
Numerical Implementation of Overlapping

Balancing Domain Decomposition Methods on

Unstructured Meshes

Jung-Han Kimn1 and Blaise Bourdin2

1 Department of Mathematics and The Center for Computation and Technology,
Louisiana State University, Baton Rouge, Louisiana 70803, USA,
kimn@math.lsu.edu

2 Department of Mathematics, Louisiana State University, Baton Rouge,
Louisiana 70803, USA, bourdin@math.lsu.edu

Summary The Overlapping Balancing Domain Decomposition (OBDD)
methods can be considered as an extension of the Balancing Domain Decom-
position (BDD) methods to the case of overlapping subdomains. This new
approach, has been proposed and studied in [3, 9]. In this paper, we will dis-
cuss its practical parallel implementation and present numerical experiments
on large unstructured meshes.

1 Introduction

The Overlapping Balancing Domain Decomposition Methods (OBDD) is a two
level overlapping Schwarz method. Its coarse space as well as the projection
and restriction operators are based on partition of unity functions. This new
algorithm has been presented in [3, 9]. More recently, it has also been extended
to the Helmholtz problem (see [4, 9]).

The main goal of this paper is to present an efficient and scalable im-
plementation on large unstructured meshes. The proposed algorithm does not
require the construction of a coarse mesh and avoids expensive communication
between coarse and fine levels. The implementation we present works on an
arbitrary number of processors and does not requires a a priori manual decom-
position of the domain into subdomains. It relies heavily on the construction
of overlapping subdomains and associated partition of unity functions. These
functions are used both as a communication mechanism between coarse and
fine levels, and as the generating functions for the coarse space. More de-
tails on two level overlapping Schwarz methods with partition of unity–based
coarse space can be found in [8, 6, 7].



2 Jung-Han Kimn and Blaise Bourdin

1.1 Notations and presentation of the method

All along this paper, we focus on the implementation of the Poisson problem
with Dirichlet boundary condition on a polygonal domain Ω. Given a function
f ∈ H−1(Ω), and ∂ΩD ⊂ ∂Ω with a finite number of connected components,
we want to solve the problem

−∆u = f in Ω, u = u0 on ∂ΩD. (1)

Let T be a conforming mesh of Ω with Ne elements and Nv vertices, par-
titioned into N parts Ti, 1 ≤ i ≤ N with N i

e elements and N i
v vertices. For

any k ∈ N, the overlapping mesh T k
i is sub-mesh of T whose vertices are

either in Ti or linked to a vertex of Ti by at most k edges. We denote by Ωi

and Ωk
i the geometric domain associated with these meshes. Lastly, let A be

the matrix associated to a discretization of (1). In our experiment, we used a
finite element method with linear elements, but this is not a requirement of
the method.

The construction of the Overlapping Balancing Domain Decomposition
method is similar to that of the well-known Balancing Domain Decomposition
method. Its main ingredient is the construction of partition of unity θi, 1 ≤ i ≤
such that θi > 0 on T k

i , and θi = 0 on T \ Ti. Using the function θi, we define
N weight matrices Di of size Nv × Nv whose diagonal vectors are the θi.

In this method, the dimension of the coarse space is equal to the number
of processors, and the associated matrix Ac is given by

Ac(i, j) = θT
i Aθj . (2)

On each subdomain, the local problems involve solving a local version
of (1) with homogeneous Neumann interface conditions. Of course, this is a
singular problem, however one can show that the partition of unity functions
θi generate the null space of the associated local matrix Ai, from which one
can easily derive compatibility conditions.

For more details on the theoretical aspect of the method, and for a precise
description, refer to [4] and [9].

2 Implementation of the OBDD method on

Unstructured Meshes

The Overlapping Balancing Domain Decomposition Method was implemented
using an existing parallel finite element package previously written by the
second author. The implementation we describe in the sequel is general enough
that it should be fairly easy to reproduce in any finite element code. However,
some of the technical choices detailed later are dependent on the software
packages we used. Namely the unstructured two and three dimensional meshed
were generated using Cubit, developed at Sandia National Laboratories [5],



OBDD on Unstructured Meshes 3

and the internal mesh representation is based on the EXODUS II libraries,
also from Sandia National Laboratories. The automatic domain decomposition
was obtained using METIS and ParMETIS [2]. Lastly, we used PETSc [1] for
all distributed linear algebra needs, and most communication operations.

The OBDD itself was implemented as a shell preconditioner in PETSc

2.1 Construction of the overlapping subdomains and the partition

of unity functions

The first step toward the implementation of the OBDD method is to con-
struct the overlapping subdomains and the partition of unity functions, using
a non-overlapping domain decomposition computed with METIS. The follow-
ing algorithm does that in a fully distributed and scalable way.

Let T be a part of the mesh of Ω we say that a vertex (resp. an element)
of Ω is local to T if it belongs to T . We say that an element of Ω is a near

element for T if one of its vertices is local to T . Similarly, we say that a vertex
v ∈ Ω is a near vertex for T if it belongs to a near element for T , but is not
local for T . Lastly, any vertex or element that is neither local nor a near is
referred to as distant. With these notations, note that Ωk

i is simply the union
of all local and near vertices and elements of Ωk−1

i . This is the essence of our
iterative construction.

In the mesh representation system we used, we did not have access to the
adjacency graph of the vertices, or the list an element neighbor for instance.
Instead, the presented algorithm requires only for each processor to store the
entire connectivity table of the mesh.

In order to construct the partition of unity functions and the overlapping
subdomains simultaneously, each processor uses a temporary counter di of
size equal to that of the total number of vertices. At the initial stage, one sets
di(v) = 1 if v is local to Ω, and 0 otherwise. Then, one iterates the following
process for 0 ≤ j ≤ k: for 1 ≤ l ≤ Ne, the element l is near Ωj

i if di(v) > 0 at
any of its vertices v. Using the connectivity table, compute then the list of all
near vertices to Ω. Lastly increment di(v) for all v local or near Ωj

i . After k
iteration, di(v) = k + 1 if v ∈ Ωi, di(v) = 0 if v 6∈ Ωk

i . At this point, all that

remains to do is to set θi(v) = di(v)/
∑N

j=1
di(v).

Figure 1 illustrate the three steps construction of Ωk+1

i out of Ωk
i . The

leftmost figure highlights the local vertices and elements for Ωk
i . In middle the

figure, one has identified the near elements for Ωk
i . From these near elements,

it is now easy to identify the near vertices, as illustrated in the right. All local
and near elements for Ωk

i are the local elements for Ωk+i
i , so that process can

be iterated as many times as necessary.
Note that this algorithm is very similar in spirit to a fast marching method

(see for instance [10]). Indeed, the functions dk are the distance to the non-
overlapping domains, in a metric where d(vi, vj) is proportional to the smallest
number of edges linking two vertex vi and vj .



4 Jung-Han Kimn and Blaise Bourdin

Fig. 1. Extension of the overlap in three steps

Note also that the complexity of this algorithm is independent on the
number of processor, and that it requires communication only at its very final
stage. The complexity of this algorithm is of order O(kNe) and grows linearly
with the size of the overlap. As demonstrated in the sequel, a typical overlap
choice is of the order of 3 to 5, so the construction of the θi is very efficient.
However, should one have access to the list of edges of the meshes, or the
list of neighboring element to a given one, this complexity would be greatly
reduced.

2.2 Coarse problem

The coarse matrix is given by Ac(i, j) = θT
i Aθj . However, its construction does

not require the actual computation of these matrix-vector products. Also, it
is easy to see that Ac has a sparse structure, as supp(θi) ∩ supp(θj) 6= ∅ only
if Ωk

i ∩ Ωk
j 6= ∅.

In our implementation, we first find all subdomains with non-empty in-
tersection, which give the sparse structure of Ac. Then, for each processor,
Aθj is obtained from computing Ajθj . Then we communicate this vector to
all neighboring subdomains so that each processor can assembly its own line
in Ac. This algorithm is extremely scalable since it involves only communica-
tions in between neighboring processors, and no “all to all” message passing.
As illustrated in the experiments in the next section, the OBDD perform best
with relatively small overlap. In this case, it is enough to build the adjacency
graph of the non-overlapping domains, which is slightly faster. However, this
is not true with very large overlap.

Lastly, since the dimension of the coarse problem is relatively small (recall
that it is equal to the number of processors), we store it as a sequential matrix
in one of the processors, so that each coarse solved can be performed using a
direct solver.

2.3 Local problems

Our implementation uses PETSc which does not have data structures dedi-
cated to overlapping submatrices. Therefore, we chose to reassembly the local



OBDD on Unstructured Meshes 5

matrices Aj instead of extracting them from the global matrix A. Note that
this has to be done only once, so it is not very expensive.

As we expect our algorithm to be very scalable, our goal is to use a large
number of processors, which means relatively small local problems. For that
reason, we use direct local solvers. The cost of the initial factorization is offset
by the speed gain in solving the local problems multiple times.

Since we consider local problems with homogeneous Neumann interface
conditions, the local matrices are singular. However, their null spaces are given
by their associated partition of unity function (see [3, 9] for more details). In
the implementation, we still had to add a small damping factor to the diagonal
of the matrix, or the local factorization would sometimes fail. This damping
factor is typically of order 10−10.

3 Numerical Results

In the numerical experiment we present here, Ω is the square [−5, 5]× [−5, 5].
We considered a homogeneous Dirichlet problem for two different right hand
sides: f(x, y) ≡ 1 (Problem 1), or f(x, y) = 1 if xy > 0 and f(x, y) = −1
otherwise (Problem 2). The experiment we present, are based on solving both
problems for various overlap size k and various mesh sizes. The larger mesh
is made of approximately 1,000,000 vertices and 2,000,000 elements (i.e. h ∼
.01). The second one is made of 450,000 vertices and 890,000 elements (h ∼
.015), and the last one of 250,000 vertices and 500,000 elements (h ∼ .02). We
ran our test implementation on multiple other problems, and got very similar
behaviors.

Table 1 display the evolution of the number of iterations of OBDD of
Problem 1 and Problem 2. Along the horizontal lines, the ratio between the
geometric size of the overlap and the size of the subdomains remains constant
while the mesh size varies. As expected, the number of iterations does not
change significantly. Along vertical lines, the number of processor is increased.
As expected, the number of iterations decreases as long as the number of nodes
in the overlap region remains small compared to that in the actual subdomain.

Table 1. Number of iterations for Problem 1 (Problem 2)

] of CPUs Mesh1 (ovlp=10) Mesh2 (ovlp=7) Mesh3 (ovlp=5)

32 55 (51) 51 (51) 52 (51)

64 50 (49) 47 (44) 46 (44)

80 45 (43) 47 (46) 50 (48)

Figure 2 represent the evolution of the computation time and of the num-
ber of iterations as a function of the overlap. The simulation is computed on



6 Jung-Han Kimn and Blaise Bourdin

the smaller of the three meshes, and on 32 processors. The first curve corre-
sponds to the total time spend in the solver. In the second one, we subtracted
the factorization time for the local matrices. As expected, the total time in-
creases slightly with very large overlaps. However, most of this time increase
is due to the local matrices factorization. Indeed, as the overlap size increases,
the number of iteration decreases steadily. For all practical purposes, we found
no reason to use large overlaps. Overlap sizes of 3-5 typically give the fastest
convergence.

In Figure 3, we performed this experiment for various number of proces-
sors, on our largest mesh. The same conclusion holds in each case. In our
implementation, we assumed that the overlapping subdomains associated to
disjoint subdomains were also disjoint, which is not necessarily true with very
large overlaps and very small subdomains. For that reason, we were not able
to use large overlap sizes with 64 processors.

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

Overlap Size

T
im

e

OBDD (solver + factorization)
OBDD (solver)

2 4 6 8 10 12 14 16 18 20
25

30

35

40

45

50

55

60

65

70

75

Overlap Size
N

um
be

r 
of

 It
er

at
io

ns

Fig. 2. Times and numbers of iteration versus the overlap size

0 5 10 15 20 25 30
0

5

10

15

20

25

Overlap Size

T
im

e

Solver+ Factorization

16 CPU
32 CPU
64 CPU

0 5 10 15 20 25 30
0

5

10

15

20

25

Overlap Size

T
im

e

Solver

16 CPU
32 CPU
64 CPU

0 5 10 15 20 25 30
30

40

50

60

70

80

90

100

110

Overlap Size

N
u

m
b

e
r 

o
f 

It
e

ra
ti
o

n
s

16 CPU
32 CPU
64 CPU

Fig. 3. Time and numbers of iteration versus the overlap size

In Figure 4, we demonstrate the scalability of the Overlapping Balancing
Domain Decomposition method, and of our implementation. We solved again
Problem 2 with various overlap sizes and up to 240 processors. As expected,
both the total time and the number of iterations decrease with the number



OBDD on Unstructured Meshes 7

of processors. Note also that the gain from an increase of the overlap size is
quite minimal.

0 50 100 150 200 250
0

5

10

15

Number of Processors

T
im

e

Ovlp=3
Ovlp=7

0 50 100 150 200 250
50

55

60

65

70

75

80

85

90

Number of Processors

N
um

be
r 

of
 It

er
at

io
ns

Ovlp=3
Ovlp=5
Ovlp=7

Fig. 4. Scalability of the algorithm and its implementation

The last figure is perhaps the most important. Here, we compared our
method with a widely available solver. For our problem, we found that the
best combination of solve and preconditioners in PETSc is the Conjugated
Gradient with a block-Jacobi preconditioner, iterative local solvers, and in-
complete LU local preconditioners. In figure 5, we confront the performances
of the OBDD and block-Jacobi preconditioners. In all cases, our algorithm
performs significantly better than the best available solver in PETSc.

30 40 50 60 70 80 90 100 110
0

2

4

6

8

10

12

Number of Processors

T
im

e

Block Jacobi
Solver+factorization
Solver only

Fig. 5. Comparison of the OBDD and the block-Jacobi preconditioners

References

1. Satish Balay, Kris Buschelman, William D. Gropp, Dinesh Kaushik, Matthew G.
Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web
page, 2001. http://www.mcs.anl.gov/petsc.



8 Jung-Han Kimn and Blaise Bourdin

2. George Karypis, Rajat Aggarwal, Kirk Schoegel, Vipin Kumar, and Shashi
Shekhar. METIS Web page.
http://www-users.cs.umn.edu/ karypis/metis/index.html.

3. Jung-Han Kimn and Marcus Sarkis. Overlapping balancing domain decompo-
sition methods for elliptic problems and for the Helmholtz equation. 2005. In
preparation.

4. Jung-Han Kimn and Marcus Sarkis. Overlapping restricted sommerfeld domain
decomposition methods and restricted coarse space: A numerical study for the
Helmholtz equation. 2005. In preparation.

5. Steven J. Owen. Cubit project home page. http://cubit.sandia.gov.
6. Marcus Sarkis. A coarse space for elasticity: Partition of unity rigid body mo-

tions coarse space. In Zlatko Drmac et. al., editor, Proceedings of the Applied

Mathematics and Scientific Computing Dubrovnik, Croacia, June, 2001. Kluwer
Academic Press, 2002.

7. Marcus Sarkis. Partition of unity coarse spaces: Discontinuous coefficients,
multi-level versions and applications to elasticity. In Ismael Herrera, David E.
Keyes, Olof B. Widlund, and Robert Yates, editors, 14th International Confer-

ence on Domain Decomposition Methods, Cocoyoc, Mexico, 2002.
8. Marcus Sarkis. Partition of unity coarse spaces, fluid flow and transport in

porous media: mathematical and numerical treatment. In Contemp. Math.,

295, pages 445–456, Providence, RI, 2002. South Hadley, MA, 2001, Domain
Decomposition Press.

9. Marcus Sarkis and Jung-Han Kimn. OBDD: Overlapping balancing domain
decomposition method and generalizations to the Helmholtz equation. In 16th

International Conference on Domain Decomposition Methods, New York, 2005.
10. James A Sethian. A fast marching level set method for monotonically advancing

fronts. Proc. Nat. Acad. Sci. U.S.A., 93(4):1591–1595, 1996.


