01 and ε = 4h. Figures 2.16 and

2.17 show results for fluid pressure and fracture length change. The numerical results are

very similar for all fracture orientations and compare fairly well with the analytical solution.

Figure 2.18 shows snapshots of some of the fractures before and after propagation. For all

the orientations considered, propagation continued along initial fracture paths. This results

show that the variational model is independent of the grid orientation used for hydraulic

fracture computations.

Penny-Shaped Fracture Propagation

Similar to the line crack propagation example, this section considers the propagation of a

penny-shaped fracture in a three dimensional, impermeable and elastic domain as studied

in Sneddon and Lowengrub (1969). The analytical solution for the propagation of a penny-
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Figure 2.17: Change in fracture length as a function of injected fluid volume for line fracture
at different orientations. Computations for h = 0.01 and ε = 4h

shaped fracture have also been derived in Appendix C. The critical fluid pressure and fluid

volume for fracture propagation are

∆pc = pc − σmin =

√
πGcE ′

4Ro

(2.65)

Vfc =
8

3

√
πR5

oGc

E ′
(2.66)

The propagation criteria in terms of injected volume is the same as Equation 2.63, so that

the corresponding pressure (p) and fracture radius (R) relationships in terms of injected fluid

volume are

p(Vinj < Vfc) =
3E ′Vinj
16R3

o

+ σmin; R(Vinj < Vfc) = Ro

p(Vinj ≥ Vfc) = 5

√
π3G3

cE
′2

12Vinj
+ σmin; R(Vinj ≥ Vfc) =

5

√
9E ′V 2

inj

64πGc

(2.67)

The three dimensional reservoir domain is Ω = 100 m × 100 m × 100 m, with a pre-existing

penny-shaped fracture of initial radius, Ro = 10 m. The reservoir properties and numerical
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(a) φ = 0◦ (b) φ = 20◦ (c) φ = 45◦

(d) φ = 0◦ (e) φ = 20◦ (f) φ = 45◦

Figure 2.18: Propagation of line fracture at 0◦, 20◦ and 45◦ with respect to x-axis of the fixed
computational grid in a two dimensional domain elastic domain (h = 0.01, ε = 4h)

simulation inputs are contained in Table. 2.4. Numerical and analytical results of fracture

fluid pressure at different injected fluid volumes are shown in Figure 2.19 while the change in

penny-shaped fracture radius as a function of fluid volume is shown in Figure 2.20. Like in

the two dimensional examples, fluid pressure increases linearly prior to the critical injected

fluid volume. Within this regime, the fracture radius does not change since the fracture does

not grow. At the critical injected volume of about 0.11 m3, the fluid assumes the critical

pressure of 0.4 MPa, beyond which fluid pressure decreases and fracture radius increases as

more fluid is injected into the fracture during propagation. Figure 2.21a shows the fracture

prior to fluid injection while Figure 2.21b is the fracture profile at the end of the simulation.

Fracture Propagation Under In-Situ Stresses

It is commonly accepted that hydraulic fractures propagate in the direction orthogonal to

minimum in-situ stress in the subsurface. Considering their importance in determining hy-

draulic fracture propagation paths, the ability to handle these in-situ stresses is a necessary
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Table 2.4: Reservoir parameters and numerical inputs for simulation of penny-shaped fracture
propagation. Column D is the dimensionless inputs to the numerical model while column o
is the scaling for converting dimensionless parameters to physical values

Parameter D o Physical

x 2 50 m 100 m
u - 5× 10−4 m -
p - 0.2 MPa -
Vo - 1.25 m3 -
∆t 1 1 s 1 s
Q 0.002 1.25 m3/s 0.0025 m3/s
E 1 20 GPa 20 GPa
Gc 1 1× 10−7 GPa m 100 Pa m
ν 0 1 0
α 0 1 0
Ro 0.2 50 m 10 m
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Figure 2.19: Penny-shaped fracturing fluid pressure as a function of injected volume for
numerical computation at ε = h
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Figure 2.20: Change in penny-shaped fracture radius as a function of injected fluid volume
for numerical computation at ε = h

(a) Initial fracture geometry before fluid injection (b) Final fracture geometry after injection of 0.3
m3 of fluid

Figure 2.21: Snap shots of penny shaped fracture before and after fluid injection. Contour
plot is at v = 0.1
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requirement for robust hydraulic fracturing models. The variational fracture model easily

accounts for these stresses as either tractions or specified displacements on boundaries of the

computational domain. To investigate their effect on fracture propagation and to validate the

numerical results against the analytical solution and the widely held orthogonal-to-minimum

stress propagation direction, the previous volume driven fracture propagation is repeated

but with in-situ stresses implemented as traction forces on all or some of the computation

boundaries. The analytical solution (Equations 2.64 and 2.67) shows that fluid pressure at

all injected fluid volumes in the presence of in-situ stresses is increased by an amount equal

to the minimum in-situ stress compared to the fluid pressure for propagation without in-situ

stresses. The numerical simulation uses isotropic in-situ stresses so that σzz = σxx = −0.12

MPa for the two dimensional computation and σzz = σyy = σxx = −0.06 MPa for the three

dimensional computation. This means that σmin = σmax. The two dimensional computation

is in plane strain where the y-coordinate is out-of plane while the x- and z-coordinates are

the vertical and horizontal axes of the computational domain. Using the material properties

in the previous computations without in-situ stresses, the numerically obtained fluid pressure

compared with the analytical solution for the two and three dimensional computations are

shown in Figures 2.22 and 2.23. As predicted by the analytical solution, the numerical fluid

pressure is increased by the minimum in-situ stress and compares well with the analytical

solution for both the two and three dimensional computations. The value of the intercept of

the pressure plot with fluid volume axis is the minimum in-situ stress and this means that

the fracture fluid pressure has to overcome the in-situ stress in the material before fracture

faces can open.

To verify that fractures propagate orthogonal to the minimum stress directions, numerical

computations were carried out in both two and three dimensions with inclined pre-existing

fractures in the presence of different combinations of in-situ stresses. Figure 2.24 shows

the two dimensional results while the three dimensional results are shown in Figure 2.25.

The two dimensional computation has fracture defined at 30◦ and 45◦ to the x-axis and
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both subjected to four different in-situ stress combinations given as σxx = −0.12 MPa,

σzz = −0.12 MPa, σxx = −0.12 MPa & σzz = −0.06 MPa and σxx = −0.06 MPa &

σzz = −0.12 MPa respectively. Compared to the straight line propagation paths for the

fractures under no in-situ stresses shown in Figure 2.18, it is observed in Figure 2.24 that

different fracture configurations are obtained for each in-situ stress combination. In all the

computations, however, fractures re-orient to propagate along complex paths perpendicular

to the minimum in-situ stress directions.

For the three dimensional computations, only one initial penny-shaped fracture configu-

ration at φ = 30◦ and θ = 0◦ is considered with in-situ stress combinations of σzz = −0.06

MPa, σxx = −0.06 MPa & σyy = −0.06 MPa, σyy = −0.06 MPa & σzz = −0.06 MPa,

σxx = −0.03 MPa & σyy = −0.06 MPa & σzz = −0.06 MPa and σxx = −0.04 MPa &

σyy = −0.03 MPa & σzz = −0.06 MPa respectively. Similar results as in the two dimensional

computations are obtained as the fractures re-orient during propagation to lie in directions

orthogonal to the minimum in-situ stress directions.

Although the fractures generally re-orient to propagate normal to the minimum in-situ

stress direction, stress anisotropy has a huge effect on how sharply the fracture turns during

re-orientation. One can observe that larger stress anisotropy creates sharp fracture turns

compared to those from lower stress anisotropies. This is obvious if one compares the propa-

gation paths for Figures 2.24b with Figure 2.24d, Figure 2.24f with Figure 2.24h and Figure

2.25b with Figure 2.25c.

The possible combinations of in-situ stress values to obtain complex fracture propagation

paths is exhaustive. Only a few to have been chosen to illustrate the ability of the variational

fracture model to handle in-situ stresses and to reproduce complex propagation paths without

the need for remeshing and/or the use of complex grids to track the path of the propagating

fractures.
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Figure 2.22: Two dimensional numerical result of fracture fluid pressure as a function of
injected fluid volume for fracture propagation in the presence of σzz = σxx = −0.12 MPa
in-situ stresses
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Figure 2.23: Three dimensional numerical result of fracture fluid pressure as a function of
injected fluid volume for fracture propagation in the presence of σzz = σyy = σxx = −0.06
MPa in-situ stresses
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(a) φ = 20◦, σxx = −0.12
MPa

(b) φ = 20◦, σzz = −0.12
MPa

(c) φ = 20◦, σxx = −0.12
MPa, σzz = −0.06 MPa

(d) φ = 20◦, σxx = −0.06
MPa, σzz = −0.12 MPa

(e) φ = 45◦, σxx = −0.12

MPa

(f) φ = 45◦, σzz = −0.12

MPa

(g) φ = 45◦, σxx = −0.12

MPa, σzz = −0.06 MPa

(h) φ = 45◦, σxx = −0.06

MPa, σzz = −0.12 MPa

Figure 2.24: Propagation paths for inclined line fractures under prescribed injected fluid
volume in a two dimensional elastic medium subject to in-situ stresses

(a) Pre-existing penny-

shaped fracture at φ = 30◦,
θ = 0◦

(b) σzz = −0.06 MPa (c) σxx = −0.06 MPa, σyy =

−0.06 MPa

(d) σyy = −0.06 MPa, σzz =
−0.06 MPa

(e) σxx = −0.03 MPa, σyy =
−0.06 MPa, σzz = −0.06
MPa

(f) σxx = −0.04 MPa, σyy =
−0.03 MPa, σzz = −0.06
MPa

Figure 2.25: Propagation paths for volume driven penny-shaped fracture inclined at φ = 30◦

and θ = 0◦ in a three dimensional elastic medium subject to in-situ stresses
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2.4.4 Multiple Hydraulic Fracture Propagation in Two and Three
Dimensions

One of the most important features of the variational fracture model is its ability to handle

multiple fractures without additional computational or modeling effort than required for

single fractures. Once the existence of multiple fractures is defined by the phase field, their

propagation and interaction is inherently defined by numerical solution of the alternate

minimization scheme. This capability is highlighted by considering the propagation of two

fractures in two dimensional (Ω̃ = 8 × 8 ) and three dimensional (Ω̃ = 2 × 2 × 2 ) domains.

The fractures are inclined at an angle to each other and are close enough for interaction to

occur. Both fractures experience to the same uniform pressure determined by the balance

between their cumulative fracture volume and total injected fluid volume. Fracture evolution

and interaction is depicted in Figure 2.26 for the two dimensional problem and Figure 2.27 for

the three dimensional case. For both two and three dimensional computations, propagation

initiated in the larger fractures since according to the analytical solution, the critical pressure

for propagation is inversely proportional to fracture length. As more fluid is injected, the

larger fracture propagates towards the smaller one and connects to it along a curved path to

create one big fracture. Further fluid injection leads to propagation of both tips of the single

large fractures.

2.4.5 Joint Sets in Multi-Layered Rocks

This section compares the patterns of natural fractures generated using the variational frac-

ture model against those reported in literature and outcrop patterns observed in nature. To

achieve this, the propagation of fractures in a two-dimensional layered domain is simulated.

Similar numerical experiments have been carried out and can be found in Chukwudozie et al.

(2013), Guo, Xiang, and Lei (2013), Ladeira and Price (1981), Hobbs (1967), Gross, Fischer,

and Engelder (1995).
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Figure 2.26: Multiple hydraulic fracture geometry and propagation in two dimensions

Figure 2.27: Multiple hydraulic fracture geometry and propagation in 3D

Natural fractures are an important component of fractured reservoirs and have signifi-

cant impacts on reservoir fluid flow characteristics and overall geomechanical properties of

the formation. It is therefore important to incorporate the effect of natural fractures at the

outset of field developments as ignoring their influence may have significant consequences

in field production planning. Understanding the characteristics of natural fractures is a first

step towards incorporating fractures into a field development design. It is widely understood

that natural fracture characteristics are dependent on the mechanical stratigraphy of the

sedimentary layers that make up the rock i.e. on the combination of different mechanical

properties and thickness of the layers that make up the formation (Underwood et al. 2003;

Ladeira and Price 1981; Huang and Angelier 1989; Becker and Gross 1996). Thus, the in-

teresting these numerical test are the fracture patterns generated for a set of mechanical

properties in a layered system subjected to tensile loading.

The computational domain for simulating the fracturing process is shown in Figure 2.28. It

is a 3-layer rectangular domain with a middle brittle layer bounded by two elastic layers. The

length of domain is L while the thickness of the middle layer and the two bounding layers
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Figure 2.28: Geometry of domain for natural fracture simulation

are S and T respectively. Quasi-static loading is achieved by keeping the top and bottom

stress free while the sides are pulled with a monotonically increasing displacement given by

~u (0, t) = −t u

~u (L, t) = t u

(2.68)

t is an increasing parameter taking on values from 1, 2, 3 . . .. The simulation was carried

out with the material properties shown in Table 2.5 and with ε = h and h = 0.01. Simula-

tion results showing fracture patterns during the deformation process are shown in Figures

2.29. The important features observed during and after the propagation of the fractures are

summarized below.

1. Sequential infilling of fractures: Fractures fill up the brittle layer in a sequential manner

as documented in Hobbs (1967), Gross (1995) and Tang (2008). Average fracture spac-

ing decreases with increasing strain as new fractures nucleate to infill spaces between

pre-existing fractures.

2. Stress build-up between fractures: Upon the formation of a set of two fractures, stress

builds-up between the existing fracture sets. For the variational fracture simulation

results in Figures 2.29, this is represented by regions with large transition values for

the v-field as in Figures 2.29a and 2.29b. From this region of increased stress, new
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Table 2.5: Material properties for natural fracture simulation

Parameter Value

E 40.0, 40.0, 40.0
ν 0.25,0.01,0.25
Gc 4.0,0.2,4.0
L,S 5.0,0.9

fractures are formed and the stress is subsequently released. This phenomena is related

to the stress shadow behavior that is well documented in literature.

3. Parallel fractures, perpendicular to layers: As noted in Underwood (2003), Ruf (1998),

Wennberg (2012), Bai (2002), Tang (2008) and Gross (1995) for homogeneous distri-

bution of material properties, the simulated fractures form in parallel sets that are

perpendicular to the mechanical layers.

4. Layer debonding: Layer delamination is observed as the vertical fractures are formed.

This affects fracture spacing as additional vertical fracture formation is inhibited (Tang

2008) since energy is expended in propagating the fractures along the interface, rather

than in forming new fractures.

An example of joint patterns observed in an outcrop rock in nature is shown in Figure

2.30. In the image, one can clearly identify some of the features obtained from the numerical

simulation. These include parallel joint sets that are perpendicular to the rock layers and ter-

minating at the layer interfaces. Traverse fractures that debond and separate the horizontal

layers are also observed.
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(a) High stress region in brittle layer prior to fracture formation

(b) High stress region between fracture set

(c) Parallel fracture sets at fracture saturation

Figure 2.29: Joint sets simulated using variational fracture model

Figure 2.30: Example of joint sets observed in nature
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Chapter 3
Coupled Model for Fracture Fluid Flow and
Deformation

3.1 Introduction

Earlier, it was explained that hydraulic fracturing simulation requires coupling between a

mechanical model and a flow model. The relationship between both models is summarized

in Figure 3.1. In this work, the variational fracture model is used as the mechanical model

and it was introduced and verified in Chapter 2. The fluid flow component of the hydraulic

fracturing model highlighted by the red box in Figure 3.1 is introduced in this chapter.

This component solves for flow in both reservoir and fracture unlike some other hydraulic

fracturing simulations which only model fracture fluid flow and use Carter’s model to account

for fluid loss to the surrounding medium. Single phase, Newtonian flow is assumed in both

the fracture and the reservoir. Coupling of the models for flow in the fracture and reservoir

is achieved through hydraulic communication between both subdomains to provide a single

integral equation for fluid flow in the whole domain. With the fully coupled single flow

model, interaction between solid deformation and fluid flow in the adjoining region caused by

fluid loss is more realistically modeled while the mutual effect of poroelasticity on hydraulic

fracture propagation is captured.

The governing equations for flow in both fracture and reservoir will be introduced and no

attempt is made to derive them since they are well established and their derivations abound

in the literature. Rather, the flow models will be analyzed in the context of the phase field

since the individual equations apply to different subdomains which are distinguished using

the v-field presented in Chapter 2. Finite element analysis of the individual flow equations and

the coupling strategy will be discussed in detail and verified against classical consolidation

examples. Thereafter, coupling between flow and mechanical components of the hydraulic

fracturing model will be introduced and example cases presented.
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Figure 3.1: Geometry of important components used for fracture width computation

A poroelastic domain as shown in Figure 3.2a consists of two non overlapping subdomains,

Ω \ Γ and Γ represented by Figures 3.2b and 3.2c respectively. Ω is the poroelastic medium

while Ω\Γ and Γ are the reservoir and fracture subdomians with same geometric properties as

described in Sec. 2.2 for Figure 2.1 in Chapter 2. It is important to point out that the fracture

is only an internal boundary of the poroelastic domain. This implies that ∂Ω = Γ∪∂DΩ∪∂NΩ.

On the other hand, it is also assume that the fracture does not reach the external boundaries.

Therefore, Γ ∩ (∂DΩ ∪ ∂NΩ) = Ø. The governing equations for coupled flow in Ω \ Γ and Γ

are different and are described in the following sections.

3.2 Reservoir Flow Model: Single Phase Flow

The framework for incorporating interaction between deformation and fluid flow was first

introduced by Biot (1941) and has seen increasing application in petroleum reservoir fluid

production (Zheng, Burridge, and Burns 2003; Lewis 1998). According to the model, coupling

is introduced through Biot’s effective stress concept in the momentum conservation equation

and through volumetric strain contribution to flow in the conservation of fluid mass. This

coupled framework is applied to the variational hydraulic fracturing model through the
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(a) Poroelastic domain containing reservoir
and fracture

(b) Reservoir domain without fracture (c) Fracture domain isolated from
reservoir

Figure 3.2: Schematic of reservoir and fracture as components that make up the poroelastic
media.

effective stress in the elastic energy term in the variational fracture energy functional of

Equation 5.7 and in the mass balance equation developed from Biot’s poroelastic theory for

slightly compressible single phase, flow in a deformable medium. In the poroelasticity model,

the increment of fluid content in a poroelastic media is given by

ζ = α∇~u+
pr
M

(3.1)

α, ~u, pr and M are Biot’s constant, solid displacement, reservoir fluid pressure and Biot’s

modulus respectively. M is further given by the relationship

1

M
=
α− φ
Ks

+
φ

Kf

(3.2)

where,

α = 1− KT

Ks

(3.3)

KT , Ks and Kf are the bulk modulus of the overall skeleton, grain/rock matrix and bulk

modulus of fluid while φ is porosity of the rock.

Mass balance on the fluid content in the compressible (Biot 1941; Lewis 1998; Zheng,

Burridge, and Burns 2003) media is

∂ζ

∂t
+∇ · ~qr = qrs

1

M

∂pr
∂t

+ α
∂εvol
∂t

+∇ · ~qr = qrs

(3.4)
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εvol := ∇ · ~u, is the volumetric strain which couples reservoir fluid flow with reservoir defor-

mation as shown in Figure 3.1. qrs is the source or sink term and it has a unit of volumetric

flow rate per unit volume. ~qr is the flow rate described by Darcy’s law below

~qr = −K
µ
∇pr (3.5)

K,µ are permeability tensor and fluid viscosity respectively. Upon substituting Equation 5.9

into Equation 5.8, the reservoir continuity equation below is obtained.

1

M

∂pr
∂t

+ α
∂εvol
∂t
−∇ · K

µ
∇pr = qrs (3.6)

Boundary Conditions

Pressure or flux boundary condition is applied on the reservoir boundaries so that

∂DΩ ∩ ∂NΩ = Ø and ∂DΩ ∪ ∂NΩ = ∂Ω (3.7)

where ∂DΩ and ∂NΩ are the pressure and flux boundaries respectively.

1. For pressure boundary condition

pr = p̄ on ∂DΩ (3.8)

2. For flux boundary condition

~qr · n = qn on ∂NΩ (3.9)

where ~n is the normal vector to the boundaries, qn is the specified velocity component normal

to ∂NΩ while p̄ is the boundary pressure specified on ∂DΩ.

The consequence of hydraulic communication between reservoir and fracture is that fluid

pressure is continuous in the poroelastic domain. Since fracture is a boundary of the reservoir,

this condition implies that fracture fluid pressure is the reservoir pressure at the reservoir-

fracture interface.

pr = pf in Γ (3.10)
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Although pressure is continuous in the poroelastic domain, its gradient is discontinuous across

the fracture. This means that the fluid flux across the fracture face is discontinuous, as fluid

flows either into or out of the fracture from both faces. On the basis of mass conservation,

fluid flux from the fracture into the reservoir really accounts for loss of injected fluid during

fracturing. Therefore in this work, leak-off will be modeled as the jump of fluid flux from

both fracture faces.

ql = −[[~qr]] · ~nΓ across Γ (3.11)

3.2.1 Fixed Stress Split Solution for Coupled Flow and Deforma-
tion in Poroelastic Media

For a fixed fracture geometry, coupled numerical solution of Equations 5.7 and 5.10 is carried

out to obtain p and ~u in the poroelastic domain. For this work, the fixed stress split technique

is used to solve this coupled reservoir flow and deformation problem in the region of the

computational domain with v = 1. This method is chosen for two reasons.

1. Its unconditional stability is needed for this complex problem with multiple levels of

couplings; reservoir/fracture flow coupled to reservoir/fracture deformation.

2. The variational fracture solver which also models reservoir deformation is an external

standalone package. The main input to the mechanical model is fluid pressure defined

over the computational domain. Thus, it does not have modifications to the deformation

equations that will enable drained and undrained split solution methods.

In the fixed stress method, the continuity equation is first solved to compute fluid pressure,

pr. Thereafter, pr is transferred to the variational fracture model to solve for ~u. During the

pressure solution step, reservoir deformation is decoupled from fluid flow by keeping the

volumetric stress constant. The fixed stress method proceeds as follows: Let σvol and εvol be
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the volumetric stress and volumetric strain defined by

σvol =
σx + σy + σz

3

εvol =
∂(∇ · ~u)

∂t
=
εx + εy + εz

3

(3.12)

so that from linear poroelasticity

σvol + α pr = κεvol (3.13)

κ is the drained bulk modulus of the reservoir rock related to E and ν by

κ =


E (1−ν)

(1+ν)(1−2 ν)
; 1D

E
2 (1+ν)(1−2 ν)

; 2D

E
3 (1−2 ν)

; 3D

(3.14)

The volumetric strain in Equation 5.10 is eliminated by using Equation 3.13 to obtain

( 1

M
+
α2

κ

)∂pr
∂t
−∇ · K

µ
∇pr− = qrs −

α

κ

∂σvol
∂t

in Ω \ Γ (3.15)

Equation 3.15 is the flow model solved in the fixed stress iterative coupling approach. As

observed from the right hand side, the flow model is decoupled from deformation. On the

left hand side, however, volumetric stress acts as an additional source term and represents

contribution of reservoir deformation to fluid diffusion. Given that one of the primary vari-

ables in the mechanical model is ~u, it is necessary to consider σvol contributions in terms of

~u. To achieve this, for Equation 3.15 solved at a given iteration level k+ 1, the σvol obtained

from the previous iteration level k is used. Therefore, Equation 3.13 at k is substituted into

Equation 3.15 to obtains

( 1

M
+
α2

κ

)∂pk+1
r

∂t
−∇ · K

µ
∇pk+1

r = qrs − α
∂εkvol
∂t

+
α2

κ

∂pkr
∂t

in Ω \ Γ (3.16)

Superscripts represent iteration levels so that mechanical variables lag behind flow vari-

ables by one iteration. As the coupled numerical solution converges pk+1
r → pkr and εk+1

vol →

εkvol.
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3.2.2 Weak Formulation of Single Phase Reservoir Flow Equation

Let ψr ∈ H1(Ω) be a test function so that ψr = 0 on ∂DΩ. The weak form of the flow

model is obtained by multiplying Equation 3.16 with ψr and integrating over the applicable

domain. Since Equation 3.16 only applies to the unfractured part of the poroelastic domain

(i.e. Figure 3.2b), the integration is carried out over Ω \ Γ.

∫
Ω\Γ

( 1

M
+
α2

κ

)∂pk+1
r

∂t
ψr dV −

∫
Ω\Γ
∇ · K

µ
∇pk+1

r ψr dV =

∫
Ω\Γ

qrsψr dV

− α
∫

Ω\Γ

∂εkvol
∂t

ψr dV +
α2

κ

∫
Ω\Γ

∂pkr
∂t

ψr dV (3.17)

Upon carrying out integration by parts on the second term of the equation above, one obtains

∫
Ω\Γ
∇ · K

µ
∇pk+1

r ψr dV = −
∫

Ω\Γ

K

µ
∇pk+1

r ∇ψr dV

+

∫
∂NΩ

K

µ
∇pk+1

r · ~nψr ds+

∫
Γ+

K

µ
∇pk+1

r · ~n+
Γ ψr ds

+

∫
Γ−

K

µ
∇pk+1

r · ~n−Γ ψr ds (3.18)

Applying Equations 3.9 and 3.11 and considering that ~n+
Γ = −~n−Γ = ~nΓ, then

∫
Ω\Γ
∇ · K

µ
∇pk+1

r ψr dV = −
∫

Ω\Γ

K

µ
∇pk+1

r ∇ψr dV

−
∫
∂NΩ

qn ψr ds−
∫

Γ

[[qr]] · ~nΓψr ds (3.19)

Upon substituting Equation 3.19 into Equation 3.17

∫
Ω\Γ

( 1

M
+
α2

κ

)∂ pk+1
r

∂t
ψr dV +

∫
Ω\Γ

K

µ
∇pk+1

r ·∇ψr dV =

∫
Ω\Γ

qrs ψr dV−α
∫

Ω\Γ

∂εkvol
∂t

ψr dV

+
α2

κ

∫
Ω\Γ

∂pkr
∂t

ψr dV −
∫
∂NΩ

qn ψr ds+

∫
Γ

ql ψr ds (3.20)

The emergence of the last integral term containing ql is a natural consequence of the integra-

tion by parts of the flow model. Therefore, leak-off is implicitly incorporated with no need

for models like Carter’s.
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3.3 Fracture Fluid Flow Model

The mathematical model for fluid flow in the fracture is as follows.

∂w

∂t
+∇Γ · (w ~qf ) + ql = qfs in Γ (3.21)

w~qf = − w
w

12µ
∇Γpf in Γ (3.22)

ql = −[[~qr]] · ~nΓ on Γ (3.23)

~qf · ~mΓ = 0 on ∂Γ (3.24)

w = −[[~u]] · ~nΓ (3.25)

Equations 3.21, 3.22 are the volume balance and the cubic law that relates fluid flux and

pressure gradient. As shown in Figure 3.1, coupling between the mechanical model and

fracture fluid flow is through the fracture width (w), fracture geometry (Γ) and fracturing

fluid pressure (pr). In addition, reservoir fluid flow and feature fluid flow are coupled through

the fluid loss (Equation 3.23) from fracture to reservoir. Equation 3.23 ensures that fluid leak-

off is a consequence of the solution of the full dimensional fluid diffusion in the reservoir.

For mathematical convenience and to complete the boundary conditions for the fracture

problem, no fluid loss is allowed from the fracture tip, as described by Equation 3.24. ~mΓ is

the tangential direction at the fracture tip.

∂Γ is the fracture boundary. Surface gradient and surface divergence operators are defined

in Appendix 5.2. Using the definition for ∇ · ~qf in Equation 5.42, Equation 3.21 is expressed

as

∂w

∂t
+ [~nΓ ×∇ · (~nΓ × w~qf )] + ql = qfs (from Equation 5.40) (3.26)

The fracture continuity equation in terms of fracture fluid pressure is obtained by substituting

Equation 1.3 into the above equation.

∂w

∂t
−
[
(~nΓ ×∇) · w

3

12µ
(~nΓ ×∇Γpf )

]
+ ql = qfs (3.27)
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3.3.1 Weak Form of Fracture Flow Equation

Similar to Subsec. 3.2.2 for reservoir flow model, Equation 3.26 is multiplied by a test function

ψf and integrated over Γ.∫
Γ

ψf
(
qfs(Γ)− ∂w

∂t
− ql(Γ)

)
ds =

∫
Γ

(
(~nΓ ×∇) · (~nΓ × w~qf )

)
ψf ds

=

∫
Γ

ψf
[
∇× (~nΓ × w~qf )

]
· ~nΓ ds

(3.28)

Applying Equation 5.39, the right hand side of Equation 3.28 can be expressed as∫
Γ

[
(∇× ψf (~nΓ × w~qf )

]
· ~nΓ ds =

∫
Γ

ψf
[
(∇× (~nΓ × w~qf )

]
· ~nΓ ds

+

∫
Γ

[
∇ψf × (~nΓ × w~qf )

]
· ~nΓ ds

(3.29)

Stoke’s theorem defined in Appendix 5.2 is applied to the left hand side of Equation 3.29 to

obtain

∫
Γ

[
(∇× ψf (~nΓ × w~qf )

]
· ~nΓ ds =

∮
∂ Γ

ψf w~qf · ~mΓ ds (3.30)

Equation 3.29 becomes

−
∫

Γ

ψf
[
(∇× (~nΓ × w~qf )

]
· ~nΓ ds = −

∮
∂ Γ

ψfw~qf · ~mΓ ds+

∫
Γ

[
∇ψf × (~nΓ × w~qf )

]
· ~nΓ ds

(3.31)

Since ~qf · ~mΓ = 0 on ∂ Γ, the first component on the right hand side of Equation 3.31 is equal

to zero and it becomes

−
∫

Γ

ψf
[
(∇× (~nΓ × w~qf )

]
· ~nΓ ds =

∫
Γ

[
∇ψf × (~nΓ × w~qf )

]
· ~nΓ ds (3.32)
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Substituting Equation 3.32 back into Equation 3.28 and applying some of the vector algebra

identities in Appendix 5.2∫
Γ

ψf
(
qfs(Γ)− ∂w

∂t
− ql(Γ)

)
ds = −

∫
Γ

[
∇ψf × (~nΓ × w~qf )

]
· ~nΓ ds

= −
∫

Γ

[
(~nΓ ×∇ψf ) · (~nΓ × w~qf )

]
ds

=

∫
Γ

w3

12µ

[
(~nΓ ×∇Γ pf ) · (~nΓ ×∇ψf )

]
ds

= −
∫

Γ

w3

12µ

[
(∇Γ pf × ~nΓ) · (~nΓ ×∇ψf )

]
ds

= −
∫

Γ

w3

12µ

[
∇Γ pf ·

(
~nΓ × (~nΓ ×∇ψf )

)]
ds

=

∫
Γ

w3

12µ

[
∇Γ pf · ∇Γ ψf

]
ds

(3.33)

3.4 Reservoir and Fracture Flow Coupling

3.4.1 Weak Formulation of Scaled Model

Reservoir and fracture flow equations obtained from finite element analysis are here presented

as Equations 3.34 and 3.35 respectively. Similar to the computation of pr in the reservoir flow

model, pf is computed at one iteration level above the mechanical model. Hence, fracture

width has the superscript k.∫
Ω\Γ

(
1

M
+
α2

κ
)
∂ pk+1

r

∂t
ψr dV +

K

µ

∫
Ω\Γ
∇pk+1

r ·∇ψr dV =

∫
Ω\Γ

qrs ψr dV −α
∫

Ω\Γ

∂εkvol
∂t

ψr dV

+
α2

κ

∫
Ω\Γ

∂pkr
∂t

ψr dV −
∫
∂NΩ

qn ψr ds+

∫
Γ

ql ψr ds (3.34)

∫
Γ

(wk)3

12µ

[
∇Γ p

k+1
f · ∇Γ ψf

]
ds = −

∫
Γ

∂wk

∂t
ψf ds+

∫
Γ

qfs ψf −
∫

Γ

qkl ψf ds (3.35)

The leak-off component is eliminated by adding Equations 3.34 and 3.35 to obtain∫
Ω\Γ

(
1

M
+
α2

κ
)
∂ pk+1

r

∂t
ψr dV +

K

µ

∫
Ω\Γ
∇pk+1

r · ∇ψr dV +

∫
Γ

(wk)3

12µ

[
∇Γ p

k+1
f · ∇Γ ψf

]
ds

=

∫
Ω\Γ

qrs ψr dV − α
∫

Ω\Γ

∂εkvol
∂t

ψr dV +
α2

κ

∫
Ω\Γ

∂pkr
∂t

ψr dV

−
∫
∂NΩ

qn ψr ds−
∫

Γ

∂wk

∂t
ψf ds+

∫
Γ

qfs ψf ds (3.36)
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Integrals over Ω \ Γ are contributions from the reservoir flow model while those over Γ are

fracture flow components. Since location of fracture, Γ, is unknown, it is difficult to numer-

ically integrate components of Equation 3.36 over their respective domains. The fracture is

represented as in the variational fracture framework and a regularized formulation is intro-

duced using the phase field calculus to convert integrals over Ω \ Γ and Γ to integrals over

Ω, irrespective of the location of Γ. For Equation 3.17, this is achieved by multiplying by

v2 the integrands of integrals over Ω \ Γ, as introduced in Equation 2.24. Similarly, using

Equation 2.20, integrals over Γ are converted to full domain integrals over Ω by multiplying

their integrands by |∇v|. Since fracture region is represented by v = 0, this formulation uses

v as an indicator function to distinguish between integrals over the two subdomains.

So far, two pressures are identified in the flow model: reservoir fluid pressure, pr and frac-

ture fluid pressure, pf . Hydraulic communication between fracture and reservoir stipulates

pressure continuity so that a single pressure variable is used to represent the fluid pressure.

If p is the pressure in the whole computational domain, then the relationships in Equation

3.37 holds.

pr = p; ψr = ψ in Ω \ Γ

pf = p; ψf = ψ on Γ

(3.37)

According to Equation 3.37, fracture pressure is the fluid pressure on Γ and reservoir pressure

is fluid pressure in Ω \ Γ. Mathematically, p can be considered a weighted combination of

pr and pf so that both variables can be replaced with p in the volume integral of Equation

3.36. Similarly, due to continuity of the domain for both fracture and reservoir flow in the

variational fracture framework, the test functions are also continuous and replaced with ψ,
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as described by Equation 3.37. After applying all the above concepts, Equation 3.36 becomes∫
Ω

v2
( 1

M
+
α2

κ

)∂ pk+1

∂t
ψ dV +

K

µ

∫
Ω

v2∇pk+1 ·∇ψ dV +

∫
Ω

(wk)3

12µ

(
∇Γ p

k+1 ·∇Γ ψ
)
|∇v| dV

=

∫
Ω

v2 qrs ψ dV − α
∫

Ω

v2∂ε
k
vol

∂t
ψ dV +

α2

κ

∫
Ω

v2 ∂p
k

∂t
ψ dV

−
∫
∂NΩ

qn ψ +

∫
Ω

ψ qfs|∇v| dV −
∫

Ω

ψ
∂wk

∂t
|∇v| dV (3.38)

Where

~nΓ '
∇v
|∇v|

∇Γp ' ∇p− (∇p · ~nΓ)~nΓ

(3.39)

A careful analysis of Equation 3.38 shows that it degenerates to zero everywhere inside the

fracture, since v = 0 and |∇v| = 0 inside the fracture. This breakdown in the model creates

an ill-conditioned system of equations which is almost impossible to solve. To improve the

stability of the resultant numerical model, a modification similar to the approach used in

deriving the fixed stress model is proposed. The proposed modification which is shown in

Equation 3.40, uses Biot’s compressibility ( 1
M

) as a stabilizing term. Furthermore, to prevent

the v-field from affecting the flow model in the absence of fracture opening (i.e. w ≤ 0, for

example, prior to fracture opening under in situ stresses), the minimum permeability in every

grid block is the reservoir permeability.∫
Ω

( 1

M
+ v2 α

2

κ

)∂ pk+1

∂t
ψ dV +

K

µ

∫
Ω

∇pk+1 · ∇ψ dV +

∫
Ω

(wk)3

12µ

(
∇Γ p

k+1 · ∇Γ ψ
)
|∇v| dV

=

∫
Ω

v2 qrs ψ dV − α
∫

Ω

v2∂ε
k
vol

∂t
ψ dV +

1

M

∫
Ω

(1− v2)
∂pk

∂t
ψ dV

+
α2

κ

∫
Ω

v2 ∂p
k

∂t
ψ dV −

∫
∂NΩ

qn ψ dV

+

∫
Ω

ψ qfs|∇v| dV −
∫

Ω

ψ
∂wk

∂t
|∇v| dV (3.40)

3.4.2 Well Flow Rate Representation in Regularized Fracture

q̃rs and q̃fs are the reservoir and fracture fluid sources/sinks in the coupled flow model. As

in conventional reservoir well modeling, both can be modeled either as constraints on flow
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Figure 3.3: Regularized well rate representation for a two dimensional domain

rates or constraints on bottom hole pressures. In this work, constant flow rate condition is

used as the only constraint for both reservoir and fracture wells. Mathematically, reservoir

well flow rate conditions are modeled as point sources/sinks using the dirac delta function

as shown below.

q̃rs = Σn
i=1Q̃r,i δ(~̃x− ~̃xr,i) (3.41)

On the other hand, modeling well flow rate for fracture wells is different from that for reservoir

wells. Since fracture locations in the variational approach are not identified by specific points

but by a smooth phase field, a regularized representation of the fracture well rate is used.

For two dimensional domain

q̃fs '

 Σm
i=1

Q̃f,i

2πε̃2
if |~̃x− ~̃xf,i| ≤ t/2

Σm
i=1

Q̃f,i exp
−|~x−~xf,i|/ε̃

2πε̃2
if |~̃x− ~̃xf,i| ≥ t/2

(3.42)

For three dimensional domain

q̃fs '

 Σm
i=1

Q̃f,i

4πε̃3
if |~̃x− ~̃xf,i| ≤ t/2

Σm
i=1

Q̃f,i exp
−|~x−~xf,i|/ε̃

4πε̃3
if |~̃x− ~̃xf,i| ≥ t/2

(3.43)

Q̃r and Q̃f are dimensionless versions of Qr and Qf which are the volumetric injection rates

with units of m3/s for three dimensional problems and m2/s for two dimensional problems.

~̃xr and ~̃xf are locations of n number of reservoir and m number of fracture wells. t is the

thickness of the phase field fracture representation, i.e the thickness of the fracture region
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with v = 0. Figure 3.3 shows an example of regularized fracture flow rate representation.

The peak strength is around the fracture region with large |∇̃v| but diminishes as v → 1

and |∇̃v| → 0.

3.4.3 Scaling of Coupled Flow Model

Scaling of the coupled flow model is carried out to derive a dimensionless form which is

consistent with, and is coupled to the dimensionless fracture model of subsec. 2.3.5. The

important variables and parameters of the coupled flow model are p, w, K, ~u, K, µ, t and

Q, and they are scaled as follows.

w = uow̃

M = moM̃

µ = µoµ̃

K = koK̃

Q = QoQ̃

t = tot̃

(3.44)

Where Q = Qr +Qf is the total injection rate. In addition,

to =
uox

N−1
o

Qo

=

√
Gcox

2N−1
o

EoQ2
o

µo =
G2
cox

N−2
o

EoQo

ko =
u3
o

xo

mo = Eo

(3.45)
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Combining the scalings defined in Equation 3.44 and those of Equation 2.30, a dimensionless

flow model is derived and is shown below.

∫
Ω̃

( 1

M̃
+ v2 α

2

κ̃

)∂ p̃k+1

∂t̃
ψ dṼ +

K̃

µ̃

∫
Ω̃

∇̃p̃k+1 · ∇̃ψ dṼ +

∫
Ω̃

(w̃k)3

12µ̃

(
∇̃Γ p̃

k+1 · ∇̃Γ ψ
)
|∇̃v| dṼ

=

∫
Ω̃

v2 q̃rs ψ dṼ − α
∫

Ω̃

v2∂(∇̃ · ~̃uk)
∂t̃

ψ dṼ +
1

M̃

∫
Ω̃

(1− v2)
∂p̃k

∂t̃
ψ dṼ

+
α2

κ̃

∫
Ω̃

v2 ∂p̃
k

∂t̃
ψ dṼ −

∫
∂N Ω̃

q̃n ψ dṼ

+

∫
Ω̃

ψ q̃fs|∇̃v| dṼ −
∫

Ω̃

ψ
∂w̃k

∂t̃
|∇̃v| dṼ (3.46)

As seen in the first equation of Equation 3.45, Qo and to are not independent and therefore

cannot be arbitrarily specified. Only one of Qo or to has to be given as an input to complete

the scaling. The possible options are either Q and Q̃ are known and from which Qo is

computed or t and t̃ are known from which to is computed.

The numerical simulation solves the dimensionless flow model of Equation 3.46 while the

respective conversion factors (with subscript o) given in Equation 3.45 are used to scale the

numerical simulation results to dimensional quantities. Details of the derivation of Equations

3.46 and 3.45 can be found in Appendix B.

3.4.4 Finite Elements Discretization

The computational domain for the flow problem is the same structured grid as that for the

mechanical problem. The standard Galerkin finite element method is used to solve Equation

3.40 and the test function, ψ, is a weighted sum of the shape functions, ϕi, defined on all

the nodes.

ψ =
n∑
i=1

ψi ϕi (3.47)

p̃ is also a weighted sum of all the nodal pressure values as shown below.

p̃ =
n∑
i=1

p̃i ϕi (3.48)
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n is the total number of nodes in the structured grid. Nodal values of ϕi for the 3D, 8-node

brick element used in this work are well described in literature and can be found in Ern

and Guermond (2004) and Elman, Silvester, and Wathen (2005). Reservoir permeability is

assumed to be a diagonal tensor with principal values k̃x, k̃y and k̃z so that upon substituting

Equations 3.47 and 3.47 into Equation 3.40, the discrete equations generated from the finite

element analysis is written in matrix form as follows.[
S

]
d

dt̃

[
p̃

]k+1

+

[
Dr + Dk

f

] [
p̃

]k+1

=

[
fkr + fkf

]
(3.49)

Where

S =

∫
Ω̃

( 1

M̃
+ v2 α

2

κ̃

)
ϕiϕj dṼ (3.50)

Dr =

∫
Ω̃

( k̃x
µ̃

∂ϕi
∂x̃

∂ϕj
∂x̃

+
k̃y
µ̃

∂ϕi
∂ỹ

∂ϕj
∂ỹ

+
k̃z
µ̃

∂ϕi
∂z̃

∂ϕj
∂z̃

)
dṼ (3.51)

Dk
f =

1

12µ̃

∫
Ω̃

(w̃k)3∇̃Γϕi · ∇̃Γϕj|∇̃v| dṼ (3.52)

fkr =

∫
Ω̃

v2 q̃rs ϕi dṼ − α
∫

Ω̃

∂(∇̃ · ~̃uk)
∂t̃

ϕi dṼ +
1

M̃

∫
Ω̃

(1− v2)
∂p̃k

∂t̃
dṼ

+
α2

κ

∫
Ω̃

v2 ∂p̃
k

∂t̃
ϕi dṼ −

∫
∂N Ω̃

q̃n ϕi dṼ

(3.53)

fkf =

∫
Ω̃

q̃fs|∇̃v|ϕi dṼ −
∫

Ω̃

∂w̃k

∂t̃
|∇̃v|ϕi dṼ (3.54)

p̃ is the vector of fluid pressure in the poroelastic domain. S and D are the finite element

matrices generated for the coupled problem while the f ’s are the right hand side vectors con-

taining fluid sources. k superscripts represent iteration levels. Dr generated from reservoir

flow model is independent of fluid pressure and therefore has no k superscript. Fracture com-

ponents, however, depend on displacement. Hence, why Dk
f has superscript k since mechanics

lags behind flow by one iteration level.

Time Discretization and Numerical Solution

Using the θ-method, p̃ and f are evaluated at intermediate time steps, n + θ, according to

Equations 3.55, where 0 ≤ θ ≤ 1. Consequently, Equation 3.49 is computed at n + θ to
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obtain Equation 3.56. [
p̃
]k+1

n+θ
= θ

[
p̃
]k+1

n+1
+ (1− θ)

[
p̃
]
n[

f
]k
n+θ

= θ
[
f
]k
n+1

+ (1− θ)
[
f
]
n

(3.55)

[
S

]
d

dt̃

[
p̃

]k+1

n+θ

+

[
Dr + Dk

f

] [
p̃

]k+1

n+θ

=

[
fkr + fkf

]
n+θ

(3.56)

The time derivative of pressure in Equation 3.56 is approximated using finite difference of

Equation 3.55 so that upon substituting Equations 3.55 and 3.57 into Equation 3.56, the

time evolution of pressure in the whole computation domain is obtained by solving Equation

3.58

d

dt̃

[
p̃
]k+1

n+θ
=

[
p̃
]k+1

n+1
−
[
p̃
]
n

∆t̃
(3.57)[

S + θ∆t̃ (Dr + Dk
f )
] [

p̃
]k+1

n+1
=
[
S− (1− θ) ∆t̃ (Dr + Dk

f )
]

p̃n + ∆t̃
[
θ [fkr + fkf ]n+1

+ (1− θ)
[
θ [fkr + fkf ]n

] (3.58)

One observes that Equation 3.58 is written in terms of θ. This offers the flexibility that differ-

ent time discretization schemes can be obtained by using particular values of θ. For example,

θ = 0 gives the conditionally stable forward Euler scheme, θ = 1 is the unconditionally stable

backward Euler time scheme while θ = 0.5 is the Crank-Nicholson scheme.

The system of equations in Equation 3.58 is solved iteratively using Newton’s method.

Since the set of equations are linear, the Jacobian (J) for Newton’s method is independent

of pressure and is simply the coefficient matrix multiplying the unknown pressures. The

residual r is

r(x) =
[
S + θ∆t̃ (Dr + Dk

f )
] [

p̃
]k+1

n+1
−
[
S− (1− θ) ∆t̃ (Dr + Dk

f )
]

p̃n

−∆t̃
[
θ [fkr + fkf ]n+1 + (1− θ)

[
θ [fkr + fkf ]n

] (3.59)

Therefore,

J = r′(x) = [S + θ∆t (Dr + Dk
f )] (3.60)
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3.4.5 Fracture Width Computation

The fracture width (w̃) is computed using Equation 3.61 which was introduced in Chapter

2. Like reservoir permeability, the fracture width is defined on all cells and w̃ ≥ 0 is enforced

to prevent interpenetration of the fracture faces. Figure 3.4 highlights the necessary compo-

nents used in the fracture width computation algorithm. Equation 3.61 suggests that three

components are needed to compute w̃ for a particular cell, c. These are; the local fracture

normal, ~nΓ, at the reference cell, the line s along which the integral is evaluated and half

length, b, of the line s. The center of s is the center of the reference cell c. s has orientation

~nΓ = ∇̃v
|∇̃v| and extends to length b from the reference cell center in the ±~nΓ directions. The

simplest choice of b is one that ensures s cuts across the whole computation domain. How-

ever, this is unnecessary since regions along s with constant v values do not contribute to

the integral. In addition, this poses problems if s cuts across multiple fractures.

w̃ =

∫ b

−b
~̃u · ∇̃v dx̃ (3.61)

For open fractures, w̃ > 0 for cells in the v transition region while w̃ = 0 for those cells

with constant v value. Therefore, the numerical algorithm to implement Equation 3.61 is

carried out only on cells with 0 < v < 1 since cells outside this region do no contribute to

the fracture flow model as they have |∇̃v| = 0. This means that b can be chosen so that for

a reference cell at one end of the transition region with v ≈ 1, s extends across the fracture

face and covers the whole region with v < 1. Once b and s are determined, s is discretized

so that ~̃u · ∇̃v is sampled at the discrete points for input to Equation 3.61.

The algorithm is verified for a simple case of a line fracture that cuts a rectangular domain

into two equal parts as shown in Figure 3.5 a. The fracture is opened by displacing the

material in the vertical axis by 0.1 units at the top and -0.1 units at the bottom as shown

in Figure 3.5b. This gives a total uniform fracture opening of 0.2 units across the fracture

but with 0.1 units distributed on either side of the fracture faces. w̃ computed for this

geometry using the algorithm described above is shown in Figure 3.5c. A uniform value of
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Figure 3.4: Geometry of important components used for fracture width computation

(a) v field for horizontal fracture
that cuts the square domain

(b) Vertical displacement field around
the horizontal fracture

(c) w̃ distribution around the fracture, in
the cells with 0 < v < 1.0

Figure 3.5: Horizontal fracture geometry for verification of fracture width computation
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(a) v field (b) ~u · ∇v for domain with fixed boundaries (c) ~u · ∇v for translated domain

Figure 3.6: Pressurized inclined line fracture used to verify fracture width computation al-
gorithm

0.1 is computed for cells in the region with average v value of less than 1 but greater than

0. Outside this region, w̃ = 0.

Even though ∇̃v is one of the most important quantifies used for fracture width compu-

tation, it can also introduce numerical errors in the width especially around fracture tips.

Considering that ∇̃v is defined everywhere around the fracture, the computed normal around

the fracture tip is most likely going to be different from the actual fracture surface normal.

Therefore, the use of the previously described algorithm around fracture tips results in in-

tegration lines that are far from being orthogonal to the fracture surface. Figure 3.7 shows

the geometry of integration lines on cells around the fracture tip. One observes that on some

cells, the line is either s2 or s3 while it is s2 on cells that are on the fracture tip. In that

region, however, the ideal line is s which is perpendicular to the fracture surface. Integration

along s1 or s2 or s3 picks up the wrong displacement fields, leading to distorted values for

w around fracture tips. The effects of this error are highlighted by considering two different

displacement boundaries for width computations for the pressurized fracture shown in Fig-

ure 3.5a. In the first computation, a fixed displacement is applied on all boundaries while in

the second computation, the domain is translated by 0.2 and 0.1 units in the horizontal and

vertical directions respectively. The quantity ~̃u · ∇̃v used in computing w is shown in Figures

3.5b and 3.5c for both computations. Due to the symmetric nature of the boundary condition
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Figure 3.7: Integration lines used for fracture width computation around fracture tip regions

for the first computation, its ~̃u · ∇̃v profile is uniformly distributed across the fracture faces

unlike that for the second computation. Since the same amount of fluid pressure is applied

to the fractures in both computations, one will expect the width profiles to be the same ir-

respective of the boundary type used. However, as shown in Figure 3.8, w̃ for the translated

domain is different from that for the fixed domain due to the numerical errors accumulated

around the fracture tips. Although one can faintly observe a uniformly distributed w around

the interior of the fracture, the effect of the numerical error results in a maximum fracture

width around the bottom tip which is four about times the actual maximum fracture width

expected in the center of the fracture. If the error laden width profile in Figure 3.8b is used

in the flow model, the pressure distribution obtained will be wrong.

Since fracture permeability depends on the fracture width, care must be taken to filter

out this error from the width computation before incorporation into the flow model. The

approach to filter out this error is based on two variables, fx and I, defined everywhere in the

computational domain. fx is a characteristic function computed using Equation 3.62 while
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(a) w̃ for fixed domain (b) w̃ for translated domain

Figure 3.8: Computed fracture width for fractures in fixed and translated domains. Error in
computed width due to application of the algorithm around fracture tips is obvious in the
translated domain

I is an indicator function that takes a value of 1 around the fracture faces and 0 everywhere

else, including the fracture tip. It depends on fx as shown in Equation 3.63.

fx =
∣∣∣ ∫ b

−b
∇̃v dx̃

∣∣∣ (3.62)

ftol is a pre-specified value that defines the threshold between fracture face and fracture tips.

I(fx) :=


1 if fx < ftol

0 otherwise ,

(3.63)

Once I is computed, the fracture width is updated as

w̃ = I(fx) ∗ w̃ (3.64)

It is important to note that the above ideas do not follow any rigorous mathematical theorem

or proofs. Rather, it is based on intuition.

The above algorithm was used to filter out the tip error from the width computation for

the translated domain. The results for fx, I and w̃ are shown in Figure 3.9. It is obvious that

Equation 3.64 filters out the error around the bottom tip to create a more uniform width

profile that compares fairly well with Figure 3.8a.
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(a) Characteristic function, fx (b) Indicator function, I (c) Filtered w computed for fracture in

translated domian

Figure 3.9: Fracture width computed after application of filtering algorithm to remove tip
errors

3.4.6 Numerical Algorithm for Hydraulic fracturing Simulation
using Coupled Model

Point wise convergence of the overall numerical solution to the fracture solution is impossible

in the phase field approach since the fracture is not identified at any particular level set of

the phase field, but in the transition region defined by 0 < v < 1. This is why fracture width

at a point is not given by displacement jump at that point in the computation domain.

Rather, it is the sum (integral) of all the normal components of displacement along the line

that cuts through the transition region or fracture face (see Equation 3.61). Making use of

the same idea, the fracture pressure at any point, xs, along the fracture length is computed

as

p̃f (xs) =

∫
s
p̃ ~̃u · ∇̃v dx̃∫
s
~̃u · ∇̃v dx̃

(3.65)

where s is the integration line orthogonal to the fracture at point xs.

Figure 3.10 shows the numerical algorithm for solution of the coupled hydraulic fracturing

model. The core of the algorithm are two nested loops. The inner loop iterates between p̃

and ~̃u solvers until convergence while the outer loop solves the V-step only. The outer loop

uses converged solutions of the inner loop to propagate the fracture, if the critical pressure

is reached. The inner loop error is defined as the difference between consecutive values of
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Step	  V	  to	  compute	  𝑣  (𝑥!!!⃗ , �̃�)	  

Step	  U	  to	  compute	  𝑢!!⃗ (𝑥!!!⃗ , �̃�)	  
Step	  P	  to	  compute	  𝑝!  (𝑥!!!⃗ , �̃�)	  
Update	  fracture	  width	  (𝑤!)	  

	  

𝜀! <    𝜀!"# 	  
	  

𝑘 = 0;	  �̃� = 𝑛  Δ�̃�	  

𝑘 = 𝑘 + 1	  

𝑛 = 𝑛 + 1	  

�̃� > �̃�!"#$% 	  
	  

Yes	  

No	  

End	  

Construct	  𝑣-‐field	  for	  initial	  fracture.	  
Set	  flow	  and	  mechanical	  boundary	  conditions.	  

For	  𝑛 = 1,	  set	  initial	  𝑝!  (𝑥!!!⃗ , �̃�)	  
	  	  	  

𝑝!!!!!(𝑥!⃗, �̃�) = 𝑝!!(𝑥!⃗, �̃�)	  
𝑢!!⃗ !!!!(𝑥!⃗, �̃�) = 𝑢!!⃗ !(𝑥!⃗, �̃�)	  
𝑣!!!!(𝑥!⃗, �̃�) = 𝑣!(𝑥!⃗, �̃�)	  

Yes	  

No	  

𝜀! <    𝜀!"# 	  
	  

No	  

Yes	  

Figure 3.10: Numerical algorithm for solution of developed coupled model for hydraulic
fracturing simulation
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a volume averaged pressure, p̄
(
=

∫
Ω̃ p̃

~̃u·∇̃v dṼ∫
Ω̃
~̃u·∇̃v dṼ

)
, while the outer loop error is the difference

between v values of consecutive fracture evolution steps. Once the evolution step converges,

computation for a new time step starts and initial values for p̃, ~̃u and v for the first iteration

are their respective converged solutions from the previous time steps.

3.5 Flow Model Verification I: Reservoir Fluid Flow

This section verifies the reservoir flow component of the coupled model by solving flow

problems which have analytical solutions. Numerical implementation of different boundary

condition types is tested as well. The mechanical component is decoupled by setting ~u = 0

and v = 0 everywhere in the computational domain.The validation case is the same as in

Masud and Hughes (2002), Nakshatrala et al. (2006) and Correa and Loula (2007) for a cube

of unit length i.e. Ω = [1, 0]× [1, 0]× [1, 0]. The exact pressure solution is given by

p(x, y, z) = sin(2πx) sin(2πy) sin(2πz) (3.66)

It is assumed that K = I, ρ = 0 and µ = 0. I is the identity matrix. Substituting Equation

3.66 into Equation 5.9 and neglecting gravity, the fluid velocity is

qx = −2π cos(2πx) sin(2πy) sin(2πz)

qy = −2π sin(2πx) cos(2πy) sin(2πz)

qz = −2π sin(2πx) sin(2πy) cos(2πz)

(3.67)

The steady state problem is solved so that 1
M

= 0 and the source term becomes

qrs = ∇ · ~q =
(∂u
∂x

+
∂v

∂y
+
∂w

∂z

)
= 12π2 sin(2πx) sin(2πy) sin(2πz)

(3.68)

Neunmann boundary condition is used by applying the normal component of Equation 3.67

on all boundaries of the domain. Fluid source is implemented as point sources by applying

Equation 3.68 over all nodes in the computational domain. The numerical results are shown in

Figure 3.11. There is good comparison between the numerical results in Figure 3.11 and exact
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(a) x-velocity (b) y-velocity

(c) z-velocity (d) pressure

Figure 3.11: Stabilized finite element solution for case 1 at x = 0.25.

solution obtained by applying Equations 3.66 and 3.67 on all nodes in the computational

domain, as shown in Figure 3.12.

3.6 Flow Model Verification II: Coupled Reservoir Flow

and Deformation

3.6.1 Terzaghi’s One-Dimensional Consolidation Problem

The developed coupled flow and deformation finite element solution algorithm is first vali-

dated with the classical Terzaghi one dimensional consolidation problem. The physical model

shown in Figure 3.13, consists of a homogeneous column of soil of dimensions H×L, subjected

to a constant load, σn, at the top. The sample is fixed at the bottom while the sides are free
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(a) x-velocity (b) y-velocity

(c) z-velocity (d) pressure

Figure 3.12: Exact solution for case 1 at x = 0.25.
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Figure 3.13: Uniaxial consolidation soil column

to move in the vertical direction. During consolidation, the bottom boundary is impermeable

while the top is fully drained, allowing flow of fluid out of the sample. The initial condition

for consolidation is the undrained sample state. That is, upon subjecting the soil column

to the constant load and not allowing fluid flow through any of the boundaries, the vertical

displacement and pore pressure developed are the initial conditions. Subsequent deformation

is accompanied by fluid flow through the top and a zero pore pressure boundary condition.

During this process, deformation progresses from the undrained to the fully drained state.

Analytical solutions for pore pressure, soil displacement and fluid velocity have been de-

veloped by Verruijt (2013), Jaeger, Cook, and Zimmerman (2007) and are summarized as

Equations 3.69, 3.70, 3.71 and 3.72.

po =
αmv

S + α2mv

σn (3.69)
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p(h− z, t) = po

∞∑
n=1,3,...

4

nπ
sin(

nπ z

2h
) exp(−n

2π2 cvt

4h2
) (3.70)

qz(h− z, t) =
2 k

µ
po

∞∑
n=1,3,...

cos(
nπ z

2h
) exp(−n

2π2 cvt

4h2
) (3.71)

uz(h− z, t) =
σn
κ

[
(z − h) +

α po h

σn

∞∑
n=1,3,...

8

n2π2
cos(

nπ z

2h
) exp(−n

2π2 cvt

4h2
)
]

(3.72)

Where

mv =
1

κ

S =
1

M

cv =
k

µ(S + α2mv)

(3.73)

po is the initial pore pressure while p(h − z, t), qz(h − z, t) and uz(h − z, t) are pressure,

vertical fluid velocity and displacement in the soil sample during the consolidation stage.

The data in Table 3.1 were used in the numerical computation. The results are shown

in Figures 3.14, 3.15, 3.16, where analytical solutions are lines while numerical results for a

computational domain size of 5×21 and 1 s time steps are the circles. There is a good match

between analytical solutions and the numerical results from the coupled solution algorithm.

As seen in Figure 3.14, a constant initial pore pressure is developed in the sample in the

undrained state and as drained deformation progresses, pore pressure diminishes gradually,

maintaining a constant value of zero at the top as fluid flows out of the material. The long

time solution is a uniform pore pressure of zero, the completely drained state for which all

fluid has been expelled from the material. Soil displacement in Figure 3.15 increases as fluid

is withdrawn from the material since the effective stress on the grains increases while fluid

velocity in Figure 3.16 progressively decreases with pore pressure decrease, as less fluid is

left in the soil.
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Table 3.1: Parameters for one dimensional consolidation problem

Parameter Value

E 1.44× 104 MPa
ν 0.2
α 0.79
M 1.23× 104 MPa
µ 122 cp
k 2× 10−13 m2

σn 4 MPa
H 3 m
L 2 m
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Figure 3.14: Uniaxial consolidation pore pressure
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Figure 3.15: Uniaxial consolidation displacement
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Figure 3.16: Uniaxial consolidation fluid velocity
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(a) Pressure (b) Vertical displacement (c) Vertical fluid velocity

Figure 3.17: Snapshot of pore pressure, vertical displacement and vertical velocity in Terza-
ghi’s uniaxial consolidation problem

3.6.2 Case 2: Mandel Cryer Two-Dimensional Consolidation Prob-
lem

Mandel’s problem (Mandel 1953) is commonly used to validate coupled flow and deforma-

tion algorithms since it admits an analytical solution (Abousleiman et al. 1996; Detournay

and Cheng 1988; Phillips 2005; Lee 2008; Wang 2000; Coussy 2004) for a two dimensional

problem on a finite domain. The physical model of the problem is shown in Figure 3.18. It

consists of a long rectangular saturated soil sample with dimensions 2a × 2b held between

two rigid, frictionless and impermeable plates placed at the top and bottom of the sample. A

constant force 2F is applied to the rigid plates under plane strain conditions while the lateral

sides are free from stress and pore pressure. The initial conditions for consolidation are the

instantaneous deformation condition at t = 0, obtained by applying the force 2F on the

plates without allowing drainage from all sides of the sample. The rigid plates simplify the

problem as all variables (pore pressure, vertical stress, vertical and horizontal displacements)

are independent of the z-direction. In addition, it implies that the force 2F is distributed

across the plate so that integral of the total stress on that part of the boundary is equal to

2F, as in Equation 3.80.
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Figure 3.18: Model of Mandel’s problem

The numerical model assumes both fluid and solid are incompressible i.e 1
M

= 0, B = 1 and

νu = 0.5, as shown in Table 3.2 for fluid and rock properties. For this case, analytical solutions

are taken from Mandel (1953) and Detournay and Cheng (1988) for comparison with the

numerical solutions. Equations 3.74 and 3.75 gives the instantaneous pore pressure (p(0+))

and vertical displacement (uz(x, b, 0
+)) of the sample upon application of the confining forces

while Equations 3.76 and 3.77 are the analytical pore pressure and vertical displacement

during the consolidation stage.

a p(0+)

F
=
B(1 + νu)

3
(3.74)

uz(x, b, 0
+) = −F (1− νu)b

2Ga
(3.75)

p(x, t) =
2FB(1 + νu)

3a

∞∑
i=1

sinαi
αi − sinαi cosαi

(
cos

αix

a
− cosαi

)
exp (−α2

i ct/a
2) (3.76)

uz =

[
− F (1− ν)

2Ga
+
F (1− νu)

Ga

∞∑
i=1

sinαi cosαi
αi − sinαi cosαi

exp (−α2
i ct/a

2)

]
z (3.77)
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Table 3.2: Parameters for Mandel’s problem

Parameter Value

E 1 MPa
ν 0.2
α 1
M ∞ MPa
µ 1 MPa s
k 1 m2

F 2.5 MN
a 2.5 m
b 1 m

B, νu 1, 0.5

Where

c =
2kB2G(1− ν)(1 + νu)

2

9µ(1− νu)(νu − ν)
(3.78)

tanαi =
1− ν
νu − ν

αi (3.79)

Due to the symmetry of the problem geometry, only the top half of the physical model

is used in the finite element simulation of the problem. It is discretized with 51 × 5 nodes

with a time step size of 0.01 s. At t = 0, no flow boundary condition is implemented on all

sides of the domain while the bottom is fixed. At t > 0, zero pressure is implemented on the

lateral sides of the sample to allow for fluid drainage.

The variational fracture code is not capable of implementing a rigid motion boundary

condition. As a result, a displacement boundary condition is used at the top to vertically

displace the sample by an amount equivalent to applying the force 2F . This displacement is

given by Equation 3.84 which is derived as follows. From Equation 3.81 which is the strain-

stress relationship from the theory of linear poroelasticity, the plane strain poroelasticity

equation, Equation 3.82, is obtained by considering that εyy = 0 and σxx = 0 everywhere in

the sample (Detournay and Cheng 1993). Equation 3.83 is obtained by combining Equation

3.82 with Equation 3.81 applied to the z-direction. Finally, Equation 3.83 is integrated over

[-a, a] range and after substituting Equation 3.80 into the integral, Equation 3.84 is obtained.
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∫ a

−a
σzz = 2F (3.80)

2Gεij = σij −
ν

1 + ν
σkkδij +

α(1− 2ν)

1 + ν
pδij (3.81)

σyy = νσzz + α(1− 2ν)p (3.82)

2Gεzz = (1− ν)σzz + α(1− 2ν)p (3.83)

uz(b, t) =
b

4Ga

[
2(1− ν)F + α(1− 2ν)

∫ a

−a
p(x, t)

]
(3.84)

The pore pressure and vertical displacement obtained from finite element numerical results

are compared with the analytical solutions. In Figure 3.19, an instantaneous pore pressure

value of 0.5MPa is developed through out the sample. As deformation progresses during

the consolidation stage, pore pressure gradually diminishes in the sample, with a maximum

value at the sample center and zero at the sides. The numerical pore pressures closely match

the analytical results and it is evident from the plots that at large times, the pore pressure

will eventually reduce to zero everywhere in the sample. At that stage, all the fluid would

have been expelled from the soil. Figure 3.22 shows the pressure distribution over the com-

putational domain at t = 6 s. The numerical result of the pressure in the sample center,

shown in Figure 3.20, properly captures the well known Mandel Cryer effect in which the

pore pressure at the center increases above the initial value of 0.5MPa for small times after

initial application of the compression force. The reason for this behavior which is reported to

have been observed in laboratory experiments (Verruijt 2013), is explained by Mandel (Man-

del 1953). Numerical and analytical solution of the vertical displacement of the sample is

shown in Figure 3.21. In this figure, the sample initially deforms in the undrained state with

uz = −0.6 m. Thereafter, it progressively deforms to the fully drained state with uz = −0.96

m as p → 0. Figure 3.22 highlights the pore pressure developed in the sample after 6 s of

consolidation.
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Figure 3.19: Mandel’s problem pore pressure vs. time
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Figure 3.20: Pore pressure developed at the center of soil sample in Mandel’s problem, during
consolidation stage
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Figure 3.21: Vertical displacement of soil sample in Mandel’s problem during, consolidation
stage

Figure 3.22: Developed pore pressure in soil sample in Mandel’s problem at t = 6 s
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Chapter 4
Numerical Hydraulic Fracturing Simulations

4.1 Introduction

With the coupled model developed in Chapter 3, it is easy to investigate the poroelastic

effects and the contributions of fluid and reservoir properties on fracture propagation path,

fracture geometry and fracturing fluid pressure. The focus of this chapter is to apply the

developed coupled model to a variety of hydraulic fracture propagation problems. First,

the numerical model is verified by solving the plane-strain fluid-driven fracture propagation

problem under some of the scaling regimes defined by Detournay and Garagash (2003), Hu

and Garagash (2010). The geometry of this category of fractures is the KGD model. This

class of problems are ideal for verification of hydraulic fracturing numerical simulations since

a wide range of analytical and/or semi analytical solutions exist for modeling the evolution

of fracture opening displacement, fracture length and fluid pressure as functions of time.

Thereafter, the effect of varying reservoir properties on hydraulic fracturing is studied while

the propagation of multiple fractures is simulated to understand the stress shadow effect.

Finally, penny-shaped fracture propagation in three dimensional reservoirs is simulated to

investigate the factors that can affect hydraulic fracture height growth in layered reservoirs.

4.2 Verification of Coupled Model: KGD Fracture Prop-

agation

According to Detournay and Garagash (2003), fracture propagation is governed by two

competing energy dissipation mechanisms and two fluid storage mechanisms. The energy

dissipation mechanisms are associated with viscous fluid flow and and rock deformation to

create fractures, while the fluid storage mechanisms involve fluid storage in the fracture and

fluid leak-off into the permeable reservoir. Based on the relative magnitude of the dissipation
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Figure 4.1: Hydraulic fracture parametric space, from Detournay and Garagash (2003)

processes and storage processes, a parametric space of the different propagation regimes was

created and is shown in Figure 4.1. The vertices correspond to propagation regimes in which

only one of the energy dissipation mechanisms and fluid storage mechanisms dominate.

For example, M , K, M̃ and K̃ vertices are the storage-viscosity, storage-toughness, leak-

off-viscosity and leak-off-toughness regimes respectively. The verification examples in this

dissertation are in the toughness dominated regime (K-vertex) where the energy dissipated

in the viscous fluid flow inside the fracture is negligible compared to the energy dissipated

in fracturing the rock. The K-vertex is characterized by injection of an inviscid fluid into a

fracture in an impermeable reservoir. Analytical and semi-analytical solutions for this regime

have been derived in Sneddon and Lowengrub (1969), Hu and Garagash (2010), Bunger,

Detournay, and Garagash (2005). The numerical solution for the volume driven propagation

in Subsec. 2.4.3 also falls in this region. The coupled model uses finite values of mechanical

and flow properties, including fluid viscosity and reservoir permeability. Therefore, to mimic

the toughness dominated case, small values of fluid viscosity and reservoir permeability are

used. Due to the finite but small fluid viscosity and permeability, the propagation mechanism
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is no longer characterized by the K-regime, but by the near K-regime. The semi-analytical

solution by Garagash (2006) corrects for this deviation from the K-vertex due to small fluid

viscosity, providing a good approximation for hydraulic fracturing propagation along the

MK edge. For a constant injection rate, Q, the amount of deviation is characterized by a

small dimensionless viscosity parameter, M, defined as

M =
µ′Q

E ′

(E ′
K ′

)4

(4.1)

where E ′ = E
1−ν2 , µ′ = 12µ, K ′ =

√
32GcE′

π
. Given that M is a dimensionless quantity, its

value should be the same even if the parameters in Equation 4.1 are replaced with their

respective dimensionless quantities used in the numerical fracture and coupled flow model.

Using the scalings of Equations 2.30 and 3.44, K ′ = K̃ ′
√
GcoEo, where K̃ ′ =

√
32GcE′

π
.

Therefore M becomes

M =
(µoQoEo

Gco

) µ̃′Q̃
Ẽ ′

( Ẽ ′
K̃ ′

)4

= xN−2
o

µ̃′Q̃

Ẽ ′

( Ẽ ′
K̃ ′

)4

(4.2)

N = 2 for the line fracture problem. Therefore,

M =
µ̃′Q̃

Ẽ ′

( Ẽ ′
K̃ ′

)4

(4.3)

It is obvious from Equations 4.1 and 4.3 that the dimensionless viscosity parameter is the

same whether it is computed using dimensionless (simulation) or dimensional (physical)

parameters. This findings supports the consistency of the derived dimensional analysis in

Appendix A and B. It also shows that the conversion of the numerical simulation param-

eters and results to their respective dimensional equivalents does not change the hydraulic

fracturing propagation regime. M = 0 corresponds to the K-vertex for the injection of an

inviscid fluid in a fracture in an impermeable reservoir. Hydraulic fracturing in the K-vertex

regime has been numerically simulated in Chapter 2 and verified with Sneddon’s solution.

Figure 4.2 shows the problem domain for the verification case. It is a square of size 200 m ×

200 m with an initial fracture of half-length of lo = 3. The pre-existing fracture is inclined at
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Figure 4.2: Phase field representation of pre-existing fracture used for verification of coupled
model. Fracture is inclined at 45◦ and has initial fracture length of lo = 3 m

Table 4.1: Reservoir properties for verification of coupled hydraulic fracture model. Column
D is the dimensionless inputs to the numerical model while column o is the scaling for
converting dimensionless parameters to physical values

Parameter D o Physical

x 200 1 m 200 m
u - 0.014 m -
p - 0.014 GPa -
δt 0.2 1.41 s 0.283 s
E 17 1 GPa 17 GPa
ν 0.2 1 0.2
Gc 5 ×10−4 2 ×10−4 GPa m 100 Pa m
K 1× 10−16 2.83× 10−6 m2 2.83× 10−22 m2

φ 0.2 1 0.2
α 1 1 1
Ks 10 1 GPa 10 GPa
Kf 0.625 1 GPa 0.625 GPa
µ 1× 10−13, 1× 10−7 4×10−6 GPa s 4×10−19 GPa s, 4×10−13 GPa s
Qfs 0.05 0.01 m2/s 5×10−4 m2/s
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Figure 4.3: KGD injection fluid pressure for toughness dominated propagation regime

45◦ and is located at the center of the domain. Fluid is injected into the center of the fracture

at a constant rate of 5 × 10−4 m2/s. The initial pore pressure is zero everywhere while the

boundary conditions are such that pore pressure is zero and displacements are fixed. The

reservoir properties and numerical simulation parameters are given in Table 4.1. They are

assumed homogeneous and isotropic where applicable.

Using a finite element grid size of 801× 801, the numerically obtained fracturing pressure,

fracture length and crack mouth opening displacement are compared with the semi-analytical

solutions of Garagash (2006). Two fluid cases, µ = 4 × 10−19 GPa s and 4 × 10−13 GPa

s, corresponding to M ≈ 0.0 and M = 0.041 are used. Numerical results for computed

injection fluid pressure, fracture half length and fracture mouth width are shown in Figure

4.3a, 4.4a, 4.5a for M ≈ 0.0 and Figure 4.3b, 4.4b, 4.5b for M = 0.041 respectively. As

seen in Figure 4.3a and 4.3b, fracturing injection pressure increases until the critical value

is reached and subsequently decreases as the fracture propagates. For M ≈ 0.0, a linear

pressure evolution is observed prior to fracture propagation unlike the non-linear path for

M = 0.041. The deviation from linearity for M = 0.041 is due to the larger fluid viscosity

for this case. Figure 4.6a which plots time evolution of the pressure inside the fracture
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Figure 4.4: KGD fracture half length for toughness dominated propagation regime
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Figure 4.5: KGD fracture mouth width for toughness dominated propagation regime
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Figure 4.6: Fluid pressure profile along the fracture length, for KGD fracture in toughness
dominated regime. The fluid pressure is taken on a line that cuts through the center of the
fracture and runs across the entire fracture length

along its length, shows a uniform fluid pressure throughout the length of the fracture for

M≈ 0. This profile is in agreement with the basic assumption of a constant pressure used in

deriving Sneddon’s solution for fracture propagation due to injection of an inviscid fluid. On

the other hand, Figure 4.6b for M = 0.041 shows a non-uniform pressure with maximum

values at the fracture mouth. The higher viscosity creates a pressure gradient inside the

fracture which explains the deviation from linearity in the linear elastic regime prior to

fracture propagation, as seen in Figure 4.3b. Comparing the results of Figure 4.3a and 4.3b,

Figure 4.4a and 4.4b and Figure 4.5a and 4.5b, it is obvious that the larger fluid viscosity

generates a shorter fracture with a larger fracture mouth width at a higher injection pressure

compared to the same values for a lower fluid viscosity. The time evolution of the fracture

opening displacement profile is shown in Figure 4.7a and 4.7b. In addition to a monotonous

increase in the normal displacement of the fracture faces for both cases, the fracture opening

displacement for M≈ 0 is smaller than those for M = 0.041.

All the plots show fairly good comparisons between the numerical results and the analytical

and semi-analytical solutions of Sneddon and Lowengrub (1969) and Bunger, Detournay, and
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Figure 4.7: Opening displacement profile for KGD fracture under toughness dominated
regime

Garagash (2005). The differences between numerical and analytical solutions are acceptable

if the following points are considered. First, the analytical solutions are derived for infinite

computational domains while the numerical simulations use a finite domain size. To reduce

boundary effects on the numerical simulation results, the large computational domain size

(200 m × 200 m) relative to the initial fracture length (6 m) is selected. However, this reduces

the numerical resolution of the fracture in the computational domain. More importantly,

since the fracture location does not need to be known, the numerical flow model is only an

approximation considering the various assumptions that have been made in the development

of the regularized flow model and in the fracture width computation.

4.3 Effect of Biot’s Coefficient on Fracture Propaga-

tion

The degree of coupling between reservoir deformation and fluid flow in reservoir during hy-

draulic fracturing is determined by Biot’s coefficient, α. The dependence of fluid pressure

and hydraulic fracture dimensions on α is studied by varying α between 0.4 and 1.0. The

parameters used for this computation are the same as in Table 4.1 but with x = 100 m
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Figure 4.8: Plots of fracturing injection pressure, change in fracture length, fracture mouth
aperture and fracture volume for different Biot’s coefficients
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(x̃ = 100), µ = 4 × 10−19 GPa s, an initial fluid pressure of 0.14 MPa and finite element

size of 401× 401. The numerical results and the analytical solution forM = 0 are shown in

Figure 4.8. Figure 4.8a, 4.8b, 4.8c and 4.8d show the time evolution of the injection pressure,

change in fracture half length, fracture mouth aperture and fracture volume respectively. The

results in this subsection are better understood if one examines the role of poroelasticity.

Poroelastic effects on fracture propagation depends on the level of flow and deformation cou-

pling through α. As earlier mentioned, poroelastic effects result from back stresses generated

in the region of the reservoir adjoining the fracture. These generated back stresses oppose

the fracture deformation and propagation. They are the result of the volumetric expansion

of the adjoining reservoir region and the fact that the injection pressure has to overcome

the opposing force of the far field reservoir pressure for fracture to propagate. Thus, as α

increases in the reservoir, the injection pressure as shown in Figure 4.8a increases, since

the fracture fluid has to overcome the opposing reservoir pressure before the fracture starts

deforming. In fact, if the fluid pressure plot for α = 1.0 is extended to t = 0 s, an injection

pressure of approximately 0.14 MPa is obtained. This means that fracture fluid injection

pressure has to be at least equal to the far field pore pressure for fractures to open.

Biot’s coefficient also affects the overall fracture geometry as seen in Figure 4.8b, 4.8c and

4.8d. The fracture half length, fracture mouth aperture and fracture volume all decrease with

increasing α, since the increasing contribution of poroelastic effects due to reservoir defor-

mation and far field pore pressure reduces the rate of fracture deformation and propagation.

However, for all α values considered, the fractures propagated along the direction of initial

orientation.

The numerical computations used small values of reservoir permeability and fluid viscosity

while the analytical solutions are for the asymptotic case of zero permeability and inviscid

fluid. From the injection pressure plot, one observes that the numerical results approaches the

analytical solution as α decreases to zero. This is so since the analytical solution is derived

without consideration of poroelastic coupling between the fracture and reservoir. Similarly,
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the numerical results for fracture length, width and volume tends towards the analytical

solution as α decreases.

4.4 Effect of Reservoir Permeability on Fracture Prop-

agation

During hydraulic fracturing operations, the amount of fracture fluid loss to the surround-

ing reservoir is dependent on the reservoir permeability. Using the phase field flow model,

the leak-off coefficient is not required to quantify fluid loss. Rather, fluid loss is implicitly

accounted for through the coupling between reservoir and fracture fluid flow. The effect of

reservoir permeability on fluid pressure, fracture geometry and propagation direction is in-

vestigated in this subsection by two set of numerical simulations with the parameters in

Table 4.1 but with x = 100 m (x̃ = 100) and µ = 4×10−19. In the first experiment, isotropic

reservoir permeabilities of k = 2.8×10−21 m2, 5.7×10−21 m2, 1.1×10−20 m2, 1.7×10−20 m2

and 2.3× 10−20 m2 respectively are used. For µ = 4× 10−19 GPa s, this gives k
µ

= 7× 10−3,

1.4×10−2, 2.8×10−2, 4.2×10−2 and 5.7×10−2 in units of m2s−1/GPa. The numerical results

and analytical solutions (M = 0) are shown in Figure 4.9 for injection pressure, change in

fracture half length, fracture mouth aperture and fracture volume respectively. From Fig-

ure 4.9a for fracture mouth injection pressure, one observes that the critical pressures are

not significantly affected by reservoir permeability for the chosen fluid viscosity. However,

increasing reservoir permeability makes fracture propagation more difficult since the critical

time for the onset of propagation is delayed. This delay is due to large fluid loss to the

surrounding reservoir for higher permeability computations. As a result, a large amount of

fluid will need to be injected to build up enough pressure to propagate the fracture. Cor-

respondingly, the fracture propagation rate is slower for increasing reservoir permeability.

In addition, the large fluid loss experienced in higher permeability computations lead to

smaller fracture mouth opening and fracture volumes respectively. Increasing fluid leak-off

with higher reservoir permeability means that the hydraulic fracture propagates more along
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the KK̃ edge in Figure 4.1. This deviation from the K-regime is responsible for differences

between numerical and analytical results as reservoir permeability increases.

Figure 4.10 shows snapshots of the fracture and fluid pressure in the computational domain

for different reservoir permeabilities at 42 s. The top row plots the v-field and clearly, the

fracture length decreases as reservoir permeability increases for the same injection time.

In addition, the fluid pressure plots at the bottom row highlights the effect of reservoir

permeability on fluid loss. One observes greater pressure diffusion into the reservoir for higher

permeabilities compared to those for lower permeabilities. The fluid pressure diffusion into

the reservoir is an indication of fluid loss from the fracture to the reservoir.

The second set of numerical computations study the effect of directional variation in reser-

voir permeability on fracture propagation directions. Anisotropy in reservoir permeability is

created by keeping kz constant at 2.8× 10−21 m2 and varying kx. The numerical results for

fracture propagation are shown in Figure 4.11. As propagation initiates, the fracture kinks

for anisotropic permeability ratio (kx
kz

) greater than 10. The change in propagation direction

occurs since fractures seek directions that offer the least resistance to fluid flow, which in

this case, is the horizontal direction (kx > kz). The kinking angle increases with increasing

kx
kz

.

4.5 Effect of Fluid Viscosity on Fracture Propagation

The fracturing fluid viscosity is important in controlling the rate of fluid loss to the formation

during hydraulic fracturing operations. The use of a high viscosity fluid reduces leak-off

to the formation. However, when compared with low viscosity fluids, high viscosity fluids

generate higher pressure gradients inside fractures. This subsection investigates the role of

fluid viscosity on fracture fluid pressure, fracture geometry and fracture propagation. The

computational domain, initial and boundary conditions and initial fracture geometry are the

same as in Subsec. 4.4. The fluid viscosity is varied from µ = 4×10−15 GPa s, 4×10−14 GPa

s, 4×10−13 GPa s, 8×10−13 GPa s to 2×10−12 GPa s, which corresponds to k
µ

= 2.5×10−1,
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Figure 4.9: Plots of fracturing injection pressure, change in fracture length, fracture mouth
aperture and fracture volume for different reservoir permeabilities
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(a) k = 2.3×10−20 m2 (b) k = 1.7×10−20 m2 (c) k = 1.1×10−20 m2 (d) k = 5.7×10−21 m2 (e) k = 2.8×10−21 m2

Figure 4.10: Effect of reservoir permeability on fracture propagation at t = 42 s. The top row
shows the fracture v-field and one observes that fracture length after 42 s of fluid injection
decreases with increasing reservoir permeability. The computed pressure distribution in the
bottom row highlights the greater fluid diffusion into the reservoir as permeability increases.

(e) p for kx = 5.7×10−19 m2(f) p for kx = 2.3×10−19 m2(g) p for kx = 1.1×10−19 m2(h) p for kx = 5.7×10−20 m2

Figure 4.11: Effect of reservoir permeability anisotropy on fracture propagation patterns. For
kz = 2.8×10−21 m2 and different kx values, top row shows the v-field while the bottom row
shows pressure distribution in and around fractures.
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Figure 4.12: Fluid pressure on a line through the center of the fracture for different fluid
velocities at t = 28 s

2.5 × 10−2, 2.5 × 10−3, 1.25 × 10−3 and 5 × 10−4 in units of m2s−1/GPa for 2.8 × 10−21 m2

reservoir permeability. Other parameters are the same as in Table 4.1. Remember that the

coupled flow model assumes that the fracturing fluid and reservoir fluid are the same, with

the same fluid viscosity. Therefore, the viscosity varied in this subsection is that of the fluid

in the whole system.

Figure 4.12 shows the fluid pressure plotted on a straight line along the fracture length

(i.e. the region with 0 ≤ v < 1.0) for different fluid viscosities. The fracture mouth is at

50 m while the results are for t = 28 s. The pressure gradient inside the fracture increases

with fluid viscosity, with peak pressure obtained at the fracture mouth followed by a gradual

decrease in pressure towards the fracture tip. A uniform fluid pressure profile is obtained for

low fluid viscosities, which agrees with the constant pressure assumption used in deriving

Sneddon’s (Sneddon and Lowengrub 1969) solution for fracturing due to injection of inviscid

fluids.

Numerical results for injection pressure, change in fracture half-length, fracture mouth

aperture and fracture volume are shown in Figure 4.13. The injection pressure increases
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Table 4.2: Reservoir properties for multiple fracture propagation. ColumnD is the dimension-
less inputs to the numerical model while column o is the scaling for converting dimensionless
parameters to physical values

Parameter D o Physical

x 200 1 m 200 m
u - 0.014 m -
p - 0.014 GPa -
δt 0.2 1.41 s 0.283 s
E 17 1 GPa 17 GPa
ν 0.2 1 0.2
Gc 5 ×10−4 2 ×10−4 GPa m 100 Pa m
k - 2.83× 10−6 m2 -
φ 0.2 1 0.2
α 1 1 1
Ks 2 1 GPa 2 GPa
Kf 0.125 1 GPa 0.125 GPa
µ 1× 10−14 4×10−6 GPa s 4×10−20 GPa s
Qfs 0.05 0.01 m2/s 5×10−4 m2/s

with increasing fluid viscosity. As a result, the critical pressures for fracture propagation

also increases with fluid viscosity. This means fracture propagation rate is slower with higher

fluid viscosity. As the fluid viscosity decreases, the pressure plots tend towards an asymptotic

limit. This limit is the K-regime solution for fracture propagation due to injection of inviscid

fluid. High fluid viscosity also leads to reduction in fracture length as shown in Figure 4.13b.

As shown in Figure 4.13c, for the smaller fracture lengths due to higher viscosity, the fracture

mouth aperture increases. As a result, the fracture geometry created due to injection of high

viscosity fluids tends towards a thick-short fracture i.e. short length but large aperture. The

plot of Figure 4.13d shows created fracture volumes that are greater than the injected fluid

volume. This is the product of numerical errors, due to inadequate computational resolution

for the flow problem and for the hydraulic fracture propagation path.
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Figure 4.13: Plots of fracturing injection pressure, change in fracture length, fracture mouth
aperture and fracture volume for different fluid viscosities
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4.6 Multiple Fractures

Field hydraulic fracturing operations involve propagation of multiple fractures from perfo-

ration clusters. The ability to model multiple fracture propagation is an attractive feature

for any hydraulic fracturing simulation tool. In the variational model, fracture deformation

and propagation are captured by evolution of the associated v-field defined over the whole

computational domain. Hence, irrespective of the number of fractures, the fracture model

easily handles multiple fractures without additional modeling effort than is required for a

single fracture.

The coupled hydraulic fracture model leverages this important quality of the variational

fracture model to simulate propagation of multiple hydraulic fractures. This capability is

highlighted by considering cases with multiple initial fractures in a reservoir. The first case

is for a computation with two initial vertical fractures of lengths of lo = 3 m. Both fractures

are centrally located in a computational domain of size 200 m × 200 m. Four different frac-

ture spacings, are considered: 30 m, 40 m, 50 m and 80 m. For each spacing, the reservoir

permeability is also varied to study the effect of the reservoir permeability on the propaga-

tion of both fractures. For this problem, Ks = 2 GPa, Kf = 0.125 GPa and µ = 1 × 10−20

GPa s. Other fluid and material properties are as in Table 4.1. Fluid is injected in the center

of both fractures at equal rates of Qfs = 5 × 10−4 m2/s. The numerical results for frac-

ture patterns and fluid pressure are shown in Figure 4.14 and 4.15 respectively. The first

row in Figure 4.14 is the phase field representation of the initial fractures at different frac-

ture spacings while subsequent rows are computations for increasing reservoir permeability

i.e. rows two, three, four and five are for k = 1.7×10−20 m2, 5.7×10−21 m2, 2.8×10−21 m2

and 1.4×10−21 m2 respectively. For all computations, the fractures interact by propagating

away from each other along curved paths, due to the stress shadow effect. The propagation

patterns are such that after initiation, both tips propagate simultaneously along the initial

direction for some time. After some length changes, only one fracture tip propagates and
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Figure 4.14: Propagation patterns of two pre-existing fractures with injection wells in the
center of both fractures. The first to the last columns represent different fracture spacings of
20 m, 30 m, 40 m, 50 m and 80 m respectively. The top to the bottom rows are the v-field
representations of the pre-existing fracture and propagated fractures for k = 1.7×10−20 m2,
5.7×10−21 m2, 2.8×10−21 m2 and 1.4×10−21 m2 respectively
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Figure 4.15: Computed fluid pressure for fractures in Figure 4.14. The first to the last columns
represent different fracture spacings of 20 m, 30 m, 40 m, 50 m and 80 m respectively. The
top to the bottom rows are k = 1.7×10−20 m2, 5.7×10−21 m2, 2.8×10−21 m2 and 1.4×10−21

m2 respectively
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away from the other fracture. As fracture spacing increases, the length of the propagated

vertical section of the both fractures increases. The curvature of propagation decreases as

the fracture spacing increases. This is due to diminishing interaction between both fractures

as the influence of the additional confining stresses generated by the presence of the other

fracture is diminished by distance. On comparing the patterns from top to bottom for each

column, that is for different permeabilities for a particular fracture spacing, one observes

that decreasing reservoir permeability reduces fracture curvature and complexity. Note that

even though most of the fracture patterns obtained are symmetric or close to been symmet-

ric, the computation for 20 m spacing and k = 1.7 × 10−20 m2 shows that non-symmetric

hydraulic fracture propagations are possible even with uniform reservoir properties. For this

particular computation, only the right fracture propagated, creating a shadow around the

left fracture which completely inhibits its propagation. Numerically obtained fluid pressure

for all computations are shown in Figure 4.15. According to the pressure diffusion patterns,

the interaction between fluid injected in both wells increases with decreasing fracture spac-

ing. With decreasing reservoir permeably, the injected fluid is constrained to both fractures

with less leak-off into the surrounding formation.

Numerical simulations for fluid injection into three and four initial fractures were also

carried out. The initial fracture half-lengths are 10 m and 3 m for the three and four fracture

cases respectively. For both cases, the fracture spacing is 35 m while reservoir permeability

is 2.8× 10−21 m2. Other parameters are the same as in the previous example for two initial

fractures. The numerical results are shown in Figure 4.16 and 4.17. Figure 4.16 highlights

the evolution of the propagation of the fractures while Figure 4.17 shows the corresponding

fluid pressure distribution in the reservoir. For both examples, at early times, the outside

fractures grow faster than the fractures in the center of the configuration. As the outer

fractures propagate, they exert compressive stresses on the centrally located fractures which

restricts their growth. During this time period, the fracture width of the compressed central

fractures is less than those of the outside fractures. The reduced fracture width corresponds
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Figure 4.16: Evolution of propagation paths for three and four parallel fractures with fluid
injection into the center of each fracture. The top row are snapshots of the v-field for three
fractures at 28.3 s, 9.5 mins 14.1 mins and 16.5 mins. The bottom row shows snapshots of
the v-field for four fractures at 7.1 s, 4.7 mins, 5.9 mins and 7.1 mins

Figure 4.17: Reservoir fluid pressure during the evolution of propagation paths for three
and four parallel fractures with fluid injection into the center of each fracture. Top row is
snapshot of the pressure distribution during evolution of the three fractures at 28.3 s, 9.5
mins 14.1 mins and 16.5 mins. Bottom row is the snapshot of the pressure distribution during
evolution of the four fractures at 7.1 s, 4.7 mins, 5.9 mins and 7.1 mins
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to lower fracture permeability which leads to fluid pressure build up in the compressed

fractures, as seen in the two middle columns of Figure 4.17. As fluid injection continues, the

fluid pressure in the middle fractures builds up to a point that it eventually overcomes the

opposing compressive stress exerted on them. This results in their rapid growth, leading to

the final patterns observed on the right column of Figure 4.16, with merging of two fractures

obtained for the three fracture case.

4.7 Well Shut-in After Fracture Propagation

Often times during a minifrac test, after the initial fractures are created and extended, the

injection well is shut-in during which fluid pressure in the fracture declines. Pressure decline

occurs because the fluid flows back into the well or leaks-off into the adjoining reservoir. The

common reason for well shut-in is to collect the pressure decline data which when properly

analyzed, yields useful information about the reservoir and fracture, like fracture geometry,

formation closure pressure, minimum in situ stress, leak-off characteristics etc. However, as

the fluid pressure drops, the fracture closes. Keeping the fracture open, especially after the

main fracture stimulation treatment, is crucial in providing sufficient hydraulic pathway for

formation fluid to flow from the reservoir to production wells. To ensure that fractures stay

open, engineers typically inject proppants to hold the fracture faces.

To mimic the minifrac test, numerical experiments are performed during which the well

is shut-in after a period of fluid injection and fracture propagation. The fluid pressure and

fracture geometry changes are analyzed before and after the well shut-in. The reservoir model

and initial fracture geometry are the same as in Subsec. 4.4. Fluid viscosity is µ =1×10−4 GPa

s while other parameters are the same as in Table 4.1. Three different reservoir permeabilities

of k = 4× 10−15 m2, 2×10−15 m2 and 1×10−15 m2 are considered. Fluid is injected into the

fracture at a constant rate of Qfs = 0.05 m2/s for 42 s, after which the well is shut-in.

The numerical results for fluid injection with well shut-in are shown in Figure 4.18 while the

results without well shut-in are those in Figure 4.9. The pressure responses are such that after
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(d) Fracture mouth aperture

Figure 4.18: Change in fracture length and fracture mouth aperture during well shut-in
operation for different reservoir permeabilities. The well is shut-in after 42 s

(a) t = 2.4 mins (b) t = 3.5 mins (c) t = 23.6 mins (d) t = 47.1 mins

Figure 4.19: Snap shots of pressure distribution in the reservoir with K
µ

= 0.028 m2s−1/GPa,
during simulation injection well shut-in. The well is shut-in after 42 s
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fluid injection stops at 42 s, there is additional reduction in injection pressure as fluid leaks-off

into the reservoir. The rate of decline is directly proportional to the reservoir permeability.

Similarly, fracture mouth aperture decreases with declining fluid pressure while fracture

length remains constants after well shut-in, since the fluid pressure falls below the critical

values necessary for continued fracture propagation. Figure 4.19 shows the evolution of fluid

pressure in the reservoir at different times for K
µ

= 0.028 m2s−1/GPa. The fracture length

increases until t = 42 s and remains constant thereafter. Fluid leak-off into the reservoir is

highlighted by the decreasing pressure inside the fracture and increasing fluid diffusion into

the reservoir as time progresses beyond the well shut-in time.

4.8 Effect of In-Situ Stresses on Propagation Direc-

tions

The effect of in-situ stresses on fracture propagation direction is simulated in this section.

The reservoir-fracture geometry is similar to Figure 4.2 but with a reservoir size of 50 m

× 50 m. In-situ stresses are implemented by by fixing the left and bottom boundaries of

the reservoir while the traction forces are applied on the other boundaries. For Gc = 100

Pa m, Qfs = 5 × 10−4 m2/s, µ = 4 × 10−14 GPa s, k = 8.9 × 10−24 m2, 0.014 MPa initial

reservoir pressure and other properties as in Table 4.1, the numerical results of fracture

propagation patterns for different in-situ stresses are shown in Figure 4.20. Four different

combinations of in-situ stresses are considered: σxx = -0.07 MPa and σzz = -0.04 MPa, σxx =

-0.07 MPa and σzz = -0.057 MPa, σxx = -0.04 MPa and σzz = -0.07 MPa, σxx = -0.07 MPa

and σzz = -0.1 MPa. For all the cases, as one would expect, fractures reorient from their

initial 45◦ configuration to propagate orthogonal to the minimum in-situ stress direction.

However, as seen in Figure 4.20d, in-situ stresses can also lead to asymmetric hydraulic

fracture propagation.
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(a) σxx=-0.07 MPa and σzz
= -0.04 MPa

(b) σxx=-0.07 MPa and σzz
= -0.057 MPa

(c) σxx=-0.04 MPa and σzz
= -0.07 MPa

(d) σxx=-0.07 MPa and σzz
= -0.1 MPa

Figure 4.20: Fracture propagation paths for different combination of in-situ stresses

4.9 Hydraulic Fracture Propagation in Layered Reser-

voirs

Petroleum reservoirs are highly stratified which favors location of formation fluids within

certain layers in the subsurface. Once a productive zone is identified, hydraulic fracturing

is designed so that fracture growth is constrained within the layer of interest. Restricting

fracture height growth is necessary to enable fractures reach far into productive formations

and to prevent growth into adjoining formations that are non-productive. Considering the

difficulty in modeling hydraulic fracture propagation even for simple formations, classical

models have assumed that fracture height is defined by the formation thickness. Although

this assumption may not be far from the reality, the reason for this is the differences in

mechanical and flow properties of the reservoir layers. Hence, numerical simulations are

performed in thus subsection to study fracture growth and propagation in multi-layered

reservoirs. Layering is created by varying the values of E, Gc or k for different regions in the

reservoir computational domain.

Computations for fracture propagation in two and three dimensions are carried out. The

two dimensional reservoir-fracture model is shown Figure 4.21. It has a size of 100 m × 100 m

and contains two layers separated along the vertical direction at 60 m. The Young’s modulus,

E, of the bottom layer is fixed at 17 GPa while that for the top layer is varied. All other

properties are the same through out the reservoir as in Table 4.1. The numerical results for
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Figure 4.21: Initial fracture for the 2-layered, two dimensional reservoir. The layers are
separated at 60 m in the vertical direction. The layer separation can be identified by the
white line in the images

(a) Etop = 85 GPa (b) Etop = 17 GPa (c) Etop = 8.5 GPa (d) Etop = 3.4 GPa (e) Etop = 1.7 GPa

Figure 4.22: Hydraulic fracture propagation paths in two dimensional reservoir containing
two layers separated by the white line
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Table 4.3: Reservoir properties for fracture propagation in a three layered, three dimensional
reservoir. Column D is the dimensionless inputs to the numerical model while column o is
the scaling for converting dimensionless parameters to physical values

Parameter D o Physical

x 50 1 m 50 m
u - 1.4× 10−4 m -
p - 1.4× 10−4 GPa -
δt 10 1.4× 10−2 s 0.14 s
E 17 1 GPa 17 GPa
ν 0.2 1 0.2
Gc 5 2 ×10−8 GPa m 100 Pa m
k 1× 10−12 2.83× 10−12 m2 2.83× 10−24 m2

φ 0.2 1 0.2
α 1 1 1
Ks 2 1 GPa 2 GPa
Kf 0.125 1 GPa 0.125 GPa
µ 1× 10−13 4×10−14 GPa s 4×10−27 GPa s
Qfs 5 0.01 m3/s 5×10−2 m3/s

fracture propagation and fluid pressure distribution for five cases for different values of Etop

(85, 34, 17, 3.4 and 1.7 GPa) are shown in Figure 4.22 and 4.23. A symmetric propagation of

both tips is obtained for the single layer case with Etop = Ebottom = 17 GPa. Since fracture

toughness and other parameters are the same for both layers, the effect of higher modulus

in the top layer is a reduction in reservoir deformation and fracture opening compared to

the situation where the modulus is smaller in that layer. Thus, for Etop > 17 GPa, the

hydraulic fracture propagates away from the top layer since it is more difficult to open the

fractures in that layer compared to the bottom layer. Correspondingly, for Etop < 17 GPa,

the fractures propagate into the top layer since its lower modulus compared to that of the

bottom layer means that fracture width opens easily in the top layer. One also observes that

for Etop

Ebottom
< 0.2, the hydraulic fractures experience kinks as they enter the top layer.

The three dimensional computations highlight the role of varying mechanical properties

of reservoir layers on hydraulic fracture height growth. The reservoir parameters, fluid prop-

erties and numerical simulation inputs are shown in Table 4.3 while the computational ge-
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(a) Etop = 85 GPa (b) Etop = 17 GPa (c) Etop = 8.5 GPa (d) Etop = 3.4 GPa (e) Etop = 1.7 GPa

Figure 4.23: Hydraulic fracture fluid pressure distribution in 2D reservoir containing 2 layers
separated by the white line

ometry showing the contour of the fracture domain at v = 0.1 is shown in Figure 4.24a. The

reservoir is a cube of size 50 m × 50 m × 50 m. The fracturing fluid is injected into an initial

penny shaped fracture of 5 m radius located in the center of domain. The reservoir is divided

into three vertical layers with interfaces at 17 m and 25 m respectively. This means that the

fracture is located in the middle layer. The top and bottom layers are assumed similar, with

the same values for reservoir properties as highlighted by the color contrast in Figure 4.24a.

Layering in the reservoir is created by differences in either E, Gc or k between the layers.

Otherwise, all other properties are the same for all the layers. The base reservoir properties

without variation between layers are as in Table 4.3. For a reservoir with uniform properties

(base values) in all layers, the hydraulic fracture has a uniform geometry as shown in Figure

4.24b. The penny shape remains unchanged throughout fracture propagation.

Numerical results for fracture propagation in reservoir with varying Gc between the layers

are shown in Figure 4.25. Higher fracture toughness of the external layers favors hydraulic

fracture growth in the middle layer. The fracture geometry in this conditions grows more in

length than in height. In fact, for very high Gc,ext

Gc,mid
ratio, the fracture is completely restricted

to the middle layer as seen in Figure 4.25c. As a result, it has a constant height that is

approximately equal to the thickness of the middle layer. On the other hand, a reduction in

Gc,ext

Gc,mid
favors fracture growth into the top and bottom layer, with a geometry that is longer

in the vertical direction than in the horizontal direction.

Figure 4.26 shows the propagated hydraulic fracture geometry in the layered reservoir for

different Young’s modulus. Higher Young’s modulus in the surrounding layers impedes frac-
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(a) Initial penny shaped fracture (b) Geometry of propagated fracture in the layered reser-

voir with uniform properties. The fracture shape remains
unchanged throughout propagation

Figure 4.24: Penny shaped fracture in a 3D reservoir with 3 layers. Fracture shape is taken
as the contour at v = 0.1. The layers are identified by different colors. Top and bottom layers
have the same properties, hence the same color representation

ture growth out of the middle layer while lower modulus in the surrounding layers encourages

fracture growth out of the middle layer.

Lastly, the effect of varying reservoir permeability in the layered reservoir on the frac-

ture geometry is shown in Figure 4.27. The large fluid losses associated with high reservoir

permeability delays the onset of fracture propagation since pressure build up towards the

critical value is delayed. For higher permeability in the middle layer, the fluid pressure in the

region of the fracture in that layer builds up slower due to high leak-off while the fracture

region closest to the adjoining layers experience higher fluid pressure. Given that fracture

toughness is the same in all layers, the fracture propagates more in the vertical direction than

in the horizontal direction. On the other hand, lower permeability in the middle encourages

more propagation in that layer with less extension in the vertical direction. As a result, the

fracture has a higher length compared to its height.
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(a)
Gc,ext

Gc,mid
≈ 0.7 (b)

Gc,ext

Gc,mid
≈ 0.9

(c)
Gc,ext

Gc,mid
≈ 1.2 (d)

Gc,ext

Gc,mid
= 10

Figure 4.25: Propagated hydraulic fracture in the three layered reservoir with different frac-
ture toughness
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(a) Eext
Emid

= 0.1 (b) Eext
Emid

= 0.2

(c) Eext
Emid

= 2 (d) Eext
Emid

= 5

Figure 4.26: Propagated hydraulic fracture in the three layered reservoir with different
Young’s modulus
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(a) kext = 2.8× 10−25 m2, kmid = 2.83× 10−27 m2 (b) kext = 2.3× 10−25 m2, kmid = 2.83× 10−27 m2

(c) kext = 2.8× 10−27 m2, kmid = 1.7× 10−25 m2 (d) kext = 2.83× 10−27 m2, kmid = 2.83× 10−25 m2

Figure 4.27: Propagated hydraulic fracture in the three layered reservoir with different per-
meabilities
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One may have observed the non-symmetric propagation in the combination of reservoir

properties that otherwise would have favored uniform and equal propagation into the external

layers, as in Figures 4.25a, 4.25b, 4.26a, 4.26b, 4.27c and 4.27d. In these figures, the fracture

extends more into the bottom layer than into the top layer. The evolution of these fractures

is such that propagation is symmetric prior to reaching the boundary interfaces. However,

due to floating point errors, the bottom part of the fracture reaches the lower interface before

the top part reaches the top layer interface. Subsequent fluid injection favors fracture growth

into the bottom layer. Although this geometry could have been reversed to favor growth into

the top layer, the result show that it may be difficult to control hydraulic fracture growth in

conditions where fractures propagate into layers with lower resistance to fluid flow and rock

deformation.
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Chapter 5
Conclusions and Recommendations

5.1 Conclusions

In this dissertation, a coupled model for simulating hydraulic fracturing in poroelastic me-

dia is developed and numerically implemented. The developed numerical model was used

to study the effect of reservoir and flow properties on fracturing fluid pressure, fracture ge-

ometries (length, height, width, radius) and fracture propagation paths. The model is based

on a phase field representation of fractures and the corresponding reformulation of the flow

and mechanical models in terms on the phase field variable. This chapter summarizes and

concludes all the work presented in this dissertation.

1. The dissertation started by highlighting the importance of incorporating poroelasticity

in the flow and mechanical models used for simulating hydraulic fracturing. The varia-

tional fracture model was introduced as the mechanical model used in this dissertation.

In the variational fracture approach, the deformed state of poroelastic media contain-

ing fractures is the solution of an optimization problem which involves minimizing the

sum of the surface energy, elastic energy and work of pressure forces in the poroelas-

tic media. Linear poroelasticity and linear elastic fracture mechanics are incorporated

through the poroelastic energy and surface energy terms respectively.

2. Numerical implementation of fracture models used a smooth scalar phase field (v-field)

that varies between 0 and 1, to represent fractures in the reservoir computational do-

main. The total energy functional was regularized in terms of the phase field variable.

The regularized energy provided a single framework for modeling reservoir deformation

and interaction and propagation of multiple hydraulic fractures. As a result, fracture
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propagation part does not need to be known a priori or restricted to any set of direc-

tions.

3. The variational fracture model was verified by simulating hydraulic fracturing propa-

gation in impermeable poroelastic reservoirs. The analytical solutions for this problem

were derived for pressure driven and volume driven hydraulic fracturing propagation.

The analytical solution for pressure driven hydraulic fracture propagation showed that

it is impossible to propagate fractures in a stable manner by arbitrarily increasing fluid

pressure. The numerical simulation results verified the instability of this operation. Two

and three dimensional volume driven hydraulic fracture propagation simulations were

carried out and the numerical results were in good agreement with the analytical so-

lutions. Numerical results produced of complex fracture patterns due to the presence

of in-situ stresses and due to simultaneous propagation of multiple fractures.

4. The flow model component of the hydraulic fracturing model was developed by coupling

Reynold’s equation for flow in the fracture and the single phase continuity equation

from poroelasticity theory. Given that fractures are considered as lower dimensional

surfaces in the reservoir, the Reynold’s equation was equipped with surface gradient and

surface divergence operators to allow for fluid flow only within the plane of the fractures.

Numerical analysis of the individual flow models provided a single coupled model to

solve for fluid pressure in fracture and reservoir. The developed flow model was also

regularized using the phase field variable. Fracture width and volumetric strain were

the coupling terms between the flow and mechanical models. An algorithm to compute

fracture width using the phase field and displacement variables was developed. The

algorithm in its basic form introduces errors to the computed fracture width, especially

around fracture tips. The tip errors which arises due to the fact that the phase field

gradient makes no distinction between fracture tip and fracture surface, were removed

by computing indicator functions that isolate fracture tips from the fracture surface.

143



Numerical solution of the coupled flow and mechanical model used a modified fixed

stress splitting scheme to improve the numerical stability. Mandel’s and Terzaghi’s

consolidation problems were numerically solved to verify the coupled reservoir fluid

flow and deformation capabilities of the model.

5. Dimensional analysis of both the flow and mechanical models were carried out to derive

their respectively dimensionless forms. All the numerical implementations were for the

solution of the dimensionless models. The scaled model allows the use of arbitrary

dimensionless reservoir and fluid parameters that improve the condition number of the

numerical scheme. In addition, the numerical results can be scaled to solution values

for realistic reservoir parameters using the derived scaling functions.

6. KGD hydraulic fracturing propagation in two dimensional poroelastic medium was

solved to verify the coupled model. On studying the effects of reservoir permeability

on the hydraulic fracturing process, high reservoir permeabilities resulted in high fluid

losses, reducing fracture geometry and delaying the onset of fracture propagation. In the

presence of anisotropic reservoir permeabilities, hydraulic fractures propagated in the

direction with the least flow resistance. The use of high fluid viscosities for hydraulic

fracturing resulted in higher injection pressures and shorter fractures compared to

when low viscosity fluids were used. In addition, fracture width created from high

fluid viscosities were larger than those from low viscosities. The stress shadow effect

was captured by simulating the propagation of multiple fractures. In the simulation

of two, three and four multiple fracture propagation, the stress shadow effect resulted

in fracture tips of neighboring fractures propagating away from each other. The stress

shadow effect of hydraulic fracturing interaction was found to decrease with increasing

spacing between fractures and for decreasing permeability of the reservoir. The presence

of in-situ stress produced fractures that propagated orthogonal to minimum stresses.

The effect of reservoir laying was investigated by simulating penny-shaped hydraulic
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fracture propagation in layered reservoirs. For a penny-shaped fracture in the centre

of a three-layered reservoir, layering was created by varying the mechanical and flow

properties between three vertical sections of the reservoir. The external layers were

considered to be the same, with equal reservoir properties. For some combination of

reservoir properties, the hydraulic fracture grew only within the bounded layer, with

limited height growth which was controlled by the thickness of the middle layer. Other

combinations of reservoir properties favored hydraulic fracture growth away from the

middle layer into he bounding, external layers.

5.2 Recommendations for Future Work

Phase field based methods for hydraulic fracturing modeling is relatively new and this dis-

sertation ranks amongst the early works in this area. The method will continue to attract

research attention and see significant growth in the future. Based on the experiences gained

during the course of this project, the recommendations for continued research on using the

variational fracture method for modeling hydraulic fracturing are summarized as follows:

1. Given that fracture width is the primary coupling between the flow and mechani-

cal models, the width computation can be improved through the development of a

more robust algorithm that minimizes the tip errors. Although our width computation

algorithm is programmed in parallel, its non-local structure increases the overall im-

plementation time of the coupled model. The efficiency of the implementation can be

improved. It is important to point that this is a computer science task.

2. Most of the numerical examples in this dissertation are two dimensional with some

qualitative three dimensional computations in the last section of Chapter 4. The in-

ability to perform quantitative simulations for three dimensional problems was due to

the large computation cost involved. If the width computation algorithm is improved,
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more three dimensional computations should be carried out since they are a more

realistic reflection of hydraulic fracturing in the subsurface.

3. Heat transfer, proppant transport and non-Newtonian fluids should be coupled to the

developed model to study the effects of these additional phenomena on the hydraulic

fracturing process.
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Appendix A: Scaling of The Variational
Fracture Model
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where κ = E
3(1−2ν)

The relevant parameters are Gc, E, ~u, A, p, κ, α, ~f , ~τ and V and are
scaled as follows.

E = EoẼ

Gc = GcoG̃c
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(5.2)

In addition, the variational fracture model parameters, ε and ∇v are represented as

ε = xoε̃

∇v =
1
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(5.3)

Substituting Equations 5.2 and 5.3 into Equation 5.1, one obtains
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p̃ ~̃u · ∇̃v dṼ

]
+
G̃c

4cn

∫
Ω̃

((1− v)n

ε̃
+ ε̃|∇̃v|2

)
dṼ

(5.5)
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To obtain a dimensionless form of the variational fracture model, all the products of the
coefficient terms are set to 1. Therefore

Eox
N
o u

2
o

Gcox
N+1
o

= 1 ⇒ uo =

√
Gcoxo
Eo

pouox
N−1
o

Gcox
N−1
o

= 1 ⇒ po =
Gco

uo
=

√
GcoEo
xo

fouox
N
o

Gcox
N−1
o

= 1 ⇒ fo =
Gco

uoxo
=

√
GcoEo
x3
o

αopoxo
Eouo

= 1 ⇒ αo =
Eouo
poxo

= 1 (this implies that α = α̃)

(5.6)

Therefore, the variational fracture model in terms of the dimensionless variables and solved
on the computational domain is

Fε(~̃u, v) =
1

2

∫
Ω̃

Ã
(
vε(~̃u)− α

3κ̃
Ip̃
)

:
(
vε(~̃u)− α

3κ̃
Ip̃
)
dṼ −

∫
∂N Ω̃

~̃τ · ~̃u ds̃

−
∫

Ω̃

~̃f · ~̃u dṼ +
G̃c

4cn

∫
Ω̃

((1− v)n

ε̃
+ ε̃|∇̃v|2

)
dṼ +

∫
Ω̃

p̃ ~̃u · ∇̃v dṼ
(5.7)

Where Fε(~̃u, v) = 1

Gcox
N−1
o

Fε(~u, v)

The tilde also represents numerical simulation inputs or solutions. From these dimension-
less model inputs and solution variables, the realistic reservoir parameters and solutions are
obtained by scaling according to Equation 5.2. The typical range of Young’s modulus and
Poisson’s ratio for different reservoir rocks have been reported to be 2-100GPa and 0.01-0.46
respectively (Santi, Holschen, and Stephenson 2000; Johnson and DeGraff 1988) while the
fracture toughness is less than 200 Pa m (Gidley 1989).
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Appendix B: Scaling of The Coupled Flow
Model

Reservoir Flow Model
1

M

∂pr
∂t

+ α
∂∇ · ~u
∂t

−∇ · K
µ
∇pr = Qrsδ (5.8)

Integrating over V :∫
Ω\Γ

1

M

∂pr
∂t

dV +

∫
Ω\Γ

α
∂εvol
∂t

dV −
∫
∂NΩ

K

µ
∇pr · ~n ds−

∫
Γ

ql dΓ = Qrs (5.9)

Fracture Flow Model

∂w

∂t
−
[
(~nΓ ×∇) · w

3

12µ
(~nΓ ×∇Γpf )

]
+ ql = QfsδΓ (5.10)

Integrating over Γ:∫
Γ

∂w

∂t
dΓ−

∫
Γ

[
(~nΓ ×∇) · w

3

12µ
(~nΓ ×∇Γpf )

]
dΓ +

∫
Γ

ql dΓ = Qfs (5.11)

Coupled Reservoir and Fracture Flow Model

The coupled model is obtained by adding Equations 5.9 and 5.11. Due to pressure continuity,
we set pr = pf = p∫

Ω\Γ

1

M

∂p

∂t
dΩ +

∫
Ω\Γ

α
∂∇ · ~u
∂t

dΩ +

∫
Γ

∂w

∂t
dΓ−∫

Γ

[
(~nΓ ×∇) · w

3

12µ
(~nΓ ×∇Γp)

]
dΓ−

∫
∂NΩ

K

µ
∇p · ~n ds = Q (5.12)

Where, Q = Qfs +Qrs.
The relevant parameters are w, p, M , µ, K, Q, t and are scaled as follows.

w = uow̃

p = pop̃

M = moM̃

µ = µoµ̃

K = koK̃

Q = QoQ̃

t = tot̃

Γ = xN−1
o Γ̃

V = xNo Ṽ

(5.13)
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Substituting the scalings of Equation 5.13 into Equation 5.12, one obtains

uox
N−1
o

to

∫
Γ̃

∂w̃

∂t̃
dΓ̃ +

xNo po
Moto

∫
Ω̃\Γ̃

1

M̃

∂p̃

∂t̃
dṼ +

uox
N
o

xoto

∫
Ω̃\Γ̃

α
∂∇ · ~̃u
∂t̃

dṼ−

u3
ox

N−1
o po
µox2

o

∫
Γ̃

[
(~nΓ × ∇̃) · w̃

3

12µ̃
(~nΓ × ∇̃Γp̃)

]
dΓ̃− xN−1

o Kopo
µoxo

∫
∂N Ω̃

K̃

µ̃
∇̃p̃ · ~n ds̃

= QoQ̃ (5.14)

∫
Γ̃

∂w̃

∂t̃
dΓ̃ +

xopo
mouo

∫
Ω̃\Γ̃

1

M̃

∂p̃

∂t̃
dṼ +

∫
Ω̃\Γ̃

α
∂∇ · ~̃u
∂t̃

dṼ−

u2
otopo
µox2

o

∫
Γ̃

[
(~nΓ × ∇̃) · w̃

3

12µ̃
(~nΓ × ∇̃Γp̃)

]
dΓ̃− kopoto

uoµoxo

∫
∂N Ω̃

K̃

µ̃
∇̃p̃ · ~n ds̃

=
Qoto
uoxN−1

o

Q̃ (5.15)

Again, setting all the coefficients are set to 1, the scaling parameters are

Qoto
uoxN−1

o

= 1 ⇒ to =
uox

N−1
o

Qo

=

√
Gcox

2N−1
o

EoQ2
o

uopoto
µox2

o

= 1 ⇒ µo =
u2
opoto
x2
o

=
G2
cox

N−2
o

EoQo

kopoto
uoµoxo

= 1 ⇒ ko =
uoµoxo
poto

=
u3
o

xo
xopo
mouo

= 1 ⇒ mo =
poxo
uo

= Eo

(5.16)

The corresponding dimensionless coupled flow model is therefore,∫
Γ̃

∂w̃

∂t̃
dΓ̃ +

∫
Ω̃\Γ̃

1

M̃

∂p̃

∂t̃
dṼ +

∫
Ω̃\Γ̃

α
∂∇ · ~̃u
∂t̃

dṼ−∫
Γ̃

[
(~nΓ × ∇̃) · w̃

3

12µ̃
(~nΓ × ∇̃Γp̃)

]
dΓ̃−

∫
∂N Ω̃

K̃

µ̃
∇̃p̃ · ~n ds̃ = Q̃ (5.17)

Hydraulic fracturing is a common operation in unconventional reservoirs with permeabilities
less than 0.1 mD.
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Appendix C: Solution For Volume Driven
Fracture Propagation
The volume of the line fracture in a 2D domain is

Vf = πbl (5.18)

where

b =
2∆pl

E ′
(5.19)

and

E ′ =
E

(1− ν2)
(5.20)

Thus, Eqn. 5.18 becomess

Vf =
2π∆pl2

E ′
(5.21)

Consider an existing line fracture with an initial length of lo. Prior to fracture propagation,
the fracture length does not change so that l = lo. Since fracture length at the onset of
propagation is lo, critical fluid pressure (Sneddon and Elliott 1946) is

∆pc = pc − σmin =

√
GcE ′

πlo
(5.22)

Critical fracture volume at critical fluid pressure is obtained by substituting Eqn. 5.22 into
Eqn. 5.21

Vfc =
2 π
√

GcE′

πlo
l2o

E ′
=

√
4πl3oGc

E ′
(5.23)

Since Eqn. 5.21 is fracture volume at all pressures and fracture lengths, prior to fracture
propagation, l = lo and the fluid pressure in this regime becomes

p =
VfE

′

2πl2o
+ σmin (5.24)

During quasi-static propagation of the fracture, the fracture is always in a critical state
during each quasi-static step so that Eqn. 5.22 applies in all of this regime at l ≥ lo. The
fluid pressure and fracture length in this regime are

∆p =

√
GcE ′

πl
(5.25)

l =
GcE

′

π∆p2
(5.26)
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To obtain the fluid pressure as the fracture propagates, substitute Eqn. 5.26 into Eqn. 5.21,
we have

Vf =
2 π∆p(GcE′

π∆p2 )2

E ′

=
2G2

cE
′

π∆p3

π∆p3Vf = 2G2
cE
′

∆p3 =
2G2

cE
′

π Vf

∆p = 3

√
2G2

cE
′

π Vf

p = 3

√
2G2

cE
′

π Vf
+ σmin

(5.27)

The fracture length during the propagation regime is obtained by substituting Eqn. 5.32 into
Eqn. 5.21

Vf =
2π
√

GcE′

πl
l2

E ′

=

√
4π2GcE ′ l4

πlE ′2

=

√
4π Gc l3

E ′

4π Gc l
3 = E ′ V 2

f

l =
3

√
E ′ V 2

f

4π Gc

(5.28)

Derivation of Sneddon Based Solution For Volume Driven

Penny-Shaped Fracture in 3D

Penny-shaped fracture volume is

Vf =
4

3
πR2w0 (5.29)

where

w0 =
4∆pR

π E ′
(5.30)

Volume becomes

Vf =
16∆pR3

3E ′
(5.31)
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Thus, prior to propagation, R = Ro and the fluid pressure is

p =
3VfE

′

16R3
o

+ σmin (5.32)

The critical fracture fluid pressure (Sneddon and Elliott 1946) is

∆pc = pc − σmin =

√
πGcE ′

4Ro

(5.33)

Critical fracture volume is obtained by substituting Eqn. 5.33 into Eqn. 5.31

Vfc =
16
√

πGcE′

4Ro
R3
o

3E ′
=

√
64πR5

oGc

9E ′
(5.34)

At the critical conditions during fracture propagation, fluid pressure and fracture radius are,

∆p =

√
πGcE ′

4R
(5.35)

R =
πGcE

′

4∆p2
(5.36)

To obtain fluid pressure during propagation, substitute Eqn. 5.36 into Eqn. 5.31

Vf =
16∆p (πGcE′

4∆p2 )3

3E ′

=
π3G3

cE
′3

12∆p5

12∆p5Vf = π3G3
cE
′3

p = 5

√
π3G3

cE
′3

12Vf
+ σmin

(5.37)

The evolution of fracture radius during propagation is obtained by substituting Eqn. 5.33
into Eqn. 5.31

Vf =
16
√

πGcE′

4R
R3

3E ′

=

√
64πGcE ′R5

9E ′

64πGcE
′R5 = 9E ′

2

V 2
f

R =
5

√
9E ′V 2

f

64πGc

(5.38)
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Appendix D: Identities Used in Weak Form of
Fracture Flow Model
For scalar ψ, vectors ~F and ~G and surface Γ ⊂ R1 in Ω ⊂ R2, the following identities have
been used in this chapter.

Curl of product of scalar and vector

∇× (ψ ~F ) = ψ∇× ~F +∇ψ × ~F (5.39)

Triple scalar product

~u · (~v × ~w) = (~v × ~w) · ~u = (~w × ~u) · ~v = (~u× ~v) · ~w (5.40)

Triple cross product

~u× (~v × ~w) = (~u · ~w)~v − (~u · ~v)~w (5.41)

Surface divergence

∇Γ · ~F = ~n · ∇ × (~n× ~F ) = (~n×∇) · (~n× ~F ) (Eqn. 5.40) (5.42)

Surface gradient

∇Γ ψ = [∇ψ − ~n (~n · ∇ψ)] =
(
I− ~n⊗ ~n

)
∇ψ

= −~n× (~n×∇ψ) (Eqn. 5.41)
(5.43)

Stokes theorem ∫
Γ

(∇× ~G) · ~n dA =

∮
∂Γ

~G · ~t ds (5.44)

Alternate form. ∫
Γ

∇Γ · ~F dA =

∮
∂Γ

~F · ~mds (5.45)

Proof of alternative form.∫
S

∇Γ · ~F dA =

∫
Γ

~n · ∇ × (~n× ~F ) dA =

∫
Γ

(~n×∇) · (~n× ~F ) dA

=

∫
Γ

~n · (∇× ~G)dA; where ~G = ~n× ~F

=

∫
Γ

(∇× ~G) · ~n dA =

∫
Γ

(∇× ~G) · d ~A

=

∮
∂Γ

~G · ~t ds

=

∮
∂Γ

~t · (~n× ~F ) ds =

∮
∂Γ

(~t× ~n) · ~F ds

=

∮
∂Γ

~F · ~mds

(5.46)
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~n is unit normal vector to the Γ, ~t is unit vector tangent to the curve (boundary of Γ) while
~m is unit vector tangent to the Γ, perpendicular to the curve and pointing directly outside
Γ. Also, A is the area of Γ and s is the length of the boundary of Γ. Fracture has only one
boundary, ∂Γ, which is a point in 2D and an arc in 3D.
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Appendix E: Nomenclature

Roman Symbols

M Unit of mass
L Unit of length
T Unit of time
t Time, [T]
~u Displacement
v Phase field variable for fracture rep-

resentation
w Fracture width, [L]
p Fluid pressure, [ML−1T−2]
pr Reservoir pore pressure, [ML−1T−2]
pf Fracture fluid pore pressure,

[ML−1T−2]
pc Critical fracture pressure,

[ML−1T−2]
p̄ Average fracture pressure
~qf Fracture flow rate, [ML−1T−2]
~qr Reservoir flow rate, [ML−1T−2]
ql Leak-off term, [ML−1T−2]
E Young’s modulus, [ML−1T−2]
E ′ Plane strain Young’s modulus,

[ML−1T−2]
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A Elasticity matrix, [ML−1T−2]
W (Poro)Elastic energy density func-

tion,
KT Bulk modulus of poroelastic media,

[ML−1T−2]
Ks Bulk modulus of solid grains,

[ML−1T−2]
Kf Bulk modulus of fluid, [ML−1T−2]
Kdr Drained bulk modulus, [ML−1T−2]
M Biot’s modulus [ML−1T−2]
K Reservoir permeability, [L−2]
kf Fracture permeability, [ML−1T−2]
µ Fluid viscosity [ML−1T−1]
~g Acceleration due to gravity, [MT−2]
qrs Reservoir source term, [LT−1]
qfs Fracture source term, [LT−1]
qfsε Reservoir source term, [LT−1]
P Potential energy
F Total energy
E Elastic energy
Fε Regularized total energy
Gc Fracture toughness, [MT−2]
G Energy release rate, [MT−2]
GI Mode I energy release rate, [MT−2]
GII Mode II energy release rate, [MT−2]
GIII Mode III energy release rate,

[MT−2]
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Kc Critical stress intensity factors
[ML−1/2T−2]

KI Mode I stress intensity factors
[ML−1/2T−2]

KII Mode II stress intensity factors
[ML−1/2T−2]

KIII Mode III stress intensity factors
[ML−1/2T−2]

l Line fracture length, [L]

l̇ Rate of change in fracture length,
[LT−1]

R Radius of penny-shaped fracture,
[L]

HN−1(Γ) Measure of fracture surface area L2

[[]] Jump/change in quantity
Vf Fracture volume, [L3]
Vfc Fracture volume, [L3]
Vinj Injected fluid volume, [L3]
n Normal vector
~nΓ Normal to fracture surface
h Finite element resolution
x, y, z Coordinates, L

Greek Symbols
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α Biot’s coefficient
ν Poisson’s ratio
µ Fluid viscosity, [ML−1T−1]
ρb Bulk density of reservoir, [ML−3]
ρs Density of solid grains, [ML−3]
ρf Fluid density, [ML−3]
φ Porosity
ε Phase field length parameter, [L]
ε Linear strain
εvol Volumetric strain
σ Stress, [ML−1T−2]
σc Critical stress, [ML−1T−2]
σ′ Stress, [ML−1T−2]
σvol Volumetric Stress, [ML−1T−2]
σmax Maximum in-situ stress, [ML−1T−2]
σmin Minimum in-situ stress, [ML−1T−2]
ψ Finite element test function
τ Traction on boundary, [ML−1T−2]
Ω Full dimensional computational do-

main
Γ Fracture domain
θ Time discretization weighting pa-

rameter
δ Dirac delta function
∆ Change in a quantity
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