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Abstract We show how bilateral, linear, elastic foundations (i.e., Winkler foundations)
often regarded as heuristic, phenomenological models, emerge asymptotically from stan-
dard, linear, three-dimensional elasticity. We study the parametric asymptotics of a non-
homogeneous linearly elastic bi-layer attached to a rigid substrate as its thickness vanishes,
for varying thickness and stiffness ratios. By using rigorous arguments based on energy
estimates, we provide a first rational and constructive justification of reduced foundation
models. We establish the variational weak convergence of the three-dimensional elasticity
problem to a two-dimensional one, of either a “membrane over in-plane elastic foundation”,
or a “plate over transverse elastic foundation”. These two regimes are function of the only
two parameters of the system, and a phase diagram synthesizes their domains of validity.
Moreover, we derive explicit formulæ relating the effective coefficients of the elastic foun-
dation to the elastic and geometric parameters of the original three-dimensional system.

Keywords Winkler foundation · Variational methods · Thin films · Dimension reduction ·
Asymptotic analysis

Mathematics Subject Classification (2000) 35A15 · 74B05 · 74B10 · 74K35 · 74Q15

1 Introduction

We focus on models of linear, bilateral, elastic foundations, known as “Winkler foundations”
[31] in the engineering community. Such models are commonly used to account for the
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bending of beams supported by elastic soil, represented by a continuous bed of mutually
independent, linear, elastic, springs. They involve a single parameter, the ratio between the
“bending modulus” of the beam and the “equivalent stiffness” of the elastic foundation,
henceforth denoted by k. As a consequence, the reaction force r(x) exerted by the elastic
foundation at a given point in response to the vertical displacement u(x) of the overlying
beam, takes the simple form:

r(x) = Ku(x). (1)

Such type of foundations, straightforwardly extended to two dimensions, have found ap-
plication in the study of the static and dynamic response of embedded caisson founda-
tions [14, 33], supported shells [26], filled tanks [1], free vibrations of nanostructured
plates [28], pile bending in layered soil [30], seismic response of piers [6], carbon nan-
otubes embedded in elastic media [29], chromosome function [18], etc. Analogous reduced
models, labeled “shear lag”, have been employed after the original contribution of [11] to
analyze the elastic response of matrix-fiber composites under different material and loading
conditions, see [16, 17, 24, 25] and references therein.

Linear elastic foundation models have also kindled the interest of the theoretical mechan-
ics community. Building up on these models, the nonlinear response of complex systems has
been studied in the context of formation of geometrically involved wrinkling buckling modes
in thin elastic films over compliant substrates [2–4], in the analysis of fracture mechanisms
in thin film systems [32], further leading to the analysis of the emergence of quasi-periodic
crack structures and other complex crack patterns, as studied in [19, 20, 23] in the context
of variational approach to fracture mechanics.

Winkler foundation models are regarded as heuristic, phenomenological models, and
their consistency on the physical ground is often questioned in favor of more involved multi-
parameter foundation models such as the Filonenko-Borodich [12] or Pasternak [27] models,
which involve an additional higher order term of the type K ′u′′(x) with a negative sign, in the
right-hand side of the equilibrium equation (1). The choice of the Winkler model is usually
entrusted to mechanical intuition and the calibration of the “equivalent stiffness” constant K

is usually performed either with empirical tabulated data or finite element computations.
Despite their wide application, to the best knowledge of the authors and up to now, no

attempts have been made to fully justify and derive linear elastic foundation models from
a general, three-dimensional elastic model without resorting to any a priori kinematic as-
sumption.

The purpose of this work is to give insight into the nature and validity of such reduced-
dimension models, via a mathematically rigorous asymptotic analysis, providing a justifica-
tion of Winkler foundation models. As a product of the rational analysis, we also obtain the
dependence of the “equivalent stiffness” of the foundation, K in Eq. (1), on the material and
geometric parameters of the system. Due to the mathematical structure of the asymptotic
problem, no educated guess can be put forward for the calibration of the limit parameters,
which can only be derived with the thorough asymptotic analysis. The latter, not only pro-
vides qualitative understanding of the fundamental couplings, but also yields quantitative
determination of the relevant limit parameters.

In thin film systems, the separation of scales between in-plane and out-of-plane dimen-
sions introduces a “small parameter”, henceforth denoted by ε, that renders the variational
elasticity problem an instance of a “singular perturbation problem” which can be tackled
with techniques of rigorous asymptotic analysis, as studied in an abstract setting in [21].
Such asymptotic approaches have also permitted the rigorous justification of linear and non-
linear, reduced dimension, theories of homogeneous and heterogeneous [15, 22] rods as well
as linear and nonlinear plates [9] and shells [10].
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Engineering intuition suggests that there may be multiple scenario leading to such re-
duced model. Our interest in providing a rigorous derivation span from previous works on
system of thin films bonded to a rigid substrate, hence we focus on the general situation of
linearly elastic bi-layer system, constituted by a film bonded to a rigid substrate by the means
of a bonding layer. We take into account possible abrupt variations of the elastic (stiffness)
and geometric parameters (thicknesses) of the two layers by prescribing an arbitrary and
general scaling law for the stiffness and thickness ratios, depending on the geometric small
parameter ε.

The work is organized as follows. In Sect. 2, we introduce the asymptotic, three-
dimensional, elastic problem Pε(Ω

ε) of a bi-layer system attached to a rigid substrate, in
the framework of geometrically linear elasticity. We further state how the data, namely the
intensity of the loads, the geometric and material parameters are related to ε. In order to
investigate the influence of material and geometric parameters rather than the effect of the
order of magnitude of the imposed loads on the limiting model, as, e.g., in the spirit of [22],
we prescribe a fixed scaling law for the load and a general scaling law for the material and
geometric quantities (thicknesses and stiffnesses), both depending upon a small parameter ε.
The latter identifies an ε-indexed family of energies Ẽε whose associated minimization prob-
lems we shall study in the limit as ε → 0. We then perform the classical anisotropic rescaling
of the space variables, in order to obtain a new problem Pε(ε;Ω), equivalent to Pε(Ω

ε), but
posed on a fixed domain Ω and whose dependence upon ε is explicit. We finally syntheti-
cally illustrate on a phase diagram identified by the two non-dimensional parameters of the
problem, the various asymptotic regimes reached in the limit as ε → 0.

In Sect. 3 we establish the main results of the paper by performing the parametric asymp-
totic analysis of the elasticity problems of the three-dimensional bi-layer systems. We start
by establishing a crucial lemma, namely Lemma 2, which gives the convergence proper-
ties of the families of scaled strains. We finally move to the proof of the results collected
into Theorems 1 and 2. The analysis of each regime is concluded by a dimensional analysis
aimed to outline the distinctive feature of such reduced models, namely the existence of a
characteristic elastic length scale in the limit equations.

2 Statement of the Problem and Main Results

2.1 Notation

We denote by Ω the reference configuration of a three-dimensional linearly elastic body
and by u its displacement field. We use the usual notation for function spaces, denoting by
L2(Ω;Rn), H 1(Ω;Rn) respectively the Lebesgue space of square integrable functions on
Ω with values in R

n, the Sobolev space of square integrable functions with values in R
n with

square integrable weak derivatives on Ω . We shall denote by H 1
0 (Ω;Rn) the vector space

associated to H 1(Ω,Rn), and use the concise notation L2(Ω), H 1(Ω), H 1
0 (Ω) whenever

n = 1. The norm of a function u in the normed space X is denoted by ‖u‖X , whenever
X = L2(Ω) we shall use the concise notation ‖u‖Ω . Lastly, we denote by Ḣ 1(Ω) the quo-
tient space between H 1(Ω) and the space of infinitesimal rigid displacements R(Ω) =
{v ∈ H 1(Ω), eij (v) = 0}, equipped by its norm ‖u‖Ḣ 1(Ω) := infr∈R(Ω) ‖u − r‖H 1(Ω). Weak
and strong convergences are denoted by ⇀ and →, respectively.

We shall denote by CKL(Ω) = {v ∈ H 1(Ω;R3), ei3(v) = 0 in Ω} the space of suffi-
ciently smooth shear-free displacements in Ω , and by ĈKL(Ω) := {Ḣ 1(Ω) ∩ R(Ω)⊥ ×
H 1(Ω), ei3(v) = 0 in Ωf } the admissible space of sufficiently smooth displacements whose
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Fig. 1 The three dimensional
model system

in-plane components are orthogonal to infinitesimal rigid displacements, whose transverse
component satisfies the homogeneous Dirichlet boundary condition on the interface ω−, and
which are shear-free in the film. Classically, ε � 1 is a small parameter (which we shall let
to 0), and the dependence of functions, domains and operators upon ε is expressed by a su-
perscripted ε. Consequently, xε is a material point belonging to the ε-indexed family of do-
mains Ωε . We denote by eε(v) the linearized gradient of deformation tensor of the displace-
ment field v, defined as eε(v) = 1/2(∇εv + (∇ε)T v) = 1/2(

∂vi

∂xε
j

+ ∂vj

∂xε
i
). In all that follows,

subscripts b and f refer to quantities relative to the bonding layer and film, respectively.
The inner (scalar) product between tensors is denoted by a column sign, their components
are indicated by subscripted roman and Greek letters spanning the sets {1,2,3} and {1,2},
respectively. Finally, we denote the order of magnitude of a function f (ε) by O(f (ε)), clas-
sically characterized as: O(f (ε)) = g(ε) iff there exists M ∈ R such that |f (ε)| ≤ M|g(ε)|
for sufficiently small ε.

We consider as model system consisting of two superposed linearly elastic, isotropic,
piecewise homogeneous layers bonded to a rigid substrate, as sketched in Fig. 1. Let ω

be a bounded domain in R
2 of characteristic diameter L = diam(ω). A thin film occupies

the region of space Ωε
f = ω × [0, εhf ] with ε � 1, and the bonding layer occupies the set

Ωε
b = ω × [−εp+1hb,0] for some constant p ∈ R. The latter is attached to a rigid substrate

which imposes a Dirichlet (clamping) boundary condition of place at the interface ωε− :=
ω × {−εp+1hb}, with datum w ∈ L2(ω). We denote the entire domain by Ωε := Ωε

f ∪ Ωε
b .

Considering the substrate infinitely stiff with respect to the overlying film system, the
boundary datum w is interpreted as the displacement that the underlying substrate would
undergo under structural loads, neglecting the presence of the overlying film system. In
addition to the hard load w, we consider two additional loading modes: an imposed in-
elastic strain Φε ∈ L2(Ωε;R3×3) and a transverse force pε ∈ L2(ω+) acting on the upper
surface. The inelastic strain can physically be originated by, e.g., temperature change, hu-
midity or other multiphysical couplings, and is typically the source of in-plane deformations.
We mainly focus our attention on loads of thermal origin localized in the film layer. This
scenario idealizes, e.g., the physical case of a industrial thermal barrier coating where the
abrupt variation of the thermal strain is due to a strong temperature gradient. On the other
hand, transverse surface forces may induce bending. Taking into account both in-plane and
out-of-plane deformation modes, we model both loads as uncoupled parameters regardless
of their physical origin. Finally, the lateral boundary ∂ω × (−εp+1hb,hf ) is left free.

The Hooke law for a linear elastic material writes σ ε = Aε(x)ε = λε(x)tr(ε)I3 +
2με(x)ε. Here, ε stands for the linearized elastic strain and Aε(x) is the fourth order stiff-
ness tensor. Classically, the potential elastic energy density W(εε(v);x) associated to an
admissible displacement field v, is a quadratic function of the elastic strain tensor εε(v) and
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reads:

Wε(ξ ;x) = Aε(x)ξ : ξ = λε(x)tr(ξ)2 + 2με(x)ξ : ξ,

where the linearized elastic strain tensor εε(v, x) = eε(v)− Φ̃ε(x) accounts for the presence
of imposed inelastic strains Φ̃ε(x). Denoting by Lε(u) = ∫

ωε+
pεv3ds the work of the surface

force, the total potential energy Ẽ(v) of the bi-layer system subject to inelastic strains and
transverse surface loads reads:

Ẽε(v) := 1

2

∫

Ωε

Wε
(
εε(v, x), x

) −Lε(v) (2)

and is defined on kinematically admissible displacements belonging to the set Cε
w of suffi-

ciently smooth, vector-valued fields v defined on Ωε and satisfying the condition of place
v = w, on ωε−, with w ∈ H 1(ωε−;R3). Namely:

Cε
w

(
Ωε

) := {
vi ∈ H 1

(
Ωε

)
, vi = wi on ωε

−
}
, w ∈ H 1

(
ωε

−;R3
)
.

Note that one can always absorb the hard load by imposed displacements w on the bottom
boundary, into a bulk term by a simple change of variable. Indeed, seeking the unknown dis-
placement field under the form v̂ := v− w̄ ∈ Cε

0(Ω
ε), where w̄(x ′, x3) := w× (−εp+1, hf ) ∈

H 1(Ωε;R3) is the constant extension of the boundary datum to the entire domain. This
change of variables transfers the boundary load into an imposed strain e(w̄), which is con-
stant with respect to the thickness and whose only non-vanishing components are (e(w̄))αβ .
The latter hence perturbs only the in-plane components of the inelastic strains Φε . With-
out restricting the generality, we henceforth assume that the boundary datum is absorbed
into Φε , and seek the solution in the vector space Cε

0(Ω
ε).

For the definiteness of the elastic energy (2), we have to specify how the data, namely (the
order of magnitude of) the material coefficients in Aε(x) as well as the intensity of the loads
Φε and pε , depend on ε. As far as the dimension-reduction result is concerned, multiple
choices are viable, possibly leading to different limit models. Our goal is to highlight the key
elastic coupling mechanisms arising in elastic multilayer structures, with particular focus on
the influence of the material and geometric parameters on the limit behavior, as opposed to
analyze the different asymptotic models arising as the load intensity (ratio) changes, as done
e.g. in [13, 22]. We shall hence account for a wide range of relative thickness ratios and
for possible strong mismatch in the elasticity coefficients, considering the simplest scaling
laws that allow us to explore the elastic couplings yielding linear elastic foundations as an
asymptotic result. Hence, we perform a parametric study, letting material and geometric
parameters vary, for a fixed a scaling law for the intensities of the external loads. More
specifically, we assume the following hypotheses.

Hypothesis 1 (Scaling of the external load) Given functions pε ∈ L2(ω), Φε ∈ L2(Ωε), we
assume that the magnitude of the external loads scale as:

pε(x) = ε2p(x), Φε(x) =
{

εΦf (x), if x ∈ Ωf

0, if x ∈ Ωb

(3)

with Φf ∈ L2(Ωε
f ;R2×2).

Remark 1 This choice of the exponents of the loads in the film is suggested by a simple
scaling argument in order to observe possible coupling between in-plane and out-of-plane
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displacements. Indeed, a rough estimate suggests that the order of magnitude of the work
of the two external loads in the film is |Ωε

f |‖Φε‖L2(Ωε
f

) and |ω|‖pε‖L2(ω). Using (2) and
the definition of Ωε

f , the estimate gives O(|Ωε
f |‖Φε‖L2(Ωε

f
)) = O(|ω|‖pε‖L2(ω)) = ε. The

vanishing inelastic deformation in the bonding layer in (3) can be interpreted in asymptotic
sense. Indeed, the characterization can be slightly extended to include sufficiently rapidly
vanishing inelastic deformations, i.e., with ε1+rΦb , if x ∈ Ωb , for r > 0. This setting does
not provide qualitatively different results, and further lengthens computations. The assump-
tion Φb = 0 does not restrict the generality of our arguments. Note that the choice of the
scaling law in the bonding layer reflects our main aim to study loads localized in the film,
indeed ‖Φε‖L2(Ωb) � ‖Φε‖L2(Ωf ) for sufficiently small ε, since r > 0. Other scalings which,
for instance, privilege one load term over the other, provide limit models whose in-plane
and out-of-plane displacements are possibly uncoupled at first order and offer a less rich
scenario. We can slightly generalize the characterization (3), owing to the linearity of the
problem. In fact, up to a suitable rescaling of the unknown displacement and of the energy,
the elasticity problem is identical under a more general scaling law of the type: p̃ε = εtpε ,
Φ̃ε = εtΦε for t ∈ R. As a consequence, only the relative order of magnitude of the elas-
tic load potentials associated to the two loading modes is relevant. Hence, without loss of
generality, we can take t = 0.

Hypothesis 2 (Scaling of material properties) Given a constant q ∈ R, we assume that the
elastic moduli of the layers scale as:

Eε
b

Eε
f

= �Eεq,
νε

b

νε
f

= �ν, (4)

where �E and �ν are non-dimensional coefficients independent of ε.

Remark 2 This assumption could be read in terms of the Lamé parameters. Using the stan-
dard relations:

E = μ(3λ + 2μ)

λ + μ
, and ν = λ

λ + 2μ
,

we get that the scaling law (4) can be put under the form:

μb

μf

= �μεq,
λε

b

λε
f

= �λε
q,

where �μ,�λ ∈ R
+ are independent of ε. This, in turn, implies that both film to bonding

layer ratios of the Lamé parameters scale as εq , i.e. there is no strong mismatch between the
Lamé parameters of the layers.

As a consequence of (4), the bonding layer is stiffer than the film (resp. more compliant)
for q > 0 (resp. q < 0); the bonding layer is as stiff as film if q = 0.

The study of equilibrium configurations corresponding to admissible global minimizers
of the energy leads us to minimize E(u) over the vector space of kinematically admissible
displacements C0(Ω).

Plugging the scalings above, the problem Pε(Ω
ε) of finding the equilibrium configura-

tion of the multilayer system depends implicitly on ε via the assumed scaling laws, is defined
on families of ε-dependent domains (Ωε)ε>0 = (Ωε

f ∪ Ωε
b)ε>0, and reads:

Pε

(
Ωε

) : Find uε ∈ C0
(
Ωε

)
minimizing Ẽε(u) among v ∈ C0

(
Ωε

)
. (5)
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Because the family of domains (Ωε)ε>0 vary with ε in Pε(Ω
ε), we perform the classical

anisotropic rescaling in order to state a new problem Pε(ε;Ω), equivalent to Pε(Ω
ε), in

which the dependence upon ε is explicit and is stated on a fixed domain Ω . Denoting by
x ′ = (x1, x2) ∈ ω and by x̃ ′ = (x̃1, x̃2), the following anisotropic scalings:

πε(x) :
{

x = (
x ′, x3

) ∈ Ωf �→ (
x̃ ′, εx̃3

) ∈ Ωε
f ,

x = (
x ′, x3

) ∈ Ωb �→ (
x̃ ′, εp+1x̃3

) ∈ Ωε
b ,

(6)

map the domains Ωε
f and Ωε

b into Ωf = ω × [0, hf ) and Ωb = ω × (−hb,0). As a con-
sequence of the domain mapping, the components of the linearized strain tensor eij (v) =
eε
ij (v ◦ π(x)) scale as follows:

eε
αβ(v) �→ eαβ(v), eε

33(v) �→ 1

ε
e33(v), eε

α3(v) �→ 1

2

(
1

ε
∂3vα + ∂αv3

)

in Ωε
f , (7)

eε
αβ(v) �→ eαβ(v), eε

33(v) �→ 1

εp−1
e33(v), eε

α3(v) �→ 1

2

(
1

εp−1
∂3vα + ∂αv3

)

in Ωε
b .

(8)

Finally, the space of kinematically admissible displacements reads

C0(Ω) := {
vi ∈ H 1(Ω), vi = 0 a.e. on ω × {−hb}

}
.

It is easy to verify that the asymptotic minimization problem minu∈C0(Ω) Êε(u) where
Êε(u) = 1

ε
Ẽ(u ◦ πε(x)) yields the trivial convergence result uα = limε→0 uε

α = 0. This is
to say that the in-plane components of the (weak limit) displacement are smaller than order
zero in ε. After having established this result, the analysis should be restarted anew to deter-
mine the convergence properties of the higher order terms. Here, we skip that preliminary
step and directly investigate the asymptotic behavior of the next order in-plane displace-
ments, that is to say of fields ũε that admit the following scaling:

ũε = (
εuε

α, u
ε
3

) ∈ C0(Ω). (9)

Remark 3 We stress here that the latter scaling is indeed a result, which strongly depends
upon the assumed scaling of external loads. In the present case, we observe coupling be-
tween in-plane displacements of order 1 and out-of-plane displacements of order 0. As sug-
gested in Remark 1, different choices than (3) may lead to different scalings of the principal
order of displacements, and possibly different limit models.

Finally, dropping the tilde for the sake of simplicity, the parametric, asymptotic elasticity
problem, stated on the fixed domain Ω , using the scaling (9) and in the regime of Hypothe-
sis 2, reads:

Pε(ε;Ω) : Find uε ∈ C0(Ω) minimizing Eε(v) among v ∈ C0(Ω), (10)

where, upon introducing the non-dimensional parameters

γ := p + q

2
, δ := q − p

2
− 1, γ, δ ∈ R, (11)
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the scaled energy Eε(u) = 1
ε3 Ẽ(u ◦ πε(x)) takes the following form:

Eε(u)

= 1

2

∫

Ωf

{

(λf + 2μf )

(
e33(u)

ε2

)2

+ 2μf

∣
∣
∣
∣
∂3uα

ε
+ ∂αu3

ε

∣
∣
∣
∣

2

+ 2λf

e33(u)

ε2
eαα(u)

+ 2μf

∣
∣eαβ(u)

∣
∣2 + λf

(
eαα(u)

)2
}

dx

+ 1

2

∫

Ωb

{
(λb + 2μb)

(
εδ−1e33(u)

)2 + 2μb

∣
∣εδ∂3uα + εγ−1∂α

∣
∣2

+ 2λbε
δ−1e33(u)εγ eαα(u) + 2μb

∣
∣εγ eαβ(u)

∣
∣2}

dx

−
∫

Ωf

(2μf Φ33 + λf Φαα)
e33(u)

ε2
dx

−
∫

Ωf

{
λf (Φαα + Φ33)eββ(u) + 2μf Φαβeαβ(u)

}
dx −

∫

ω+
pu3dx ′ + F. (12)

In the last expression F := 1
2

∫
Ωf

(Af (x))ijhkΦij (x) : Φhk(x)dx is a residual (constant)
energy due to inelastic strains. The non-dimensional parameters γ and δ respectively repre-
sent the order of magnitude of the ratio between the membrane strain energy of the bonding
layer and that of the film, and the order of magnitude of the ratio between the transverse
strain energy of the bonding layer and the membrane energy of the film. They define a phase
space, which we represent in Fig. 2.

The open half plane γ − δ < 0 corresponds to three-dimensional systems that become
more and more slender as ε → 0, i.e. they behave as thin bars, because the diameter L is
fixed and height blows up. Their asymptotic study conducts to establishing reduced, one-
dimensional (beam-like) theories and falls outside of the scope of the present study. The
locus γ − δ = 0 identifies the systems that stay three dimensional, as ε → 0, because the
thickness of the bonding layer is always of order one (recall that Ωε

b = ω × [−εp+1hb,0]
becomes independent of ε for γ − δ = 0). In order to explore reduced, two-dimensional
theories, we focus on the open half-plane identified by:

γ − δ > 0. (13)

The first two integrals in the scaled energy (12) are quadratic integrals with respect to the
components of the deformation strain tensor, and represent the elastic energy contributions
of the film and bonding layer, respectively. The integrands are collected by the same pow-
ers of ε, from the most to the least singular term. With reference with the film energy, the
first integrand term is the energy density associated to the variation of the vertical compo-
nent of displacements along the direction transverse to the middle surface ω, i.e., transverse
stretch. The second addend is the shear energy density. The third term is due to the Pois-
son coupling between the in-plane and out-of-plane variations of displacements. Finally, the
last two addends are the energy density of in-plane variations of in-plane displacements,
henceforth referred to as membrane deformations (to which corresponds a membrane en-
ergy). The bonding layer energy terms have analogous interpretation. Finally, the last three
integrals in the energy are the linear terms associated to the work of external loads, namely
the inelastic deformations Φ and the surface pressure p. In what follows, we give a brief
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Fig. 2 Phase diagram in the space (p − q), where p and q define the scaling law of the relative thickness
and stiffness of the layers, respectively. Three-dimensional systems within the unshaded open region p < −1
become more and more slender as ε → 0. The square-hatched region represents systems behaving as “rigid”
bodies, under the assumed scaling hypotheses on the loads. Along the open half line (displayed with a thick
solid and dashed stroke) (δ,0), δ > 0 lay systems whose limit for vanishing thickness leads to a “membrane
over in-plane elastic foundation” model, see Theorem 1. In particular, the solid segment 0 < γ < 1 (resp.
dashed open line γ > 1) is related to systems in which bonding layer is thinner (resp. thicker) than the film,
for γ = 1 (black square) their thickness is of the same order of magnitude. All systems within the horizontally
hatched region γ > 0, 0 < δ ≤ 1, δ > γ behave, in the vanishing thickness limit, as “plates over out-of-plane
elastic foundation”, see Theorem 1

and non-technical account as well as a mechanical interpretation of the dimension reduction
results collected in Theorems 1 and 2, with reference to the terms in energy defined by (12).

For a given value of γ and increasing values of δ we explore systems in which the order of
magnitude of the energy associated to transverse variations of displacements in the bonding
layer (of order εδ−1) progressively increases relatively to the membrane energy of the film
(of order 0 with respect to ε). We hence encounter three distinct regions characterized by
qualitatively different elastic couplings. Their boundaries are determined by the value of δ,
as is δ that determines the convergence properties of scaled displacements (9) at first order.
This argument will be made rigorous in Lemma 1.

For δ < 0 the system is “too stiff” (relatively to the selected intensity of loads). All energy
components, both in the film and in the bonding layer are singular and vanish as ε → 0
since, on the other hand, the energy stays finite. Consequently, both in-plane and transverse
components of displacement vanish in the limit. Equivalently, their order of magnitude is
higher than zero in ε.

For δ = 0, the shear energy of the bonding layer is of the same order of magnitude as the
membrane energy of the film, namely, order 0 with respect to ε. Consequently, elastic cou-
pling intervenes between these two terms resulting in that the first order in-plane components
of the limit displacements are of order zero. Moreover, the transverse stretch energy of the
bonding layer is singular and its membrane energy is infinitesimal: the first vanishes and the
latter is negligible as ε → 0; the bonding layer undergoes purely shear deformations. More
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specifically, the condition of continuity of displacement at the interface ω+ and the boundary
condition on ω−, both fix the intensity of the shear in the bonding layer. As a consequence,
the transverse profile of equilibrium (optimal) displacements is linear and the shear energy
term in the bonding layer contributes to the asymptotic limit energy as a “linear, in-plane,
elastic foundation”. On the other hand, because transverse stretch is asymptotically vanish-
ing, out-of-plane displacements are constant along the thickness of the multilayer and are
determined by the boundary condition on ω−. Hence, although Kirchhoff-Love coupling—
i.e., shear-free—between components of displacements is allowed in the film, bending ef-
fects do not emerge in the first order limit model. More precisely, we are able to prove the
following theorem:

Theorem 1 (Membrane over in-plane elastic foundation) Assume that Hypotheses 1 and 2
hold and let uε be the solution of Problem Pε(ε;Ω) for δ = 0, then

(i) there exists a function u ∈ H 1(Ωf ;R3) such that uε → u strongly in H 1(Ωf ;R3);
(ii) u3 ≡ 0 and ∂3uα ≡ 0 in Ω , so that u can be identified with a function in H 1(ω,R2),

which we still denote by u, and such that for all vα ∈ H 1(ω,R2):
∫

ω

{
2λf μf hf

λf + 2μf

eαα(u)eββ(v) + 2μf hf eαβ(u)eαβ(v) + 2μb

hb

uαvα

}

dx ′

=
∫

ω

{
(c1Φ̄αα + c2Φ̄33)eββ(v) + c3Φ̄αβeαβ(v)

}
dx ′, (14)

where Φ̄ij = ∫ hf

0 Φijdx3 are the averaged components of the inelastic strain over the
film thickness, and coefficients ci are determined explicitly as functions of the material
parameters:

c1 = 2λf μf

λf + 2μf

, c2 = λ2
f

λf + 2μf

, and c3 = 2μf . (15)

The last equation is interpreted as the variational formulation of the equilibrium problem
of a linear elastic membrane over a linear, in-plane, elastic foundation.

Remark 4 The quantitative determination of the effective limit coefficients in (15) cannot
be recovered without further assumptions from the solution of a simple elasticity problem.
They indeed arise from the nontrivial coupling of the energy components, and require the
thorough asymptotic analysis. Furthermore, the qualitative determination of the limit strains,
from the characterization of limit displacements (part (ii) in the theorem) corresponds to that
of “plain strains”, associated to the existence of a principal axis of stretch and a deformation
on the orthogonal plane whose change of specific volume is independent of the coordinate
on that axis. See [5] for a characterization under weak regularity requirements.

In order to highlight the inherent size effect emerging in the limit energy it suffices to
normalize the domain ω by rescaling the in-plane coordinates by a factor L = diam(ω).
Hence, introducing the new spatial variable y := x ′/L the equilibrium equations read:

∫

ω̄

{

eαβ(u)eαβ(v) + λf

λf + 2μf

eαα(u)eββ(v) + L2

�2
e

uαvα

}

dy ′

=
∫

ω̄

{
(ĉ1Φ̄αα + ĉ2Φ̄33)eββ(v) + ĉ3Φ̄αβeαβ(v)

}
dy ′, ∀vα ∈ H 1(ω), (16)
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where the internal elastic length scale of the membrane over in-plane foundation system is:

�e =
√

μf

μb

hf hb, (17)

and ĉi = ci

2μf hf
and ω̄ = ω/diam(ω) is of unit diameter. The presence of the elastic founda-

tion, due to the non-homogeneity of the membrane and foundation energy terms, introduces
a competition between the material, inherent, characteristic length scale �e and the diameter
of the system L and their ratio weights the elastic foundation term.

For δ = 1, the transverse stretch energy of the bonding layer is of the same order as the
membrane energy of the film and both shear and membrane energy of the bonding layer are
infinitesimal. The bonding layer can no longer store elastic energy by the means of shear
deformations and in-plane displacements can undergo “large” transverse variations. This
mechanical behavior is interpreted as that of a layer allowed to “slide” on the substrate, still
satisfying continuity of transverse displacements at the interface ω−. The loss of control (of
the norm) of in-plane displacements within the bonding layer is due to the positive value
of δ. This requires enlarging the space of kinematically admissible displacements by relax-
ing the Dirichlet boundary condition on in-plane components of displacement on ω−. This
allows us to use a Korn-type inequality to infer their convergence properties. Conversely,
transverse displacements stay uniformly bounded within the entire system, the deforma-
tion mode of the bonding layer is a pure transverse stretch. In this regime, the value of the
transverse strain is fixed by the mismatch between the film’s and substrate’s displacement,
analogously to the shear term in the case of the in-plane elastic foundation. Finally, from the
optimality conditions (equilibrium equations in the bonding layer) follows that the profile
of transverse displacements is linear and, owing to the continuity condition on ω0, they are
coupled to displacement of the film. The latter undergoes shear-free (i.e., Kirchhoff-Love)
deformations and is subject to both inelastic strains and the transverse force. This regime
shows a stronger coupling between in-plane and transverse displacements of the two layers.
The associated limit model is that of a linear plate over a transverse, linear, elastic founda-
tion. The qualitative behavior of system laying in the open region γ, δ ∈ (δ,∞) × (0,1) is
analogous to the limit case δ = 1, although the order of magnitude of transverse displace-
ments in the bonding layer differs by a factor ε1−δ . More precisely, we are able to prove the
following theorem:

Theorem 2 (Plate over linear transverse elastic foundation) Assume that Hypotheses 2 and 1
hold and let uε denote the solution of Problem Pε(ε;Ω) for 0 < δ ≤ 1, then:

(i) the principal order of the displacement admits the scaling uε = (εuα(ε), ε
1−δu3(ε));

(ii) there exists a function u ∈ ĈKL(Ωf ) such that uε → u converges strongly in H 1(Ωf );
(iii) the limit displacement u belongs to the space ĈKL(Ω) and is a solution of the three-

dimensional variational problem:
Find u ∈ ĈKL(Ω) such that:

∫

Ωf

2λf μf

λf + 2μf

eαα(u)eββ(v) + 2μf eαβ(u)eαβ(v)dx

+
∫

Ωb

4μb(λb + μb)

λb + 2μb

e33(u)e33(v)dx

=
∫

Ωf

(c1Φαα + c2Φ33)eββ(v) + c3Φαβeαβ(v)dx +
∫

ω+
pv3dx ′, (18)
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for all v ∈ ĈKL(Ω), with:

c1 = 2λf μf

λf + 2μf

, c2 = λ2
f

λf + 2μf

, and c3 = 2μf ; (19)

(iv) there exist two functions ζα ∈ H 1(ω) ∩ R(Ωf )⊥ and ζ3 ∈ H 2(ω) such that the limit
displacement field can be written under the following form:

uα =
{

ζα(x
′), in Ωf

ζα(x
′) + (x3 + hb)∂αζ3(x

′), in Ωb,
and u3 = ζ3

(
x ′) in Ω,

and for all ηα ∈ H 1(ω) ∩R(Ωf )⊥, η3 ∈ H 2(ω) satisfies:

∫

ω

{
2λf μf

λf + 2μf

eαα(η)eββ(ζ ) + 2μf eαβ(η)eαβ(ζ )

}

dx ′

=
∫

ω

(c1Φ̄αα + c2Φ̄33)eββ(ζ ) + c3Φ̄αβeαβ(ζ )dx ′,

∫

ω

{
λf μf

3(λf + 2μf )
(∂ααη3∂ββζ3) + μf

3
∂αβη3∂αβζ3 + 4μb(λb + μb)

λb + 2μb

η3ζ3

}

dx ′

=
∫

ω

pζ3dx ′.

(20)

Equation (18) is interpreted as the variational formulation of the three-dimensional equi-
librium problem of a linear elastic plate over a linear, transverse, elastic foundation,
whereas Eqs. (20) are equivalent coupled, two-dimensional, flexural and membrane equa-
tions of a plate over a linear, transverse, elastic foundation in which components ηp and η3

are respectively the in-plane and transverse components of the displacement of the middle
surface of the film ω × {hf /2}. This latter model is, strictly speaking, the two-dimensional
extension of the Winkler model presented in the introduction. Note that the solution of the
in-plane problem above is unique only up to an infinitesimal rigid movement. This is a con-
sequence of the loss of the Dirichlet boundary condition on for in-plane displacements in the
limit problem. In addition, no further compatibility conditions are required on the external
load, since it exerts zero work on infinitesimal in-plane rigid displacements. Similarly to the
in-plane problem, the non-dimensional formulation of the equilibrium problems highlights
the emergence of an internal, material length scale. Introducing the new spatial variable
y ′ := x ′/L where L = diam(ω), the equilibrium equations read:

∫

ω̄

{

eαβ(η)eαβ(ζ ) + λf

λf + 2μf

eαα(η)eββ(ζ )

}

dx ′

=
∫

ω̄

(ĉ1Φ̄αα + ĉ2Φ̄33)eββ(ζ )ĉ3Φ̄αβeαβ(ζ )dy ′,

∫

ω̄

{

∂αβη3∂αβζ3 + λf

λf + 2μf

∂ααη3∂ββζ3 + L2

�̃2
e

η3ζ3

}

dx ′

=
∫

ω̄

p̂ζ3dy ′, ∀ζp ∈ H 1(ω), ζ3 ∈ H 2(ω),

(21)
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where the internal elastic length scale of the plate over transverse foundation system is:

�̃e =
√

μf (λb + 2μb)

12μb(λb + μb)
hf hb, (22)

p̂ = p

μf hf /3 , and ci, ω̄ are the same as the definitions above.
The next section is devoted to the proof of the theorems.

3 Proof of the Dimension Reduction Theorems

3.1 Preliminary Results

It is useful to introduce the notion of scaled strains. In the film, to an admissible field v ∈
H 1(Ωf ;R3) we associate the sequence of ε-indexed tensors κε(v) ∈ L2(Ωf ;R2×2

sym ) whose
components are defined by the following relations:

κε
33(v) = e33(v)

ε2
, κε

3α(v) = eα3(v)

ε
, and κε

αβ(v) = eαβ(v). (23)

In the bonding layer, to an admissible field v ∈ {v̂i ∈ H 1(Ωb), v̂i = 0 on ω−} we associate
the tensor κ̂ε(v) ∈ L2(Ωb;R2×2

sym ), whose components are defined by the following relations:

κ̂ε
33(v) = εδ−1e33(v), κ̂ε

3α(v) = 1

2

(
εδ∂3vα + εγ−1∂αv3

)
, and κ̂ε

αβ(v) = εγ eαβ(v).

(24)
Rewriting the energy (12) with the definitions above, the rescaled energy Eε(v) reads:

Eε(v) = 1

2

∫

Ωf

λf

∣
∣κε

33(v) + κε
αα(v)

∣
∣2 + 2μf

∣
∣κε

3α(v)
∣
∣2 + 2μf

(∣
∣κε

33(v)
∣
∣2 + ∣

∣κε
αβ(v)

∣
∣2)

dx

+ 1

2

∫

Ωb

λb

∣
∣κ̂ε

33(v) + κ̂ε
αα(v)

∣
∣2 + 2μb

∣
∣κ̂ε

3α(v)
∣
∣2 + 2μb

(∣∣κ̂ε
33(v)

∣
∣2 + ∣

∣κ̂ε
αβ(v)

∣
∣2)

dx

−
∫

Ωf

(2μf Φ33 + λf Φαα)κ
ε
33(v) + λf (Φαα + Φ33)κ

ε
ββ(v) + 2μf Φαβκε

αβ(v)dx

−
∫

ω+
pv3dx ′ +

∫

Ω

(Af )ijhkΦij : Φhkdx. (25)

The solution of the convex minimization problem Pε(ε;Ω) is also the unique solution of
the following weak form of the first order stability conditions:

P(ε;Ω) : Find uε ∈ C0(Ω) such that E′
ε

(
uε

)
(v) = 0, ∀v ∈ C0(Ω). (26)

Here, by E′
ε(u)(v) we denote the Gateaux derivative of Eε in the direction v. For ease of

reference, its expression reads:

E′
ε(u)(v)

=
∫

Ωf

Af κε(u) : κε(v)dx +
∫

Ωb

Abκ̂
ε(u) : κ̂ε(v)dx −

∫

Ωf

AΦε : κε(v)dx −
∫

ω+
pv3dx ′
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=
∫

Ωf

{(
(λf + 2μf )κε

33(u) + λf κε
αα(u)

)
κε

33(v) + 2μf κε
3α(u)κε

3α(v)
}
dx

+
∫

Ωf

{
λf

(
κε

33(u) + κε
αα(u)

)
κε

ββ(v) + 2μf κε
αβ(u)κε

αβ(v)
}
dx

+
∫

Ωb

{(
(λb + 2μb)κ̂

ε
33(u) + λbκ̂

ε
αα(u)

)
κ̂ε

33(v) + 2μbκ̂
ε
3α(u)κ̂ε

3α(v)
}
dx

+
∫

Ωb

{
λb

(
κ̂ε

33(u) + κ̂ε
αα(u)

)
κ̂ε

ββ(v) + 2μbκ̂
ε
αβ(u)κ̂ε

αβ(v)
}
dx

−
∫

Ωf

{
(2μf Φ33 + λf Φαα)κ

ε
33(v) + λf (Φαα + Φ33)κ

ε
ββ(v) + 2μf Φαβκε

αβ(v)
}
dx

−
∫

ω+
pv3dx ′. (27)

We establish preliminary results of convergence of scaled strains, using standard argu-
ments based on a-priori energy estimates exploiting first order stability conditions for the
energy. To this end, we need three straightforward consequences of Poincaré’s inequality:
one along a vertical segment, one on the upper surface and one in the bulk, which we collect
in the following lemma.

Lemma 1 (Poincaré-type inequalities) Let u ∈ L2(ω) × H 1(−hb,hf ) with u(x ′,−hb) = 0,
a.e. x ′ ∈ ω. Then there exist two constants C1 depending only on Ω and C2 depending only
on hf and hb such that:

∥
∥u

(
x ′, ·)∥∥

(−hb,hf )
≤ C1(hb, hf )

(∥∥∂3u
(
x ′, ·)∥∥

(0,hf )
+ ∥

∥∂3u
(
x ′, ·)∥∥

(−hb,0)

)
a.e. x ′ ∈ ω,

(28)

‖u‖ω+ ≤ C2(Ω)
(‖∂3u‖Ωf

+ ‖∂3u‖Ωb

)
, (29)

‖u‖Ω ≤ C2(Ω)
(‖∂3u‖Ωf

+ ‖∂3u‖Ωb

)
. (30)

Proof Let u ∈ L2(ω) × H 1(−1,1) be such that u(x ′,−hb) = 0 for a.e. x ′ ∈ ω. Then

∣
∣u

(
x ′, x3

)∣∣ = ∣
∣u

(
x ′, x3

) − u
(
x ′,−hb

)∣∣ =
∣
∣
∣
∣

∫ x3

−hb

∂3u
(
x ′, s

)
ds

∣
∣
∣
∣

≤
∫ hf

−hb

∣
∣∂3u

(
x ′, s

)∣∣ds

≤ ‖∂3u‖L1(−hb,hf )

≤ (hf + hb)
1/2‖∂3u‖(−hb,hf ).

Consequently, on segments {x ′} × (−hb,hf ):

∥
∥u

(
x ′, ·)∥∥

(−hb,hf )
≤

(∫ hf

−hb

(hf + hb)‖∂3u‖2
(−hb,hf )

)1/2

≤ (hf + hb)‖∂3u‖(−hb,hf ),
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which gives the first inequality. On the upper surface ω+:

‖u‖ω+ ≤
(∫

ω+
(hf + hb)

1/2‖∂3u‖2
(−hb,hf )

)1/2

≤ |Ω|‖∂3u‖Ω,

gives the second inequality. Finally, in the bulk:

‖u‖Ω =
(∫

Ω

|u|2dx

)1/2

≤
(∫

ω

∫ hf

−hb

(hf + hb)
1/2‖∂3u‖2

L2(−hb,hb)

)1/2

≤ |Ω|‖∂3u‖Ω,

which completes the claim. �

Remark 5 The crucial element in the above Poincaré-type inequalities is the existence of
a Dirichlet boundary condition at the lower interface. This allows to derive bounds on the
components of displacements by integration over the entire surface ω, of the estimates con-
structed along segments {x ′} × (−hb,hf ).

Lemma 2 (Uniform bounds on the scaled strains) Suppose that Hypotheses 1 and 2 apply,
and that δ ≤ 1. Let uε be the solution of P(ε;Ω). Then, there exist constants C1,C2 > 0
such that for sufficiently small ε,

∥
∥κε

(
uε

)∥∥
Ωf

≤ C1, (31)
∥
∥κ̂ε

33

(
uε

)∥∥
Ωb

≤ C2. (32)

Proof Recalling that �μ = μb/μf we have:

2μf

(∥
∥κε

(
uε

)∥
∥2

Ωf
+ �μ

∥
∥κ̂ε

33

(
uε

)∥
∥2

Ωb

)

= 2μf

∥
∥κε

(
uε

)∥∥2

Ωf
+ 2μb

∥
∥κ̂ε

33

(
uε

)∥∥2

Ωb

≤ 2μf

∥
∥κε

(
uε

)∥
∥2

Ωf
+ 2μb

∥
∥κ̂ε

(
uε

)∥
∥2

Ωb

≤
∫

Ωf

Af κε
(
uε

) : κε
(
uε

)
dx +

∫

Ωb

Abκ̂
ε
(
uε

) : κ̂ε
(
uε

)
dx,

where we have used the fact that 2μaijaij ≤ Aa : a, which holds when A is a Hooke tensor,
for all symmetric tensors a, see [7].

Plugging v = uε in (26), we get that
∫

Ωf

Af κε
(
uε

) : κε
(
uε

)
dx +

∫

Ωb

Abκ̂
ε
(
uε

) : κ̂ε
(
uε

)
dx

=
∫

Ωf

Af Φε : κε
(
uε

)
dx +

∫

ω+
pεuε

3dx ′,

so that there exists a constant C such that
∥
∥κε

(
uε

)∥
∥2

Ωf
+ �μ

∥
∥κ̂ε

33

(
uε

)∥
∥2

Ωb
≤ C

(∥
∥κε

(
uε

)∥
∥

Ωf
+ ∥

∥uε
3

∥
∥

ω+
)
,
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and for another constant (still denoted by C),

∥
∥κε

(
uε

)∥
∥2

Ωf
+ ∥

∥κ̂ε
33

(
uε

)∥
∥2

Ωb
≤ C

(∥
∥κε

(
uε

)∥
∥

Ωf
+ ∥

∥uε
3

∥
∥

ω+
)
.

Using the identity (a + b)2 ≤ 2(a2 + b2), we get that

(∥∥κε
(
uε

)∥∥
Ωf

+ ∥
∥κ̂ε

33

(
uε

)∥∥
Ωb

)2 ≤ C
(∥∥κε

(
uε

)∥∥
Ωf

+ ∥
∥uε

3

∥
∥

ω+
)
,

which combined with (29) gives that

(∥∥κε
(
uε

)∥∥
Ωf

+ ∥
∥κ̂ε

33

(
uε

)∥∥
Ωb

)2 ≤ C
((

1 + ε2
)∥∥κε

(
uε

)∥∥
Ωf

+ ε1−δ
∥
∥κ̂ε

33

(
uε

)∥∥
Ωb

)
.

Recalling finally that δ ≤ 1, we obtain (31) and (32) for sufficiently small ε. �

We are now in a position to prove the main dimension reduction results.

3.2 Proof of Theorem 1

For ease of read, the proof is split into several steps.

(i) Convergence of strains. Plugging (23) and (24) in (31) and (32), we have that

∥
∥eε

33

(
uε

)∥
∥

Ωf
≤ Cε2,

∥
∥eε

α3

(
uε

)∥
∥

Ωf
≤ Cε, and

∥
∥eε

αβ

(
uε

)∥
∥

Ωf
≤ C; (33)

and in the bonding layer:

∥
∥eε

33

(
uε

)∥∥
Ωb

≤ Cε,
∥
∥∂3u

ε
α

∥
∥

Ωb
≤ C,

εγ−1
∥
∥∂αu

ε
3

∥
∥

Ωb
≤ C and εγ

∥
∥eαβ

(
uε

)∥
∥

Ωb
≤ C.

(34)

These uniform bounds imply that there exist functions eαβ ∈ L2(Ωf ) such that
eε
αβ ⇀ eαβ weakly in L2(Ωf ), that eε

i3(u
ε) → 0 strongly in L2(Ωf ) and in particular

that ‖∂3u
ε
α‖Ωf

≤ Cε. Moreover eε
33(u

ε) → 0 strongly in L2(Ωb).
(ii) Convergence of scaled displacements. Using Lemma 1 (Eq. (30)) combined with (33)

and (34) we can write:

∥
∥uε

3

∥
∥

Ω
≤ C

(∥∥e33

(
uε

)∥∥
Ωf

+ ∥
∥e33

(
uε

)∥∥
Ωb

) ≤ C
(
ε2 + ε

) ≤ Cε, (35a)
∥
∥uε

α

∥
∥

Ω
≤ C

(∥
∥∂3u

ε
α

∥
∥

Ωf
+ ∥

∥∂3u
ε
α

∥
∥

Ωb

) ≤ C(ε + 1) ≤ C. (35b)

In addition, recalling from (33) that all components of the strain are bounded within
the film, we infer that a function u ∈ H 1(Ωf ) exists such that

uε → u strongly in L2(Ωf ), and uε ⇀ u weakly in H 1(Ωf ). (36)

Similarly, by the uniform boundedness of uε in L2(Ωb), it follows that u can be ex-
tended to a function in L2(Ω) such that

uε ⇀ u weakly in L2(Ωb). (37)
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For a.e. x ′ ∈ ω, we define the field vε
x′(x3) = uε(x ′, x3). Then vε

x′(x3) ∈ H 1(−hb,hf )

and, from the convergences established for uε , it follows that there exists a function
v ∈ H 1(−hb,hf ) such that vε

x′ ⇀ v weakly in H 1(−hb,hf ), for a.e. x ′ ∈ ω.
Finally, from the first and second estimate in Eq. (33), follows that the limit u is such

that ei3(u) = 0, i.e., the limit displacement belongs to the Kirchhoff-Love subspace
CKL(Ωf ) of sufficiently smooth shear-free displacements in the film. Moreover, since
the limit u is such that ∂3uα = 0 the in-plane limit displacement uα is independent of
the transverse coordinate, that is to say:

uε
α ⇀ uα weakly in H 1(Ωf ), (38)

where uα is independent of x3, and hence it can be identified with a function
uα ∈ H 1(ω), which we shall denote by the same symbol.

(iii) Optimality conditions of the scaled strains. The components of the weak limits
κij ∈ L2(Ωf ) of subsequences of κε(uε) satisfy:

k33 = − λf

λf + 2μf

kαα + 2μf

λf + 2μf

Φ33 + λf

λf + 2μf

Φαα,

k3α = 0, and kαβ = eαβ(u).

(39)

As a consequence of the uniform boundedness of sequences κε(u)ε and κ̂ε(u)ε in
L2(Ωf ;R2×2

sym ) and L2(Ωb;R2×2
sym ) established in Lemma 2, it follows that there exist

functions k ∈ L2(Ωf ,R2×2
sym ) and k̂ ∈ L2(Ωb;R2×2

sym ) such that:

κε(u)ε ⇀ k weakly in L2
(
Ωf ,R2×2

sym

)
, and κ̂ε(u)ε ⇀ k̂ weakly in L2

(
Ωb,R

2×2
sym

)
.

(40)
The first two relations in (39) descend from optimality conditions for the rescaled
strains. Indeed, taking in the variational formulation of the equilibrium problem test
fields v such that vα = 0 in Ω , v3 = 0 in Ωb and v3 ∈ H 1(Ωf ) with v3 = 0 on ω0 and
multiplying by ε2, we get:

∫

Ωf

(
(λf + 2μf )κε

33 + λf κε
αα

)
e33(v)dx

=
∫

Ωf

{
(2μf Φ33 + λf Φαα)e33(v)

}
dx

+ ε

∫

Ωf

2μf κε
3α∂αv3 + ε2

∫

ω+
pv̂3dx ′. (41)

Owing to the convergences established above for κε(u)ε , κ̂ε(u)ε , since ∂αv3 and v3 are
uniformly bounded, we can pass to the limit ε → 0 and obtain:

∫

Ωf

(
(λf + 2μf )k33 + λf kαα

)
e33(v)dx =

∫

Ωf

(2μf Φ33 + λf Φαα)e33(v)dx.

From the arbitrariness of v, using arguments of the calculus of variations, we localize
and integrate by parts further enforcing the boundary condition on ω0. The optimal-
ity conditions in the bulk and the associated natural boundary conditions for the limit
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rescaled transverse strain κ33 follow:

k33 = − λf

λf + 2μf

kαα + 2μf

λf + 2μf

Φ33 + λf

λf + 2μf

Φαα in Ωf , and

∂3k33 = 0 on ω+.

(42)

Similarly, consider test fields v ∈ H 1(Ωf ) such that v3 = 0 in Ω , vα = 0 in Ωb and
vα ∈ H 1(Ωf ) with vα = 0 on ω0. Multiplying the first order optimality conditions by ε,
they take the following form:

∫

Ωf

2μf κε
3α∂3vαdx = ε

∫

Ωf

{
λf

(
κε

33 + κε
αα

)
eββ(v) + 2μf κε

αβeαβ(v)
}
dx

+ ε

∫

Ωf

{
λf (Φαα + Φ33)eββ(v) + 2μf Φαβeαβ(v)

}
dx. (43)

The left-hand side converges to
∫

Ωf
2μf k3α∂3vα as ε → 0, whereas the right-hand side

converges to 0, since eαβ(v) is bounded. We pass to the limit for ε → 0 and obtain:

∫

Ωf

2μf k3α∂3vα = 0.

By integration by parts and enforcing boundary conditions we deduce that k3α = 0
in Ωb , giving the second equation in (42). Finally, by the definitions of rescaled
strains (23) and the convergence of strains established in step (i), we deduce that
kαβ = eαβ . But since uε ⇀ u in H 1(Ωf ) implies the weak convergence of strains, in
particular eαβ = eαβ(u), then

καβ = eαβ(u),

which completes the claim.
(iv) Limit equilibrium equations. Now, take test functions v in the variational formulation

of Eq. (26) such that ei3(v) = 0 in Ωf and e33(v) = 0 in Ωb , we get:

∫

Ωf

{
λf

(
κε

33 + κε
αα

)
eββ(v) + 2μf κε

αβeαβ(v)
}
dx

+
∫

Ωb

{
2μf κ̂ε

3α

(
uε

)
∂3vα + λb

(
κ̂ε

33

(
uε

) + κ̂ε
αα

(
uε

))
εeββ(v)

}
dx

=
∫

Ωf

{
λf (Φαα + Φ33)eββ(v) + 2μf Φαβeαβ(v)

}
dx. (44)

Since all sequences converge, we pass to the limit ε → 0 using the first two optimality
conditions in (42) and obtain:

∫

Ωf

{
2μf λf

λf + 2μf

kααeββ(v) + 2μf kαβeαβ(v)

}

dx +
∫

Ωb

{2μb∂3uα∂3vα}dx

=
∫

Ωf

{
(c1Φαα + c2Φ33)eββ(v) + c3Φαβeαβ(v)

}
dx (45)
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where c1, c2, c3 are the coefficients:

c1 = 2λf μf

λf + 2μf

, c2 = λ2
f

λf + 2μf

, and c3 = 2μf .

Using the last relation in (42) we obtain the variational formulation of the three-
dimensional elastic equilibrium problem for the limit displacement u, reading:

∫

Ωf

{
2λf μf

λf + 2μf

eαα(u)eββ(v) + 2μf eαβ(u)eαβ(v)

}

dx +
∫

Ωb

2μb∂3uα∂3vαdx

=
∫

Ωf

{
(c1Φαα + c2Φ33)eββ(v) + c3Φαβeαβ(v)

}
dx

∀v ∈ {
v̂i ∈ H 1(Ω), ei3(v̂) = 0 in Ωf , e33(v̂) = 0 in Ωb

}
. (46)

(v) Two-dimensional problem. Owing to (38), the in-plane limit displacement in the film is
independent of the transverse coordinate; let us hence consider test fields of the form:

vα

(
x ′, x3

) =
{

(x3+hb)

hb
vα(x

′), in Ωb

vα(x
′), in Ωf ,

where vα ∈ H 1(ω). (47)

They provide pure shear and shear-free deformations in the bonding layer and film,
respectively. For such test fields equilibrium equations read:

∫

ω

{∫ hf

0

(
2λf μf

λf + 2μf

eαα(u)eββ(v) + 2μf eαβ(u)eαβ(v)

)

dx3

+
∫ 0

−hb

2μb∂3uα∂3vαdx3

}

dx ′

=
∫

ω

{∫ hf

0

(
(c1Φαα + c2Φ33)eββ(v) + c3Φαβeαβ(v)

)
dx3

}

dx ′. (48)

Recalling that uα is independent of the transverse coordinate in the film, and that for
any admissible displacement v ∈ C0(Ω) the following holds:

∫ 0

−hb

∂3v
(
x ′, x3

)
dx3 = v

(
x ′,0

) − v
(
x ′,−hb

) = v
(
x ′,0

)
, a.e. x ′ ∈ ω,

we integrate (48) along the thickness and obtain:

∫

ω

{
2λf μf hf

λf + 2μf

eαα(u)eββ(v) + 2μf hf eαβ(u)eαβ(v) + 2μb

hb

uα

(
x ′,0

)
vα

}

dx ′

=
∫

ω

{
hf (c1Φ̄αα + c2Φ̄33)eββ(v) + hf c3Φ̄αβeαβ(v)

}
dx ′, ∀vα ∈ H 1(ω),

where overline denote averaging over the thickness: Φ̄ij := 1
hf

∫ hf

0 Φijdx3. The last
equation is the limit, two-dimensional, equilibrium problem for a linear elastic mem-
brane on a linear, in-plane, elastic foundation and concludes the proof of step (ii) in
Theorem 1.
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(vi) Strong convergence in H 1(Ωf ). In order to prove the strong convergence of uε in
H 1(Ωf ) it suffices to prove that ‖eε

αβ(uε) − eαβ(u)‖Ωf
→ 0 as ε → 0, as the strong

convergence in L2(Ωf ) of the components eε
i3(u

ε) has been already shown in step (iii)
of the proof. Exploiting the convexity of the elastic energy, we can write:

2μf

∥
∥eε

αβ

(
uε

) − eαβ(u)
∥
∥

Ωf

≤ 2μf

∥
∥κε

αβ − kαβ

∥
∥

Ω

≤
∫

Ωf

Af

(
κε

(
uε

) − k
) : (κε

(
uε

) − k
)
dx +

∫

Ωb

Ab

(
κ̂ε

(
uε

) − k̂
) : (κ̂ε

(
uε

) − k̂
)
dx

=
∫

Ωf

Af k : (k − 2κε
(
uε

))
dx +

∫

Ωb

Abk̂ : (k̂ − 2κ̂ε
(
uε

))
dx

+
∫

Ωf

Af κε
(
uε

) : κε
(
uε

)
dx +

∫

Ωb

Abκ̂
ε
(
uε

) : κ̂ε
(
uε

)
dx

=
∫

Ωf

Af k : (k − 2κε
(
uε

))
dx +

∫

Ωb

Abk̂ : (k̂ − 2κ̂ε
(
uε

))
dx +L

(
uε

)
,

where the first inequality holds from the definitions of rescaled strains, and the last
equality holds by virtue of the equilibrium equations (it suffices to take the admissible
uε as test field in Eq. (26)).

By the convergences established for κε(uε), κ̂ε(uε) and uε , we can pass to the limit
and get:

lim
ε→0

(
2μf

∥
∥eε

αβ

(
uε

) − eαβ(u)
∥
∥

Ωf

) ≤ L(u) −
∫

Ωf

Af k : kdx −
∫

Ωb

Abk̂ : k̂dx = 0

where the last equality gives the desired result and holds by virtue of the three-
dimensional variational formulation of the limit equilibrium equations (45). This con-
cludes the proof of Theorem 1. �

3.3 Proof of Theorem 2

For positive values of δ, elastic coupling intervenes between the transverse strain energy of
the bonding layer and the membrane energy of the film, responsible of the asymptotic emer-
gence of a reduced dimension model of a plate over an “out-of-plane” elastic foundation.

For ease of read, we first show the result for the case δ = 1, splitting the proof into several
steps.

(i) Convergence of strains. Using the definitions of rescaled strains (Eqs. (23) and (24)),
from the boundedness of sequences κε(uε) and κ̂ε(uε) Lemma (2), it follows that there
exist constants C > 0 such that, in the film:

∥
∥eε

33

(
uε

)∥
∥

Ωf
≤ Cε2,

∥
∥eε

α3

(
uε

)∥
∥

Ωf
≤ Cε, and

∥
∥eε

αβ

(
uε

)∥
∥

Ωf
≤ C, (49)

and in the bonding layer

∥
∥eε

33

(
uε

)∥∥
Ωb

≤ C,
∥
∥∂3u

ε
α

∥
∥

Ωb
≤ Cε−δ and εγ

∥
∥eαβ

(
uε

)∥∥
Ωb

≤ C. (50)
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These bounds, in turn, imply that there exist functions eαβ ∈ L2(Ωf ) such that
eε
αβ(uε) ⇀ eαβ weakly in L2(Ωf ), a function e33 ∈ L2(Ωb) such that eε

33(u
ε) ⇀ e33

weakly in L2(Ωb), and that eε
i3(u

ε) → 0 strongly in L2(Ωf ).
(ii) Convergence of scaled displacements. Using Lemma 1 (Eq. (30)) combined with (49)

and (50) we can write:

∥
∥uε

3

∥
∥

Ω
≤ C

(∥∥e33
(
uε

)∥∥
Ωf

+ ∥
∥e33

(
uε

)∥∥
Ωb

) ≤ C
(
ε2 + 1

)

from which, combined with (49), follows that there exists a function u3 ∈ H 1(Ω) such
that ∂3u3 = 0 in Ωf , and

uε
3 ⇀ u3 weakly in H 1(Ω). (51)

By virtue of Korn’s inequality in the quotient space Ḣ 1(Ωf ) (see, e.g., [8]) there
exists C > 0 such that

∥
∥uε

α

∥
∥

Ḣ 1(Ωf )
≤ C

∥
∥eε

αβ

(
uε

α

)∥
∥

L2(Ωf )
,

from which, recalling from (49) and denoting by Π(·) the projection operator over the
space of rigid motions R(Ωf ), we infer that ‖uε

α −Π(uε
α)‖H 1(Ωf ) is uniformly bounded

and hence, by the Rellich-Kondrachov Theorem that there exists uα ∈ H 1(Ωf ) ∩
R(Ωf )⊥ such that

uε
p − Π

(
uε

p

)
⇀ uα weakly in H 1(Ωf ). (52)

Using then the second identity in (49), we have that ei3(u) = 0 in Ωf , i.e. that it belongs
to the subspace of Kirchhoff-Love displacements in the film:

(uα,u3) ∈ CKL(Ωf ) := {
Ḣ 1(Ωf ) ∩ (Ωf )⊥ × H 1(Ωf ), ei3(v) = 0 in Ωf

}
.

(iii) Optimality conditions of the scaled strains. The components kij ∈ L2(Ωf ) of the weak
limits of subsequences of κε(uε), and the component k̂αα ∈ L2(Ωb) of the weak limit
of subsequences of κ̂ε(uε), satisfy the following relations:

k33 = − λf

λf + 2μf

kαα + 2μf

λf + 2μf

Φ33 + λf

λf + 2μf

Φαα,

k3α = 0, and kαβ = eαβ(u) in Ωf

(53)

and

k̂αα = − λb

λb + 2μb

k̂33, in Ωb. (54)

As a consequence of the uniform boundedness of sequences κε(u)ε and κ̂ε(u)ε in
L2(Ωf ;R2×2

sym ) and L2(Ωb;R2×2
sym ) established in Lemma 2, it follows that there exist

functions k ∈ L2(Ωf ,R2×2
sym ) and k̂ ∈ L2(Ωb;R2×2

sym ) such that:

κε(u)ε ⇀ k weakly in L2
(
Ωf ,R2×2

sym

)
, and κ̂ε(u)ε ⇀ k̂ weakly in L2

(
Ωb,R

2×2
sym

)
.

(55)
The relations (53) are established analogously to the case δ = 0, (see step (iii) of The-
orem 1) and their derivation is not reported here for conciseness.
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To establish the optimality conditions (54) in the bonding layer, we start from (26),
using test functions such that v = 0 in Ωf , v3 = 0 in Ωb and vα ∈ H 1

0 (−hb,0) is a
function of x3 alone. For all such functions, dividing the variational equation by ε we
get:

∫

Ωb

2μb∂3κ̂
ε
3α

(
uε

)
v′

pdx3 = 0,

which in turn yields that ∂3κ̂
ε
3α(u

ε) = 0 in Ωb , i.e. that the scaled strain κ̂ε
3α(u

ε) is a
function of x ′ alone in Ωb .

Choosing test fields in the variational formulation (26) such that v3 = 0 in Ωf ,
v3 = 0 in Ωb , and vα = hα(x

′)gα(x3) in Ωb (no implicit summation assumed), where
hα(x

′) ∈ H 1(ω), gα(x3) ∈ H 1
0 (−hb,0), we obtain:

∫

ω

{∫ 0

−hb

2μbκ̂
ε
3α

(
uε

)
εhpg′

pdx3

+
∫ 0

−hb

(
λbκ̂

ε
33

(
uε

) + (λbδpq + 2μb)κ̂
ε
αβ

(
uε

))
εγ ∂βvαhpdx3

}

dx ′ = 0.

The first term vanishes after integration by parts, using the boundary conditions on
gp and the fact that κ̂ε

3α(u
ε)hα is a function of x ′ only. Dividing by εγ , we are left with:

∫ 0

−hb

[∫

ω

(
λbκ̂

ε
33

(
uε

) + (λbδpq + 2μb)κ̂
ε
αβ

(
uε

))
∂αhαdx ′

]

gαdx3 = 0.

We can use a localization argument owing to the arbitrariness of gα ; moreover, since
sequences κ̂ε

33(u
ε), κ̂ε

αβ(uε) converge weakly in L2(Ωf ), we can pass to the limit for
ε → 0 and get for a.e. x ′ ∈ ω:

∫

ω

(
λbk̂33 + (λbδpq + 2μb)k̂αβ

)
∂αvβdx ′ = 0.

After an additional integration by parts, we finally obtain the optimality conditions in
the bulk as well as the associated natural boundary conditions, namely:

∂β

(
λbk̂33 + (λbδpq + 2μb)k̂αβ

) = 0 in ω, and
(
λbκ̂33 + (λbδpq + 2μb)k̂αβ

)
nα = 0 on ∂ω,

where nα denotes the components of outer unit normal vector to ∂ω. In particular,
optimality in the bulk for the diagonal term yields the desired result.

(iv) Limit equilibrium equations. We now establish the limit variational equations satisfied
by the weak limit u. Considering test functions v ∈ H 1(Ω) such that v3 = 0 on ω− and
ei3(v) = 0 in Ωf in the variational formulation of the equilibrium problem (26), we
get:

∫

Ωf

{
λf

(
κε

33 + κε
αα

)
eββ(v) + 2μf κε

αβeαβ(v)
}
dx

+
∫

Ωb

(
(λf + 2μf )κ̂ε

33

(
uε

) + λf κ̂ε
αα

(
uε

))
e33(v)dx
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+
∫

Ωb

{
2μf κ̂ε

3α

(
uε

)(
ε∂3vα + εγ−1∂αv3

) + λb

(
κ̂ε

33

(
uε

) + κ̂ε
αα

(
uε

))
εγ eββ(v)

+ 2μκ̂ε
αβ

(
uε

)
εγ eαβ(v)

}
dx

=
∫

Ωf

{
λf (Φαα + Φ33)eββ(v) + 2μΦαβeαβ(v)

}
dx +

∫

ω+
pv3dx ′.

Using again Lemma 2, and remarking that since γ − 1 > 0 then ε∂3vα , εγ−1∂αv3, and
εγ eαβ(v) vanish as ε → 0, we pass to the limit ε → 0 and obtain:

∫

Ωf

{
λf (k33 + kαα)eββ(v) + 2μf kαβeαβ(v)

}
dx

+
∫

Ωb

(
(λb + 2μb)k̂33 + λbk̂αα

)
e33(v)dx

=
∫

Ωf

{
λf (Φαα + Φ33)eββ(v) + 2μf Φαβeαβ(v)

}
dx +

∫

ω+
pv3dx ′,

for all v ∈ H 1(Ω;R3) such that v3 = 0 on ω− and ei3(v) = 0 in Ωf . By the defini-
tions of rescaled strains (Eqs. (23) and (24)) and plugging optimality conditions (53)
and (54), we get:

∫

Ωf

2λf μf

λf + 2μf

eαα(u)eββ(v) + 2μf eαβ(u)eαβ(v)dx

+
∫

Ωb

4μb(λb + μb)

λb + 2μb

e33(u)e33(v)dx

=
∫

Ωf

(c1Φαα + c2Φ33)eββ(v) + c3Φαβeαβ(v)dx +
∫

ω+
pv3dx ′, (56)

where the ci ’s are coefficients that depend on the elastic material parameters:

c1 = 2μf λf

λf + 2μf

, c2 = λ2
f

λf + 2μf

, c3 = 2μf .

Note that they coincide with those of the limit problem in Theorem 1 since they descend
from the optimality conditions within the film (53), which are the same.

(v) Two-dimensional problem. As shown in step (i), the limit displacement displacement
satisfies ei3(u) = 0. Integrating these relations yields that there exist two functions
η3 ∈ H 2(ω) and ηα ∈ H 1(ω), respectively representing the components of the out-of-
plane and in-plane displacement of the middle surface of the film layer ω × {hf /2},
such that u ∈ CKL(Ωf ) is of the form:

uα = ηα

(
x ′) − (x3 − hf /2)∂αη3

(
x ′), and u3 = η3

(
x ′).

For such functions the components of the linearized strain read:

eαβ(u) = eαβ(η) − (x3 + hf /2)∂αβη3 and e33(u) = e33(η).
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Analogously, there exist functions ζ3 ∈ H 2(ω) and ζα ∈ H 1(ω) such that any admissi-
ble test field v ∈ {vi ∈ H 1(Ω), v3 = 0 on ω−, ei3(v) = 0 in Ωf } can be written in the
form:

v3 =
{

ζ3(x
′), in Ωf

(x3 + hb)ζ3(x
′), in Ωb,

and vα = ζα

(
x ′)− (x3 +hf /2)∂αζ3

(
x ′), in Ωf .

The three-dimensional variational equation (56) can be hence rewritten as:

∫

Ωf

2λf μf

λf + 2μf

(
eαα(η)eββ(ζ ) + (∂ααη3∂ββζ3)(x3 − hf /2)2

+ (x3 − hf /2)
(
eαα(η)∂ββζ3 + ∂ααη3eββ(ζ )

))
dx

+
∫

Ωf

2μf

(
eαβ(η)eαβ(ζ ) + (∂αβη3∂αβζ3)(x3 − hf /2)2

+ (x3 − hf /2)
(
eαβ(η)∂αβζ3 + ∂αβη3eαβ(ζ )

))
dx

+
∫

Ωb

4μf (λb + μf )

λb + 2μf

e33(η)e33(ζ )dx

=
∫

Ωf

{
(c1Φαα + c2Φ33)eββ(ζ ) + c3Φαβeαβ(ζ )

}
dx +

∫

ω

pζ3dx,

for all functions ζα ∈ H 1(ω) and ζ3 ∈ H 2(ω). The dependence on x3 is now explicit;
after integration along the thickness the linear cross terms vanish in the film, and we
are left with the two-dimensional variational formulation of the equilibrium equations:

∫

ω

2λf μf

λf + 2μf

{
eαα(η)eββ(ζ ) + 1/6(∂ααη3∂ββζ3)

}
dx ′

+
∫

ω

2μf

{
eαβ(η)eαβ(ζ ) + 1/6(∂αβη3∂αβζ3)

}
dx ′ +

∫

ω

4μb(λb + μb)

λb + 2μb

η3ζ3dx ′

=
∫

ω

{
(c1Φαα + c2Φ33)eββ(ζ ) + c3Φαβeαβ(ζ )

}
dx ′ +

∫

ω

pζ3dx ′,

for all functions ζα ∈ H 1(ω) and ζ3 ∈ H 2(ω). By taking ζα = 0 (resp. ζ3 = 0) the
previous equation is broken down into two, two-dimensional variational equilibrium
equations: the flexural and membrane equilibrium equations of a Kirchhoff-Love plate
over a transverse linear, elastic foundation. They read:

∫

ω

{
2λf μf

λf + 2μf

eαα(η)eββ(ζ ) + 2μf eαβ(η)eαβ(ζ )

}

dx ′

=
∫

ω

{
(c1Φαα + c2Φ33)eββ(ζ )c3Φαβeαβ(ζ )

}
dx ′, ∀ζα ∈ H 1(ω),

∫

ω

{
λf μf

3(λf + 2μf )
(∂ααη3∂ββζ3) + μf

3
∂αβη3∂αβζ3 + 4μb(λb + μb)

λb + 2μb

η3ζ3

}

dx ′

=
∫

ω

pζ3dx ′, ∀ζ3 ∈ H 2(ω).
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To complete the proof in the case 0 < δ < 1, it is sufficient to rescale transverse dis-
placements within the bonding layer by a factor ε1−δ , that is considering displacements
of the form:

(
εuε

α, ε
1−δuε

3

)
in Ωb

instead of (9). Then the estimates on the scaled strains leading to Lemma 2, as well as
the arguments that follow, hold verbatim.

(vi) Strong convergence in H 1(Ωf ). The strong convergence (uε
α − Π(uε

α), u
ε
3) → (uα,u3)

in H 1(Ωf ) is proved analogously to the case δ = 1 (see step (vi) in the proof of Theo-
rem 1) and is not repeated here for conciseness. �

4 Concluding Remarks

We have studied the asymptotic behavior of non-homogeneous, linear, elastic bi-layer sys-
tems consisting of a “thin” film bonded to a rigid substrate by the means of a bonding layer.
Upon the assumption of a scaling law for the external loading, we have performed a paramet-
ric asymptotic study to explore the different asymptotic regimes reached in the limit as the
thickness goes to zero, for varying thickness and stiffness ratios. A two-dimensional phase
diagram (Fig. 2) shows a complete picture of the asymptotic reduced dimension models as
a function of the two relevant parameters. Other than two trivial regimes, a one-dimensional
locus in the phase diagram identifies the regime of membranes over in-plane elastic foun-
dation; whereas a two-dimensional open set defines the regime of plates over out-of-plane
elastic foundations. These two regimes are associated to two classes of equivalence for
three-dimensional elastic bi-layer systems: that of systems in which the shear energy of the
bonding layer is of the same order as the membrane energy of the film, and that of systems
such that the transverse strain energy of the bonding layer is of the same order as the mem-
brane strain energy of the film, respectively. The limiting energy, in addition to the classical
terms of membrane/plate theories, features an additional “elastic foundation” term which
involves an ancillary material parameter: the “equivalent stiffness” or “Winkler constant” of
the system, for which we derive explicit formulæ (see Eqs. (17) and (22)). This parameter
imparts a characteristic length scale to the original scale-free elasticity problem, introducing
a size effect.

Such limiting models are commonly referred to in the engineering community as “Win-
kler foundations” or “shear lag”.

To our knowledge, the present work is the first attempt at providing a rigorous deriva-
tion of these heuristic models from three–dimensional elasticity. Our results rely on scaling
assumptions on the loads and the existence of an underlying rigid substrate. However, the
mechanisms highlighted are general: other material and loading conditions could lead to
similar, if not same, reduced models. This supports our thesis. Indeed, the analysis presented
here is an effort to show how reduced-dimension models, often regarded as constitutive,
heuristic, and phenomenological models, can be rigorously derived and justified from gen-
uine three-dimensional elasticity with an asymptotic approach. The result, not only provides
a mathematically rigorous convergence theorem, it gives insight into the elastic mechanisms
and the nature of their asymptotic coupling, it unveils the range of validity of the reduced
models, it provides explicit formulæ for quantitative calibration, and lays the basis for an
effective numerical solution of the originally ill-conditioned, three-dimensional, elasticity
problem. Future work will be devoted to extend these results to other loading conditions
encountered in engineering applications, further including geometric nonlinearities which,
especially in the flexural elastic response, may play a significant role.
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