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Highlights
• A unified fracture - porous medium flow model has been proposed, which is regularized with a phase-field variable consistent

with the fracture mechanics regularization without defining extra variables or level set functions.
• The methodology to compute the crack opening displacement using the gradient of the phase-field variable has been derived

using the Gamma-convergence approximation.
• Additionally, we point out erroneous crack opening displacement computation under deformed domain, which has not been

discussed before, and propose an approach to mitigate this error.
• The proposed model has been verified in the toughness dominated regime of hydraulic fracturing.

Abstract

Rigorous coupling of fracture–porous medium fluid flow and topologically complex fracture propagation is of great scientific
interest in geotechnical and biomechanical applications. In this paper, we derive a unified fracture–porous medium hydraulic
fracturing model, leveraging the inherent ability of the variational phase-field approach to fracture to handle multiple cracks
interacting and evolving along complex yet, critically, unspecified paths. The fundamental principle driving the crack evolution
is an energetic criterion derived from Griffith’s theory. The originality of this approach is that the crack path itself is derived from
energy minimization instead of additional branching criterion. The numerical implementation is based on a regularization approach
similar to a phase-field model, where the cracks location is represented by a smooth function defined on a fixed mesh. The derived
model shows how the smooth fracture field can be used to model fluid flow in a fractured porous medium. We verify the proposed
approach in a simple idealized scenario where closed form solutions exist in the literature. We then demonstrate the new method’s
capabilities in more realistic situations where multiple fractures turn, interact, and in some cases, merge with other fractures.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Understanding the physical behavior of hydraulic fracturing is not only important in geophysical processes such
as dikes driven by magma [1,2] but also in geotechnical applications including environmental remediation [3],
geomechanical integrity of underground storage [4,5], mining operation [6], wellbore drilling [7], productivity
enhancements in hydrocarbon reservoirs [8], and the stimulation of geothermal reservoirs [9–11].

Many of the early works have made assumptions in fracture geometries, constraining fracture propagation paths
to known directions and restricting the propagation on a single plane to simplify modeling of the hydraulic fracturing
process. In addition, fracture fluid loss is normally assumed unidirectional while the coupled effect of fluid loss
and poroelastic deformation on hydraulic fracture propagation is rarely considered. For a review of planar fracture
models, readers are referred to Adachi et al. [12] and references therein. Recently, non-planar complex fracturing
behaviors induced by in-situ stresses, heterogeneity in rock properties, or interaction with multiple fractures and
existing discontinuities have been observed in hydraulic fracturing stimulation [13,14] and hydrothermal experiments
in the earth crust condition [15]. Even in isothermal condition for single phase fluid, a comprehensive mathematical
model for hydraulic fracturing analysis will require incorporation of all of the following five mechanisms [16–18];
fracture fluid flow, fluid flow in porous medium, fracture mechanics, solid deformation and poroelasticity.

The computational challenges stem from the fact that fracture propagation is a free discontinuity problem in which
the fractures are considered as lower dimensional elements. As a result, it is not trivial to computationally represent
fractures in the porous medium in a way that permits solution of the individual flow models on each subdomain
while ensuring hydraulic communication between fractures and porous medium. Where attempts have been made to
represent fractures and porous medium within the same domain, the numerous assumptions limit the ability of the
models to reproduce the complex fracture behaviors. For example, special interface elements called zero-thickness
elements have been used to handle fluid flow in fractures embedded in continuum media (see [19–24]). This type
of elements allows for explicit fracture representation and easy solution of porous medium and fracture models
in their respective computational subdomains. However, as the interface elements are inserted along the edges of
continuum grids, the fracture propagation is constrained to the prescribed direction, in most cases, one of the principal
coordinates. For other techniques that explicitly differentiate the fracture from the reservoir, the computational cost is
expensive and the numerics cumbersome, characterized by continuous remeshing to provide grids that explicitly match
the evolving fracture surface [25,26]. As an implicit approach, extended finite element method (XFEM) has been
applied to the simulation of hydraulic fracturing [27–30]. However, its complex numerical implementation especially
in three dimensions and the fracture propagation criteria for branching or merging still remain great challenges.
Beyond conventional boundary or finite element based approaches, a non-local peridynamics method [31] and lattice
based method [32,33] have also been applied, but the mesh/lattice discretization dependent fracture topology is yet to
be overcome.

The variational phase-field model of fracture, which was originally proposed in the 90’s [34–36], has seen explosive
applications ranging from dynamic fracture [37–39], to ductile fracture [40–42], to thermal and drying fracture
[43–45]. One of the strengths of this approach is to account for arbitrary numbers of pre-existing or propagating cracks
in terms of energy minimization, without any a priori assumption on their geometry or restriction on the growth to
specific grid directions.

The variational phase-field approach has been applied to the simulation of hydraulic fracturing for the first time
in [46,47] where the model was verified for fracture propagation in impermeable and elastic medium, due to injection
of inviscid fluid. In [48], the phase-field model has been further extended to porous media using the augmented
Lagrangian method for fracture irreversibility and its quasi-static scheme is analyzed in details in [49]. The quasi-
monolithic solution scheme and the primal–dual active set method for the fracture irreversibility along with mesh
adaptivity were proposed in [50]. While the pressures in the fracture and the porous medium were distinguished,
each of the pressure profiles was considered uniform throughout the domain(s) in these models. Phase-field fracture
models coupled with the Darcy–Reynolds flow were proposed in [41,45,51–55] and with Darcy–Stokes type in
[56–58]. Mikelić et al. [51,52] applied an indicator function based on the phase-field variable to the fracture-reservoir
diffraction system. The system is solved in a fully coupled manner in [52] and the fracture width computed using
a level-set in [55] for computational efficiency. In [41,45], the phase-field variable was used as a weight function
to homogenize the permeability in the system. A similar homogenization approach was also taken by [54] as well
as considering another phase-field variable for inclusion of interfaces. Santillán et al. [53] applied Reynolds flow
equation in a 1D domain externally constructed out of the main computational domain based on a certain value of
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the phase-field variable. Heider and Markert [58] and Ehlers and Luo [57] proposed the phase-field fracture modeling
embedded in the Theory of Porous Media (TPM) where the phase-field variable was used to weigh between the Darcy
flow in porous media and the Stokes flow in fracture. Alternatively, coupling with fluid flow has been achieved by
linking to an external standalone fluid flow simulator in [59,60] where again the phase-field variable was used to
distinguish the fracture domain through the permeability multiplier.

Instead of applying the phase-field variable as an indicator or constructing weighting functions from it, the present
study derives a unified fracture–porous medium flow model by following the phase-field calculus (i.e. the phase-field
variable as a regularizing function). Fluid flow in the porous medium is modeled using the poroelasticity continuity
equation with Darcy’s law while fracture fluid flow follows Reynolds equation with the cubic law as the equation
of state. Exchange of fluid between the fracture and porous medium is considered, leading to the derivation of a
tightly coupled model for fluid flow in the fracture and porous medium. Iterative solution of the variational fracture
model and the coupled flow model provides a simplified framework for simultaneous modeling of rock deformation
and fluid flow during hydraulic fracturing. The primary quantities of interest are the fluid pressure, fracture geometry
(length, height, radius) and fracture propagation paths which are obtained from the solutions of the coupled flow and
mechanical models. We verify our model by comparing numerical results with analytical solutions in the storage-
toughness dominated region (K -regime) proposed by [61]. We also analyze the role of permeability and three-
dimensional layered fracture toughness on fracture geometry, propagation paths and fluid diffusion profile during
hydraulic fracturing. Since the phase-field technique removes the limitation of knowing a priori, fracture propagation
directions, we use the model to highlight stress shadow effect during propagation of multiple hydraulic fractures.

The outline of the paper is as follows. The governing equations for the variational phase-field fracture model,
fracture and porous medium fluid flows are first presented. Next, we outline the fracture width computation algorithm
and present our modified fixed stress splitting scheme used for decoupling and iteratively solving the flow and
mechanical models. Thereafter, the model is applied to the propagation of KGD and penny-shaped fractures.
Numerical results are presented and analyzed.

2. Governing equations for the coupled system

Consider a poroelastic medium occupying a region Ω ⊂ RN of space. Let Γ be a known set of fractures, i.e. a set
of two dimensional surfaces in Ω . We assume that the pore and fracture spaces are fully occupied by a single phase
Newtonian fluid, and that the same fluid is being injected.

2.1. Fracture fluid flow model

In the fracture system, we make the classical assumption of a planar laminar flow following the cubic law and
the generalized Reynolds equation [62,63] which accounts for different orientations along the fracture path from
lubrication theory [64]. Denoting by w the fracture aperture, we have then that

∂w

∂t
+ ∇Γ · (w q⃗ f ) + ql = q f s in Γ , (1)

wq⃗ f = −
w3

12µ
∇Γ p f in Γ , (2)

ql = −[[q⃗r ]] · n⃗Γ on Γ , (3)

q⃗ f · τ⃗Γ = 0 on ∂Γ . (4)

In the above equations, nΓ and τΓ denote the normal and tangent vector to Γ , q⃗ f is the fluid velocity in the fracture,
q⃗r is the fluid velocity in the porous medium, p f is the fluid pressure in the fracture, µ is the fluid viscosity, and ql
is the rate of leak-off between the fracture and the porous medium. Using the definition of surface divergence and
substituting (2) into (1), the continuity equation for fluid pressure becomes

∂w

∂t
−
[
(n⃗Γ × ∇Γ ) ·

w3

12µ
(n⃗Γ × ∇Γ p f )

]
+ ql = q f s . (5)

Multiplying by a test function ψ f ∈ H 1(Γ ) and integrating over Γ , we obtain the weak form of (5):∫
Γ

w3

12µ
∇Γ p f · ∇Γ ψ f d S =

∫
Γ

ψ f

(
q f s −

∂w

∂t
− ql

)
d S. (6)
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2.2. Porous medium fluid flow model

The governing equation for flow in the porous medium adjacent to the fracture is the continuity equation from
poroelasticity theory for a single phase, slightly compressible fluid [65–67]. Let qrs be source or sink terms in the
porous medium Ω \Γ , with a unit of volumetric flow rate per unit volume. Assuming a prescribed pressure p̄ on ∂DΩ
and a prescribed normal flux qn on ∂ f

NΩ = ∂Ω \ ∂
f

DΩ , we have

∂ζ

∂t
+ ∇ · q⃗r = qrs in Ω \ Γ , (7)

ζ = α∇ · u⃗ +
pr

M
in Ω \ Γ , (8)

q⃗r = −
K
µ

∇ pr in Ω \ Γ , (9)

pr = p̄ on ∂ f
DΩ , (10)

q⃗r · n = qn on ∂ f
NΩ , (11)

where q⃗r is the porous medium flow rate related to the pore-pressure pr through Darcy’s law (9), K is the permeability
tensor, α is the Biot’s coefficient, and M is the Biot’s modulus.

Upon substituting (9) into (7), the continuity equation in terms of pore-pressure becomes
∂ζ

∂t
− ∇ ·

K
µ

∇ pr = qrs . (12)

We can write (12) by multiplying both terms by a test function, ψr ∈ H 1(Ω \ Γ ) such that ψr = 0 on ∂DΩ , and
integrating over Ω \ Γ . Using Green’s formula, and (3), we have that

−

∫
Ω\Γ

∇ ·
K
µ

∇ prψr dV =

∫
Ω\Γ

K
µ

∇ pr · ∇ψr dV −

∫
∂ΩN

K
µ

∇ pr · nψr d S

−

∫
Γ+

K
µ
(∇ pr )

+
· nΓ+ψ+

r d S −

∫
Γ−

K
µ
(∇ pr )

−
· nΓ−ψ−

r d S,

where Γ± denote each side of Γ , ψ±
r and (∇ pr )

± the trace of ψr and ∇ pr and nΓ± the outer normal vector to Ω
along Γ±, respectively. Using (9) and (11), we then get that

−

∫
Ω\Γ

∇ ·
K
µ

∇ prψr dV =

∫
Ω\Γ

K
µ

∇ pr · ∇ψr dV −

∫
∂ΩN

qnψr d S −

∫
Γ

[[q⃗r ]] · nΓ [[ψr ]] d S,

with the convention that nΓ is the normal vector to Γ pointing from Γ− to Γ+.
Using the expression above, the porous medium flow continuity equation (12) becomes∫

Ω\Γ

∂ζ

∂t
ψr dV +

∫
Ω\Γ

K
µ

∇ pr · ∇ψr dV =∫
Ω\Γ

qrs ψr dV −

∫
∂NΩ

qn ψr d S +

∫
Γ

[[q⃗r ]] · nΓ [[ψr ]] d S. (13)

2.3. Combined flow equation

Traditionally, the reservoir and crack pressure are linked through leak-off law, derived empirically [68] or in specific
asymptotic regimes [69]. In particular, Carter’s leak-off law can be derived by assuming constant height and width
and neglecting the pore pressure on the diffusion process of the injection fluid in the formation. In many applications,
however, it is not clear if this assumption is reasonable. In [70], for instance, the net pressure difference between
fracture and formation is approximately 20–35 MPa while the pore pressure is 40–50 MPa. In conventional reservoir,
the ratio of the fracture over pore pressure is even smaller. Instead of using an ad-hoc leak-off law, we propose to
combine (6) and (13) by identifying p f , the thickness averaged pressure in the fracture, and pr , i.e. neglecting the
effect of the net pressure difference. This may of course lead to underestimating the amount of fluid leaking-off the
fracture. In the near toughness dominated regime, when the pressure gradient through the thickness of the crack is
small, we expect this approximation to be reasonable.
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Under this assumption, we have that pr = p f in Γ , so that the admissible test functions ψr need to be continuous
across Γ , and using (3), the leak-off terms cancel out, and we obtain the combined porous medium and fracture flow
equation in weak form:∫

Ω\Γ

∂ζ

∂t
ψ dV +

K
µ

∫
Ω

∇ p · ∇ψ dV +

∫
Γ

w3

12µ
∇Γ p · ∇Γ ψ d S

=

∫
Ω\Γ

qrs ψ dV −

∫
∂NΩ

qnψ d S +

∫
Γ

q f sψ d S −

∫
Γ

∂w

∂t
ψ d S. (14)

2.4. Mechanical equilibrium

We follow the formalism of Francfort and Marigo to derive the mechanical equilibrium and crack propagation law.
In all that follows, we assume a brittle–elastic porous medium and denote by A and Gc its Hooke’s law and fracture
toughness. Assume for the moment that the pressure field p and fluid-filled crack Γ are given. Let ∂m

NΩ be a portion of
its boundary and ∂ f

DΩ := ∂Ω \ ∂m
NΩ the remaining part. Following the classical formalism of Biot [65], we introduce

a poroelastic effective stress σ eff
:= σ (u⃗) −αpI, u⃗ denoting the deformation field in the porous medium, I the identity

matrix in RN , σ the Cauchy stress, and p the pore pressure from (14). The constitutive relation for a poro-elastic
material reads

σ eff
:= Ae(u⃗), (15)

where e(u⃗) :=
∇u⃗+∇u⃗t

2 is the linearized strain. Static equilibrium and continuity of stress at the interfaces mandate that

− ∇ · σ (u⃗) = f⃗ in Ω \ Γ , (16)

σ · n⃗ = τ⃗ on ∂Ωm
N , (17)

u⃗ = u⃗0 on ∂Ωm
D , (18)

σ±
· n⃗Γ± = −pn⃗Γ± on Γ±, (19)

where f⃗ denotes an external body force and τ⃗ is a traction force applied to a portion ∂m
NΩ of ∂Ω . Let u⃗0 be a given

boundary displacement on ∂m
DΩ := ∂Ω \ ∂m

NΩ .
Multiplying (16) by a test function φ⃗ ∈ H 1(Ω \Γ ) vanishing on ∂Ωm

D and using Green’s formula and (17) and (19),
we get that∫

Ω\Γ

A
(

e(u⃗) −
α

Nκ
pI
)

· e(φ⃗) dV =

∫
∂Ωm

N

τ⃗ · φ⃗ d S −

∫
Γ

p
r
φ⃗ · n⃗Γ

z
d S +

∫
Ω\Γ

f⃗ · φ⃗ dV,

where N = 2 and N = 3 for two and three dimensions respectively and κ denotes the material’s bulk modulus. We
finally recall that given p and Γ , the previous relation is just the first order optimality condition for the unique solution
of the minimization among all kinematically admissible displacement of

P(u⃗,Γ ; p) :=

∫
Ω\Γ

W (e(u⃗), p) dV −

∫
∂Ωm

N

τ⃗ · u⃗ d S +

∫
Γ

p Ju⃗ · n⃗Γ K d S −

∫
Ω\Γ

f⃗ · u⃗ dV, (20)

where

W (e(u⃗), p) :=
1
2

A
(

e(u⃗) −
α

Nκ
pI
)

·

(
e(u⃗) −

α

Nκ
pI
)

(21)

is the poroelastic strain energy density.
Following Francfort and Marigo’s variational approach to brittle fracture [34], to any displacement field u⃗ and

crack configuration Γ (a two-dimensional surface in three space dimension or a curve in two dimensions), one can
associate the total energy

F(u⃗,Γ ; p) = P(u,Γ ; p) + GcHN−1(Γ ), (22)

where Gc is the material’s critical surface energy release rate and HN−1(Γ ) denotes the N − 1 dimensional Hausdorff
measure of Γ , that is, its aggregate surface in three dimensions and aggregate length in two dimensions. In a discrete
time setting, identifying the displacement reduces to minimizing F with respect to any kinematically admissible
displacement and crack set satisfying a growth constraint.
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Fig. 1. Phase-field representation v of a line crack for decreasing values of the regularization length ε. The blue region corresponds to v ≃ 1 and
the crack faces correspond to the transition regions from blue to red . (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

3. Phase-field approximation

The numerical implementation of the minimization of (22) involves handling of displacement fields that are
discontinuous across unknown discontinuity surfaces (the cracks), which can be challenging when using standard
numerical tools. Instead, we propose to adapt the now-classical phase-field approach [35,36] based on the work of
Ambrosio and Tortorelli in image segmentation [71,72], which we briefly recall in the case of an elastic material i.e.
for p ≡ 0.

3.1. Variational phase-field models of fracture

Let ε > 0 be a regularization parameter with the dimension of a length, and v : Ω ↦→ [0, 1] be a scalar function.
We define

Fε(u⃗, v; 0) =

∫
Ω

W (e(u⃗), v; 0)dV −

∫
∂m

N Ω

τ⃗ · u⃗ d S

−

∫
Ω

f⃗ · u⃗ dV +
Gc

4cn

∫
Ω

(
(1 − v)n

ε
+ ε|∇v|2

)
dV, (23)

where W (e(u⃗), v; 0) =
1
2v

2Ae(u⃗) · e(u⃗), cn :=
∫ 1

0 (1 − s)n/2ds (n = 1, 2) is a normalization parameter. We typically
refer to the case n = 1 as the AT1 energy and to n = 2 as AT2.

It can then be shown [71–73] that as ε approaches 0, the minimizers of (23) approach that of (22) in the sense that
the phase-field function v takes value 1 far from the crack Γ and transitions to 0 in a region of thickness of order ε
along each crack faces of Γ . Fig. 1 shows the phase-field v representing a simple straight crack in a two-dimensional
domain, for decreasing values of the regularization length ε.

3.2. Extension to poroelastic media

In the context of crack propagation in a poroelastic medium, the variational model (22) and phase-field
approximation (23) must be modified to account for poroelasticity and pressure forces along the fracture faces. As
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in [46,47], we approximate the work of the pressure forces acting along each side of the cracks by∫
Γ

p(x) [[u⃗(x)]] · n⃗Γ d S ≃

∫
Ω

p(x) u⃗(x) · ∇v(x) dV .

The convergence proof is technical, but the following argument illustrates how the approximation takes place.
We first recall the construction of the optimal profile problem [36,73], which is the construction of a function

ωε minimizing
∫

∞

0
(1−ω)n

ε
+ ε(ω′)2 dx amongst all functions ω such that 0 ≤ ω(x) ≤ 1 on (0,∞), ω(0) = 0, and

ω(∞) = 1. Using a simple change of variable, it is easy to see that ωε(x) = ω̃(x̃), where x̃ = x/ε, and ω̃ minimizes∫
∞

0 (1 − ω̃)n
+ (ω̃′)2 dx̃ amongst all functions ω̃ such that 0 ≤ ω̃(x̃) ≤ 1 on (0,∞), ω̃(0) = 0, and ω̃(1) = 1. Remark

that the first integral associated with the optimality conditions of the optimal profile problem are
(
ω̃′
)2

= (1 − ω̃)
n ,

and that we recover the well known optimal profile ω2(x) := 1−e−|x |/ε for the AT2 model and ω1(x) = 1−

(
1 −

|x |

2ε

)2

if |x | ≤ 2ε and ω1(x) = 1 otherwise for the AT1 model.
For small enough ε, the phase-field function vε is well approximated by vε(x) := ω̃(dΓ (x)/ε), where dΓ (x) :=

dist(x,Γ ). Consider then a function Φ⃗(x) defined on Ω and admitting traces Φ⃗+ and Φ⃗− on each side of Γ . Using the
co-area formula (a generalized version of Fubini’s theorem [74]), we have∫

Ω

Φ⃗(x) · ∇vε(x) dV =

∫
Ω

1
ε
ω̃′

(
dΓ (x)
ε

)
Φ⃗(x) · ∇dΓ (x) dV

=

∫
∞

0

∫
{x∈Ω; dΓ (x)=s}

1
ε
ω̃′

( s
ε

)
Φ⃗(x) · ∇dΓ (x) dHn−1(x) ds

=

∫
∞

0

1
ε
ω̃′

( s
ε

) ∫
{x∈Ω; dΓ (x)=s}

Φ⃗(x) · ∇dΓ (x) dHn−1(x) ds

=

∫
∞

0
ω̃′(s̃)

∫
{x∈Ω; dΓ (x)=εs̃}

Φ⃗(x) · ∇dΓ (x) dHn−1(x) ds̃,

with s̃ = s/ε. Formally, and under some mild regularity assumptions on Γ , when ε → 0, the inner integral becomes
an integral along each side of Γ , and ∇dΓ becomes the oriented normal on each side of Γ , so that

lim
ε→0

∫
Ω

Φ⃗(x) · ∇vε(x) dV =

∫
Γ

[[Φ⃗(x)]] · n⃗Γ d S. (24)

Taking Φ(x) = p(x)u⃗(x), we recover our claim that

lim
ε→0

∫
Ω

p(x)u⃗(x) · ∇vε(x) dV =

∫
Γ

p(x) [[u⃗(x)]] · n⃗Γ d S.

Remark 1. Another way to view (24) is to decompose∫
Ω

Φ⃗(x) · ∇vε(x) dV =

∫
Ω

Φ⃗(x) ·
∇vε(x)
|∇vε(x)|

|∇vε(x)| dV,

and think of ∇vε(x)/|∇vε(x)| as an approximation of n⃗Γ± and of |∇vε(x)| as a measure concentrating along Γ .

The next step is to account for the phase-field variable in the poroelastic energy density W . The main modeling
choice is whether the phase-field variable should affect the Cauchy or the poroelastic effective stress. Although it
can be shown that both choices coincide in the limit of ε → 0, we use the former. This choice is consistent with
the current interpretation of the phase-field variable as a damage variable and the regularization length as a material
internal length [75–77], under the modeling assumption that damage arises at the sub pore scale, i.e. is induced by
strong Cauchy stresses. Our choice of the regularized strain energy density is therefore

W (e(u⃗), v; p) :=
1
2 A
(
ve(u⃗) −

αp
Nκ

I
)

·

(
ve(u⃗) −

αp
Nκ

I
)
, (25)

and for a given pressure field, the displacement and phase-field variables are given as the minimizer of

Fε(u⃗, v; p) =

∫
Ω

W (e(u⃗), v; p) dV −

∫
∂NΩ

τ⃗ · u⃗ d S −

∫
Ω

f⃗ · u⃗ dV +

∫
Ω

p u⃗ · ∇v dV

+
Gc

4cn

∫
Ω

(
(1 − v)n

ε
+ ε|∇v|2

)
dV (26)
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Note that Biot’s poroelasticity model can be seen as an upscaled model of a fluid–structure interaction problem,
when the pore size asymptotically approaches 0, so that the argument above holds provided that ε approaches 0 slower
than the pore size.

3.3. Phase-field approximation of the flow model

Since our mechanical model relies on a phase-field representation of the fracture set Γ , we need to adapt our
coupled flow equation (14).

The main difficulty here is the approximation of the term originating from the fracture flow
∫
Γ

w3

12µ∇Γ p · ∇Γψ d S.
Following the logic of Remark 1, we use the following approximation for the surface gradients:

∇Γ p ≃ ∇
ε
Γ p := ∇ p −

(
∇ p ·

∇v

|∇v|

)
∇v

|∇v|
. (27)

Integrating on Γ against w3 is more complicated, and cannot be obtained by a direct application of (24). Proper
care has to be exerted in order to properly recover

(
Ju⃗ · nK

)3 and not J(u⃗ · n)3K. Assuming that wε is such that
wε(x) = Ju(x) · nΓ K on Γ , i.e. a “regularized fracture aperture”, we propose the following approximation:∫

Γ

w3

12µ
∇Γ p · ∇Γ ψ d S ≃

∫
Ω

w3
ε

12µ
∇
ε
Γ p · ∇

ε
Γ ψ |∇v| dV . (28)

The construction of wε is complicated and described in detail in Section 4.2
Deriving a regularization for the fracture sources and sinks term

∫
Γ q f sψ d S using the phase-field function v

would require some regularity on q f s . In typical application, however, q f s consists of a series of point sources
q f s(x) =

∑n
i=1 Q f,iδ(x − xi ), xi representing the location of the source or sink term, and Q fi the flow rate. We

introduce the regularized source term

qεf s(x) =

n∑
i=1

Q f,iδε(x − xi ), (29)

where δε(x) :=
e−|x |

aN εN , and aN denotes the surface area of the unit sphere of dimension N , i.e. a2 = 2π and a3 = 4π .
Our phase-field approximation of the source/sink term is therefore∫

Γ

q f sψ d S ≃

∫
Ω

qεf sψ |∇v| dV . (30)

The approximation of all remaining terms of (14) is straightforward, so that the phase-field approximation of our
combined flow model in weak form becomes∫

Ω

v2 ∂ζ

∂t
ψ dV +

K
µ

∫
Ω

∇ p · ∇ψ dV +

∫
Ω

w3
ε

12µ
∇
ε
Γ p · ∇

ε
Γψ |∇v| dV

=

∫
Ω

v2qrsψ dV −

∫
∂NΩ

qnψ dV +

∫
Ω

qεf sψ |∇vε| dV −

∫
Ω

ψ
∂ u⃗
∂t

· ∇v dV . (31)

4. Numerical implementation

We implemented our model consisting of the variational principle for crack evolution (26) coupled with fluid
flow (31) using colocated bi-linear (for two dimensional models) and tri-linear (for three dimensional models) finite
elements for u⃗, p, and v. For the sake of simplicity, our implementation is limited to structured grids. The linear
algebra, constrained minimization and non-linear solvers are provided by PETSc [78,79]. The basis of our algorithm
is an extension of the alternate minimizations originally introduced in [35]. At each time step, we alternate between
solving for v for fixed u⃗ and p and solving for u⃗ and p satisfying static equilibrium and coupled flow equation (31),
for fixed v. The former problem reduces to a box-constrained quadratic minimization problem, which can easily be
reformulated as a variational inequality. Convergence for this step is measured by the difference between v values
of consecutive fracture evolution steps. For the later, we extend the stress-split approach of [80] to account for the
modified fluid flow problem. In this loop, the error is defined as the difference between consecutive values of a volume
averaged pressure. A tolerance value of 1 × 10−4 is used to stop both solution steps.
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4.1. Modified stress split

Substituting (8) into (31) and introducing the volumetric stress σvol :=
1
3 trσ = κ∇ · u⃗ − αp, the first term in (31)

becomes∫
Ω

v2 ∂ζ

∂t
ψ dV =

∫
Ω

v2 ∂

∂t

(
α∇ · u⃗ +

1
M

p
)
ψ dV

=

∫
Ω

v2
(

1
M

+
α2

κ

)
∂p
∂t
ψ dV +

∫
Ω

v2α

κ

∂σvol

∂t
ψ dV . (32)

Following the stress-split proposed in [80], the mean stress is evaluated with the previous iteration step’s value
(σvol = σ k

vol) while the pressure with the current iteration (p = pk+1). Thus substituting (32) into (31) then yields∫
Ω

v2
(

1
M

+
α2

κ

)
∂pk+1

∂t
ψ dV +

K
µ

∫
Ω

∇ pk+1
· ∇ψ dV +

∫
Ω

(wk
ε )

3

12µ
∇
ε
Γ pk+1

· ∇
ε
Γψ |∇v| dV

=

∫
Ω

qrsψ dV −

∫
∂NΩ

qnψ dV +

∫
Ω

qεf sψ |∇vε| dV −

∫
Ω

ψ
∂ u⃗k

∂t
· ∇v dV −

∫
Ω

v2α

κ

∂σ k
vol

∂t
ψ dV, (33)

where superscript k represents the iteration step. Because of the regularized variable, (33) still imposes an ill-
conditioned system for v = 0. Here we propose a modification similar to the stress-splitting in [80,81] to improve the
stability by using the Biot’s compressibility (1/M) as a stabilizing term in the following form:∫

Ω

(
1
M

+ v2α
2

κ

)
∂pk+1

∂t
ψ dV +

K
µ

∫
Ω

∇ pk+1
· ∇ψ dV +

∫
Ω

(wk
ε )

3

12µ
∇
ε
Γ pk+1

· ∇
ε
Γψ |∇v| dV

=

∫
Ω

qrsψ dV −

∫
∂NΩ

qnψ dV +

∫
Ω

qεf sψ |∇vε| dV −

∫
Ω

ψ
∂ u⃗k

∂t
· ∇v dV

−

∫
Ω

v2α

κ

∂σ k
vol

∂t
ψ dV +

∫
Ω

1
M

(
1 − v2) ∂pk

∂t
ψ dV . (34)

In solving (26) and (34), the equations are scaled to convert the system to a more numerically benign form (see
Appendix for details about non-dimensionalization).

4.2. Computation of the fracture aperture

Reasoning as in Section 3.2 for (24), for almost every point x ∈ Γ , and almost every unit vector ν⃗, we have that

w(x) := Ju⃗(x) · nΓ K ≃

∫
Ω x,ν

u⃗ · ∇v dx,

where Ω x,ν denotes the one dimensional section of Ω through x in the direction ν⃗.
For each cell e, if maxe v ≥ 1 − δε, we set wε(e) = 0. We then integrate u⃗ · ∇v through the center of e along the

streamline of ∇v over the segment lε(e) by taking a discretized step △lε(e) where v is decreasing if moving towards
the fracture and is increasing if moving away from it. Therefore, the line integration is performed twice at every cell in
both descending (s = −1) and ascending (s = 1) directions of v by setting the search direction, s, accordingly. If the
search crosses a fractured cell (n⃗Γ , j+1 ·n⃗Γ , j < 0) then the search direction is flipped to the ascending direction (s = 1).
If the search leaves the transition zone (v ≥ 1 − δε) or enters a transition zone by another fracture (n⃗Γ , j+1 · n⃗Γ ,i < 0),
then the integration is stopped (see Fig. 2). Detailed procedures are described in Algorithm 1.

Fig. 3 shows the computed aperture of a crack in an impermeable medium subject to a constant pressure for
decreasing discretization size. An excellent match with the exact solution of [82] is obtained.

Fig. 4 shows the same computation for a slant crack. We notice that whereas along the fracture sides, the aperture
computed using our algorithm is invariant by rigid motion, it is not the case near the crack tip (see how the aperture
density does not vanish near the crack tip in Fig. 4-(right)).

This effect is easily understood by looking at the variations of ∇v along one dimensional sections as in Fig. 5. Away
from the crack tip, the line average of ∇v along one-dimensional sections vanishes as ε → 0, which is consistent with
the construction of the near optimal phase-field in Γ–convergence recovery sequence as a function of the distance to
the crack. Near crack tips, this is evidently not the case.
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Fig. 2. Computation of wε . The grayed area is such that v ≥ 1 − δε , so that wε = 0. The blue cell is the current cell, the line lε(e) is the dashed
black line and wε(e) =

∫
lε (e) u⃗ · ∇v dx . The green cells are components used for the line integral . (For interpretation of the references to color in

this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Fracture width profile computed for a pressurized line crack in an impermeable medium. The plot labeled Sneddon is the analytical solution
of the fracture width taken from [82]. (left): phase-field representation of the crack. (right): pressure profile along the crack compared to the exact
solution for multiple mesh resolutions.

Fig. 4. Pressurized slant crack in an impermeable medium. (left): Phase-field description of the crack. (center): Computed regularized aperture.
(right): Computed regularized aperture in the computational domain subject to a rigid body translation.
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Algorithm 1 Fracture aperture opening computation at the element ei

1: Let vi = v(ei ) and xi be the centroid of element ei

2: Set j = i , n⃗Γ ,i = ∇vi/|∇vi |, and s = 1
3: repeat
4: Let x j+1 := x j + s△lεn⃗Γ , j .
5: Find the element to which xi+1 belongs to and let n⃗Γ ,i+1 := ∇vi+1/|∇vi+1|

6: if n⃗Γ , j+1 = 0 then
7: n⃗Γ , j+1 = n⃗Γ , j

8: else if n⃗Γ , j+1 · n⃗Γ , j < 0 then
9: n⃗Γ ,i = −n⃗Γ ,i

10: s := −s
11: w := w + △lε(u⃗ j · ∇v j + u⃗ j+1 · ∇v j+1)/2
12: j := j + 1
13: until v j+1 ≥ 1 − δε or n⃗Γ , j+1 · n⃗Γ ,i < 0
14: Set j = i , n⃗Γ ,i = −∇vi/|∇vi | and s = −1
15: repeat 4–12
16: until v j+1 ≥ 1 − δε or n⃗Γ , j+1 · n⃗Γ ,i < 0

Fig. 5. Computation of the average of normal displacement across the fracture through one-dimensional section. Far from the crack tip, the
one-sided averages of ∇v are a good approximation of n⃗Γ , whereas near crack tips or kink, they are not.

We propose to mitigate this effect by introducing a small tolerance δ′
ε and constructing the tip indicator function

Iε(e) :=

{
1 if

⏐⏐⏐∫lε(e) ∇v| dx
⏐⏐⏐ ≤ δ′

ε

0 otherwise,
(35)

which vanishes near the crack tips while taking the value 1 away from them and can be computed together with wε, at
a very small cost. Our regularized aperture function is then simply given by w̃ε(e) := Iε(e)wε(e). Note that when using
the AT1 model for which the transition zone of the phase-field v is finite and equal to 2ε, δ′

ε can be made arbitrarily
close to 0, or in practice of the order of the machine precision. Fig. 6 shows the indicator function Iε and modified
regularized aperture w̃ε for the crack pattern of Fig. 4-(right). We observe that the modified aperture density properly
vanishes near the crack tips.
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Fig. 6. Crack tip indicator function Iε and (left): modified regularized aperture w̃ε for the crack pattern of 4 (right).

Table 1
Reservoir properties for verification of coupled hydraulic
fracture model.

Parameter Value

x 200 m
∆t 0.283 s
E 17 GPa
ν 0.2
Gc 100 Pa m
φ 0.2
α 1
Ks 10 GPa
K f 0.625 GPa
µ 4 × 10−4 Pa s
Q f s 5 × 10−4 m2 s−1

5. Numerical results

5.1. Verification: KGD hydraulic fracture propagation in the near K-regime

The developed numerical model is verified by solving the plane-strain fluid-driven fracture propagation problem,
under the near K -regime defined in [61,83]. This regime is characterized by the constant injection of a low viscosity
fluid with no leak-off from the fracture. Of course, as the name suggests, this fracturing regime is different from
the K -region, and its deviation from the K -region solution is dependent on a dimensionless fluid viscosity, M. The
semi-analytical solution in [84] corrects for this deviation from the K -vertex, by providing good approximations for
the time evolution of the fracture opening displacement, fracture length and fluid pressure as functions of M,

M =
µ′ Q
E ′

(
E ′

K ′

)4

(36)

where E ′
=

E
1−ν2 , µ′

= 12µ, and K ′
=

√
32 Gac E ′

π
.

The computational domain is a square of size 200 m × 200 m with an initial fracture of length l0 = 3 m, inclined
at 45◦ and centered in the domain as shown in Fig. 4-left. Fluid is injected into the center of the fracture at a constant
rate of Q = 5 × 10−4 m2 s−1. The initial and boundary conditions are p = 0 and u⃗ = 0. Table 1 show the values of
reservoir, fluid and model parameters used for in this computation. All the properties are assumed homogeneous and
isotropic where applicable.

First, we investigated the mesh sensitivity of the numerical model by running computations at three different
mesh resolutions. The ratio of mesh resolution to phase field characteristic length scale was kept constant for all
the computations (i.e. ε

h = 4). The results are shown in Fig. 7, where the dashed lines are the analytical solution
for M ≈ 0.0. The linear component of the analytical solution is the actual pressure path prior to propagation for the
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Fig. 7. Injection fluid pressure as a function of time, for different mesh resolutions.

given initial fracture length, while the curve is the critical pressure for all fracture lengths. As evident in the figure, our
numerical solution approaches the analytical solution as the mesh resolution increases. A tolerance value of 1 × 10−4

was used for both the inner and outer loops of the algorithm. Although we imposed a combined maximum iteration
of 101 for the inner and outer loops at each time step, the solution converged in about 20 iterations prior to fracture
propagation and in over 60 iterations during fracture propagation time steps.

Using the mesh resolution of h = 0.25 m, we compare computations for M ≈ 0.0 and M ≈ 0.041. In order to
replicate the near K -regime, very low reservoir permeability (k = 2.83 × 10−16 m2) is used in the simulation. Fig. 8
compares the numerical results for injection fluid pressure, fracture half length and fracture mouth width for both cases
of M ≈ 0.0 and M = 0.041, with the analytical solution of [84]. As we prescribe an initial fracture, mismatch is
observed in the early time until the initial crack is filled with fluid. Considering the various assumptions that have been
made in the development of the regularized flow model and in the fracture width computation, the pressure and the
width show fairly good comparisons between our numerical results and the analytical solutions while the computed
length does not match as good as the others. The reason for this is that while the pressure and the width are explicitly
computed, the length is extracted from the surface energy term which is influenced by the profile of the phase-field
variable and is overestimated due to the profile around the tip [85,86]. One observes that M = 0.041 results in a
higher injection pressure and fracture mouth aperture and shorter fracture length than those obtained for M ≈ 0.

5.2. Effect of reservoir permeability on fracture propagation in the near K-regime

In the previous section, we verified the model by simulating hydraulic fracture propagation characterized by very
low fluid viscosity and reservoir permeability. Here we investigate the effect of increasing reservoir permeability
on hydraulic fracture propagation in the same regime. Specifically, we compare numerical results for fluid pressure,
fracture geometry and propagation direction with the analytical results for the K−regime. The computational domain
is the same as in Fig. 4-left but with k = 2.8 × 10−15 m2, 5.7 × 10−15 m2, 1.1 × 10−14 m2, 1.7 × 10−14 m2 and
2.3 × 10−14 m2 respectively, and other parameters are the same as in Table 1.

Fig. 9 compares the numerical injection pressure, change in fracture half length, fracture mouth aperture and
fracture volume with those of the toughness dominated regime derived from Sneddon’s analytical solution [46]. One
observes that the critical pressures are not significantly affected by reservoir permeability for the low fluid viscosity.
However, increasing reservoir permeability delays the onset of fracture propagation due to increasing fluid loss to the
surrounding reservoir. Correspondingly, the fracture propagation rate is slower as reservoir permeability increases. In
addition, the large fluid loss experienced in higher permeability computations leads to smaller fracture mouth opening
displacement and fracture volumes respectively. For all the quantities plotted, the deviation of the numerical results
from the analytical solutions (M = 0) increases as reservoir permeability increases. This is so since the fracture
propagation regime changes from storage dominated to leak-off dominated.
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Fig. 8. KGD injection fluid pressure for toughness dominated propagation regime.

In another set of numerical computations, we study the effect of directional variation in reservoir permeability on
fracture propagation directions. Anisotropy in reservoir permeability is created by keeping kz constant at 2.8 × 10−15

m2 and varying kx . The numerical results for fracture propagation are shown in Fig. 10, for kx = 5.7 × 10−13 m2,
2.3 × 10−13 m2, 1.1 × 10−13 m2 and 5.7 × 10−14 m2 respectively. As propagation initiates, the fracture kinks for
anisotropic permeability ratio (kx/kz) greater than 10. The change in propagation direction occurs as the fracture
seeks the direction that offers the least resistance to fluid flow, which in this case is the horizontal direction (kx > kz).
The kinking angle also increases with increasing kx/kz .
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Fig. 9. Plots of fracturing injection pressure, change in fracture length, fracture mouth aperture and fracture volume for different reservoir
permeabilities.

Fig. 10. Effect of reservoir permeability anisotropy on fracture propagation patterns. The top and bottom rows show snap shots of the fractures
and pressure distributions in the computational domains. Plots from left to the right columns are for kx = 5.66 × 10−15 m2, 2.26 × 10−15 m2,
1.13 × 10−15 m2 and 0.57 × 10−15 m2 respectively.

5.3. Well shut-in after fracture propagation

In a minifrac test performed in the petroleum industry, after the initial fractures are created and extended, the
injection well will be shut-in. During the shut-in period, fluid pressure decline occurs because the fluid flows back
into the well or leaks-off into the adjoining reservoir. To mimic the minifrac test, we perform numerical experiments by
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Fig. 11. Change in fracture length and fracture mouth aperture during well shut-in operation for different reservoir permeabilities. The well is
shut-in after 42 s. (top-left) Injection rate as a function of time. (top-right) Injection pressure as a function of time. (bottom-left) Change in fracture
half length. (bottom-right) Fracture mouth aperture.

shutting-in the well after a period of fluid injection and fracture propagation. The fluid pressure and fracture geometry
changes are analyzed before and after the well shut-in. The reservoir model and initial fracture geometry are the same
as in Section 5.2. Fluid viscosity is µ = 1 × 10−4 Pa s while other parameters are the same as in Table 1. Three
different reservoir permeabilities of k = 4 × 10−15, 2 × 10−15, and 1 × 10−15 m2 are considered. Fluid is injected
into the fracture at a constant rate of Q f s = 5 × 10−2 m s−1 for 42 s, after which the well is shut-in. The numerical
results for fluid injection with well shut-in are shown in Fig. 11 while results without well shut-in are those in Fig. 9.
The pressure responses are such that after fluid injection stops at 42 s, pressure decline increases as fluid leaks-off into
the reservoir. The rate of this decline is directly proportional to the reservoir permeability. Similarly, fracture mouth
aperture decreases with declining fluid pressure. The fracture length remains constants after well shut-in, since fluid
pressure falls below the critical value necessary for continued fracture propagation. Fig. 12 shows the evolution of
fluid pressure in the reservoir at different times for k = 4 × 10−15 m2. The fracture length increases until t = 42 s
and remains constant thereafter. Fluid leak-off into the reservoir is highlighted by the decreasing pressure inside the
fracture and increasing fluid diffusion into the reservoir as time progresses beyond the well shut-in time.

5.4. Hydraulic fracture propagation in layered reservoirs

Three dimensional computations are carried out to highlight the role of varying mechanical properties of reservoir
layers on hydraulic fracture height growth. Fig. 13 shows the computational geometry with the initial penny-shaped
fracture in the middle of the domain. The reservoir is a cube of size 50 m × 50 m × 50 m while the initial fracture has
a radius of 5 m. Inviscid fracturing fluid (µ = 4 × 10−7 Pa s) is injected into the center of the fracture. The reservoir is
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Fig. 12. Snap shots of pressure distribution in the reservoir with k = 4 × 10−15 m2 at times t = 144, 175, 1416, and 2826 s. The well is shut-in
after 42 s.

Fig. 13. Penny shaped fracture in a three dimensional reservoir with 3 layers. Fracture shape is taken as the contour at v = 0.1. The layers are
identified by different colors. Top and bottom layers have the same properties, hence the same color representation.

Table 2
Reservoir properties for fracture propagation in a three
layered, three dimensional reservoir.

Parameter Value

x 50 m
∆t 0.14 s
E 17 GPa
ν 0.2
Gc 100 Pa m
k 2.83 × 10−13 m2

φ 0.2
α 1
Ks 2 GPa
K f 0.125 GPa
µ 4 × 10−7 Pa s
Q f s 5 × 10−2 m2 s−1

divided into three vertical layers with interfaces at 17 m and 25 m respectively. This means that the fracture is located
in the middle layer and is perpendicular to the interfaces. We assume that both top and bottom layers are similar, with
the same values for reservoir properties as highlighted by the color contrast in Fig. 13. Layering in the reservoir is
created by varying the values of either E , Gc or k between the layers while the other properties are the same for all the
layers. The base reservoir properties for all the layers are as in Table 2. Our numerical results for fracture propagation
in the reservoir with uniform properties (base values) in all layers are shown in Fig. 13 and obviously, the penny shape
is unchanged throughout the propagation of the fracture.

Results for fractures propagation in reservoir with varying Gc between the layers are shown in Fig. 14. Higher
fracture toughness of the external layers favors hydraulic fracture growth within the middle layer. Under these
conditions, the fracture extends more in length than in height. In fact, for very high Gc,ext

Gc,mid
ratio, the fracture is

completely confined in the middle layer as seen in Fig. 14c. As a result, the height is constant, approximately equal
to the thickness of the middle layer. On the other hand, a reduction in Gc,ext

Gc,mid
favors fracture growth into the top and

bottom layer, with a geometry that is longer in the vertical direction than in the horizontal direction.
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Fig. 14. Propagated hydraulic fracture in a three layers reservoir with different fracture toughness. (left to right): Gc,ext
Gc,mid

= 0.7, 0.9, 1.2, and 10.

Fig. 15. Propagated hydraulic fracture in a three layers reservoir with different Young’s modulus. (left to right): Eext
Emid

= 0.1, 0.2, 2, and 5.

Fig. 16. Propagated hydraulic fracture in a three-layered reservoir with permeabilities. (left to right): kext = 2.83 × 10−15 m2 and kmid =

2.83 × 10−17 m2, kext = 2.26 × 10−15 m2 and kmid = 2.83 × 10−17 m2, kext = 2.83 × 10−15 m2 and kmid = 1.70 × 10−15 m2, and kext =

2.83 × 10−17 m2 and kmid = 2.83 × 10−15 m2.

Fig. 15 shows the propagated hydraulic fracture geometries in the layered reservoir for different Young’s modulus.
Higher Young’s modulus in the surrounding layers impedes fracture growth out of the middle layer while lower
modulus in the surrounding layers encourages fracture growth out of the middle layer.

Lastly, the effect of varying reservoir permeability in the layered reservoir on the fracture geometry is shown in
Fig. 16. For higher permeability in the middle layer, the fracture propagates more in the vertical direction than in the
horizontal direction. On the other hand, lower permeability in the middle encourages fracture propagation in that layer
with less extension in the vertical direction. As a result, the fracture has a higher length compared to its height.

We observe non-symmetric propagation in the combination of reservoir properties that otherwise would have
favored uniform and equal propagation into the external layers, as in Figs. 14a, 14b, 15a, 15b, 16c and 16d. In these
figures, the fracture extends more into the bottom layer than into the top layer. The evolution of these fractures is such
that propagation is symmetric prior to reaching the boundary interfaces. However, due to floating point errors, the
bottom part of the fracture reaches the lower interface before the top part reaches the top layer interface. Subsequent
fluid injection favors fracture growth into the bottom layer. Although this geometry could have been reversed to favor
growth into the top layer, the results indicate that it may be difficult to control hydraulic fracture growth in conditions
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Fig. 17. Propagation of two pre-existing fractures with injection wells in the center of both fractures. The columns are for an initial fracture spacing
of 20, 30, 40, 50, and 80 m respectively. The rows are for k = 1.70 × 10−14, 5.66 × 10−15, 2.83 × 10−15, and 1.41 × 10−15 m2 respectively.

where fractures propagate into layers with lower resistance to fluid flow and rock deformation and subtle differences
such as rock property can trigger asymmetric fracture growth at least in the toughness dominated region.

5.5. Propagation of multiple fractures

One of the unique features of our developed model is the ease in simulating propagation of multiple hydraulic
fractures. Three cases containing, two, three and four initial fractures are considered to highlight this capability. In
the first example, the two initial vertical fractures have half lengths of l0 = 3 m and are both centrally located in a
reservoir of size 200 m × 200 m. Four different fracture spacings are considered (20 m, 30 m, 40 m, 50 m and 80 m)
and for each spacing, the reservoir permeability is also varied. For this problem, Ks = 2 GPa, K f = 0.125 GPa andµ=

1 × 10−5 Pa s while the other parameters are as in Table 1. Fluid is injected in the center of both fractures at equal rates
of Q f s = 5 × 10−4 m2 s−1. The first row in Fig. 17 is the phase-field representation of the initial fractures at different
fracture spacings. Subsequent rows in the same figure are simulated results for increasing reservoir permeability.
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Fig. 18. Computed fluid pressure for fractures in Fig. 17. The columns are for an initial fracture spacing of 20, 30, 40, 50, and 80 m respectively.
The rows are for k = 1.70 × 10−14, 5.66 × 10−15, 2.83 × 10−15, and 1.41 × 10−15 m2 respectively.

Stress shadow effect is evident in all the computations as the fractures interact by propagating away from each other
along curved paths. With increasing fracture spacing, the curvature of propagation reduces. Comparing the patterns
from top to bottom for each column, one observes that decreasing reservoir permeability reduces fracture curvature
and complexity. The computed fluid pressures are shown in Fig. 18.

Note that some of our numerical solutions are non-symmetric, which is consistent with the stability analysis
in [85,86]. Loosely speaking symmetric crack patterns are critical points of the fracture energy, but become more
and more unstable when pre-existing cracks become closer. In this case, a minimization-based model will naturally
bifurcate towards one possibly non-symmetric realization of a family of stable fracture patterns.

Simulation results for the propagation of three and four initial fractures are also presented. Initial fracture half-
lengths are 10 m and 3 m for the three and four fracture cases respectively. Both examples use a fracture spacing of
35 m and k = 2.83 × 10−15 m2. Fig. 19 highlights the evolution of the fractures while Fig. 20 shows the corresponding
fluid pressure distribution in the reservoir. For both examples, at early times, the external fractures grow faster than
those in the center of the configuration. As the outer fractures propagate, they exert compressive stresses on the
centrally located fractures. The compressive stresses oppose the growth of the internal fractures, leading to fluid
pressure build up in the compressed fractures, as can be seen in the two middle columns of Fig. 20. However, with
continuous fluid injection, the fluid pressure in the middle fractures builds up enough to eventually overcome the
opposing compressive stress exerted on them. Rapid fracture growth is experienced and the final patterns seen on the
right column of Fig. 19 are obtained.

6. Conclusions

In this paper, a unified fracture–porous medium flow model, which is regularized with a phase-field variable, is
derived and coupled with the variational phase-field fracture model for simulation of hydraulic fracture propagation
in poroelastic media. The fracture width and its cube are the primary links between the fracture fluid flow and
deformation, and our approaches to approximate these explicit quantities are described in detail. The phase-field
fracture representation technique, which is the foundation of the variational model, reduces computational cost and
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Fig. 19. Evolution of propagation paths for three and four parallel fractures with fluid injection into the center of each fracture. The top row are
snapshots of the v-field for three fractures at 28.3, 570, 846, and 990 s. The bottom row shows snapshots of the v-field for four fractures at 7.1,
282, 354, and 426 s.

Fig. 20. Reservoir fluid pressure during the evolution of propagation paths for three and four parallel fractures with fluid injection into the center
of each fracture. Top row is snapshot of the pressure distribution during evolution of the three fractures at 28.3, 570, 846, and 990 s. Bottom row is
the snapshot of the pressure distribution during evolution of the four fractures at 7.1, 282, 354, and 426 s.

places no constraints on the complexity of fracture behavior and interactions. In contrast to existing models that
utilize additional indicator function or level-set variables to distinguish the fracture and the porous medium domains,
our model is unified with a single phase-field variable which regularizes both mechanical and flow equations without
need for ad-hoc assumptions about extra parameters.

The numerical model was verified against the plane-strain (KGD) fracture near the toughness dominated regime
and then applied to study the effect of reservoir parameters and fluid properties on fracturing fluid pressure, fracture
geometries (length, height, width, radius) and fracture propagation paths. In addition to showing the applicability of
the method in highlighting the effect of reservoir and fluid properties on KGD fracture propagation, other numerical
examples also illustrate the ability of the method to simulate multiple fracture propagations and three dimensional
fracture height growth in layered reservoirs. Stress shadow effect was found to influence the interaction between
multiple fractures during propagation and decrease with increasing spacing between fractures (or with decreasing
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permeability of the reservoir). For penny-shaped fracture propagation in reservoirs with varying properties between
layers, numerical results demonstrate that the variational based energy minimization approach can indeed simulate
the confinement or the breach of fractures into layers with lower resistance to fluid flow and rock deformation.
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Appendix

Solving (26) and (31) can pose some numerical instability when realistic properties are assigned. By denoting
scaled parameters with ˜(·) and scaling factors with subscript o, following four input parameters are scaled to
numerically favorable values (e.g. 1.0):

E = Eo Ẽ, Gc = GcoG̃c, x = xo x̃, Q = Qo Q̃. (37)

Similarly other computed mechanical parameters are scaled as

u⃗ = uo ⃗̃u, p = po p̃, κ = κoκ̃, A = EoÃ, f⃗ = fo
⃗̃f, τ⃗ = po ⃗̃τ, (38)

and the fluid flow related parameters as

w = uow̃, M = Eo M̃, µ = µoµ̃, K = ko K̃ , t = to t̃ . (39)

In addition, the phase-field regularization parameter ε is represented as

ε = xoε̃ (40)

Substituting (37), (38), and (40) into (26) gives

Fε(u⃗, v; p) = Eox N−2
o uo

∫
Ω̃

1
2 Ã
(
ve( ⃗̃u) −

poxo

Eouo

α p̃
N κ̃

I
)

·

(
ve( ⃗̃u) −

poxo

Eouo

α p̃
N κ̃

I
)

dṼ

−pouox N−1
o

∫
∂N Ω̃

⃗̃τ · ⃗̃u d S̃ − fouox N
o

∫
Ω̃

⃗̃f · ⃗̃u dṼ + pouox N−1
o

∫
Ω̃

p̃ ⃗̃u · ∇̃v dṼ

+
GcoG̃cx N−1

o

4cn

∫
Ω̃

(
(1 − v)n

ε̃
+ ε̃|∇̃v|

2
)

dṼ . (41)

Dividing both sides by Eou2
ox N−2

o and setting

uo =

√
Gcoxo

Eo
, (42)

po =

√
Gco Eo

xo
, (43)

lead to a more numerically favorable form:

Fε( ⃗̃u, v; p̃) =

∫
Ω̃

1
2 Ã
(
ve( ⃗̃u) −

α p̃
N κ̃

I
)

·

(
ve( ⃗̃u) −

α p̃
N κ̃

I
)

dṼ −

∫
∂N Ω̃

⃗̃τ · ⃗̃u d S̃ −

∫
Ω̃

⃗̃f · ⃗̃u dṼ

+

∫
Ω̃

p̃ ⃗̃u · ∇̃v dṼ +
G̃c

4cn

∫
Ω̃

(
(1 − v)n

ε̃
+ ε̃|∇̃v|

2
)

dṼ , (44)

where Fε( ⃗̃u, v; p̃) =
1

Eou2
ox N−2

o
Fε(u⃗, v; p).
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For (34), we can similarly set

to =

√
Gcox N−1

o

Eo Q2
o
, (45)

µo =
G2

cox N−2
o

Eo Qo
, (46)

ko =
u3

o

xo
, (47)

mo = Eo, (48)

and (34) becomes∫
Ω̃

(
1

M̃
+ v2α

2

κ̃

)
∂ p̃k+1

∂ t̃
ψ dṼ +

K̃
µ̃

∫
Ω̃

∇̃ p̃k+1
· ∇̃ψ dV +

∫
Ω

(w̃k
ε )

3

12µ̃
∇̃
ε
Γ pk+1

· ∇̃
ε
Γψ |∇̃v| dV

=

∫
Ω

q̃rsψ dṼ −

∫
∂N Ω̃

q̃nψ dṼ +

∫
Ω̃

q̃εf sψ |∇̃v| dṼ −

∫
Ω̃

ψ
∂ ⃗̃uk

∂ t̃
· ∇̃v dṼ

−

∫
Ω̃

v2α

κ̃

∂ ˜σvol
k

∂ t̃
ψ dṼ +

∫
Ω̃

1

M̃

(
1 − v2) ∂ p̃k

∂ t̃
ψ dṼ . (49)

In all the analyses, scaled Eqs. (44) and (49) were solved and the resulting variables were scaled back accordingly.
We should note, however, that the dimensionless viscosity parameter introduced in (36) can now be expressed with
the dimensionless parameters as:

M =
µo Qo Eo

Gco

µ̃′ Q̃

Ẽ ′

(
Ẽ ′

K̃ ′

)4

= x N−2
o

µ̃′ Q̃

Ẽ ′

(
Ẽ ′

K̃ ′

)4

.

For the line fracture problem, N = 2, it becomes

M =
µ̃′ Q̃

Ẽ ′

(
Ẽ ′

K̃ ′

)4

. (50)

Therefore, the dimensionless viscosity parameter is identical in the dimensionless space.
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