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Abstract Basalt columns, septarias, and mud cracks
possess beautiful and intriguing crack patterns that are
hard to predict because of the presence of cracks inter-
sections and branches. The variational approach to brit-
tle fracture provides a mathematically sound model
based on minimization of the sum of bulk and fracture
energies. It does not require any a priori assumption
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on fracture patterns and can therefore deal naturally
with complex geometries. Here, we consider shrink-
age cracks obtained during unidirectional drying of a
colloidal suspension confined in a capillary tube. We
focus on a portion of the tube where the cross-sectional
shape cracks does not change as they propagate. We
apply the variational approach to fracture to a tube
cross-section and look for two-dimensional crack con-
figurations minimizing the energy for a given loading
level. We achieve qualitative and quantitative agree-
ment between experiments and numerical simulations
using a regularized energy (without any assumption on
the cracks shape) or solutions obtained with traditional
techniques (fixing the overall crack shape a priori). The
results prove the efficiency of the variational approach
when dealing with crack intersections and its ability
to predict complex crack morphologies without any a
priori assumption on their shape.

Keywords Brittle fracture mechanics ·
Griffith’s fracture energy · Variational approach to
fracture · Free-discontinuity problems · Drying of a
colloidal suspension · Shrinkage cracks

1 Introduction

Complex fracture networks involving crack interac-
tions and intersections are observed in a wide variety of
situations associated with shrinkage loadings. Giant’s
Causeway (DeGraff and Aydin 1987), Port Arthur
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tessellated pavement (Branagan and Cairns 1993),
Bimini Road (Shinn 2009), Mars polygons (Mangold
2005), septarias (Seilacher 2001), fracture networks in
permafrost (Plug and Werner 2001), and mud-cracks
in coatings or paintings (Colina and Roux 2000) are
a few examples that have intrigued people throughout
history. Significant efforts have been devoted to repro-
ducing similar phenomena in controlled experiments
using either shrinkage induced by cooling (Yuse and
Sano 1993; Ronsin et al. 1995; Yang and Ravi-Chandar
2001; Muller 1998), or drying (Hofmann et al. 2006;
Goehring et al. 2006; Toramaru and Matsumoto 2004;
Gauthier et al. 2010; Lazarus and Pauchard 2011). A
large body of theoretical and numerical work has also
be devoted to the propagation of preexisting cracks
using classical tools of linear fracture mechanics (see
for instance Bažant et al. 1979; Nemat-Nasser et al.
1980; Adda-Bedia and Pomeau 1995; Hofmann et al.
2006; Jenkins 2009; Bahr et al. 2010) or phase-field
approaches (Corson et al. 2009). Despite all this work,
many features of the complex crack networks observed
in experiments are still poorly understood. In particular,
a common limitation of all the references above is their
inability to deal with cracks branching or intersecting
(see Saliba and Jagla (2003) or Bahr et al. (2009) for
some attempts at dealing with these issues.)

In contrast, the variational approach to fracture
mechanics proposed by Francfort and Marigo (1998)
provides a solution to these issues by treating the crack
shape as a genuine unknown. In the context of brit-
tle fracture, it can be seen as a natural extension of
Griffith’s energetic formulation Griffith (1920). It is
based on the minimization amongst all admissible
crack sets and possibly discontinuous displacement
fields of a total energy functional consisting of the
sum of a bulk (elastic) and a surface term proportional
to the surface of the cracks (or their length in two
dimensions). The minimization problem is challenging
because it is in general technically not possible to test
all crack configurations. Instead, a regularized energy is
used to the numerical prediction of complex crack pat-
terns without any preliminary assumption on the over-
all cracks shape. In recent years, efforts have mainly
focused on its theoretical and numerical developments
(Bourdin et al. 2000, 2008) . However, applications to
the prediction of complex crack patterns with a close
qualitative but also quantitative comparison to experi-
mental results are still lacking, in particular when crack
intersections are involved. This paper constitute a first

effort aiming at filling this gap. We apply the varia-
tional approach to the controlled drying of a colloidal
suspension in a capillary tube for which fascinating
experimental results have been obtained when the col-
loidal suspension gradually turns into a drained porous
solid matrix.

During drying. the natural shrinkage of the solid
matrix which is prevented by the strong adhesion to
the wall of the tube, gives rise to high tensile stresses
and to a large number of disordered cracks which grad-
ually self-organize and propagate with a constant cross-
sectional geometry. The cross-sectional shape depends
on the geometry of the tube and the drying conditions
(e.g. Allain and Limat 1995; Dufresne et al. 2003, 2006;
Gauthier et al. 2007) and looks mostly like stars where
several straight cracks intersect at or near a single point.
In this paper, we focus on the two-dimensional problem
of the prediction of these cross-sectional crack shapes,
but we refrain to solve the entire, far more complex,
three-dimensional propagation problem.

Recently, Gauthier et al. (2010) modeled the dry-
ing porous solid by an elastic material loaded by a
tensile prestress and showed that the observed cross-
sectional crack patterns can be correctly predicted by
energy minimization amongst a given family of cracks,
namely arrays of parallel cracks for flat tubes or star-
shaped cracks for cylindrical ones. This demonstrated
that their simple model captures the key physical ingre-
dients. However, in this first study the overall crack
shape was fixed a priori. Here, we extent the experi-
ments of Gauthier et al. (2010) to non axisymmetric
square geometry, for which the crack shape is more
difficult to guess, and revisit them through the varia-
tional method developed by Bourdin et al. (2000) using
the physical model demonstrated previously. We show
that this method provides a qualitative and quantitative
description of the different cross-sectional crack pat-
terns observed experimentally without any preliminary
shape assumptions.

The outline of the article is the following. The exper-
imental setup is described in details in Section 2, illus-
trating the results obtained by changing the suspension
and the drying velocities. In addition to the experiments
on circular tubes previous reported in Gauthier et al.
(2010), new experiments on capillary tubes with square
cross-section highlight the relation between the tube
cross-sectional shape and the crack pattern. In Sect. 3,
we focus on the regime where the cross-sectional geom-
etry of the crack does not evolve. We describe our
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two-dimensional model assuming a linear elastic brittle
solid under plane-strain conditions and a drying loading
introduced through a tensile isotropic inelastic strain.
In Sect. 4, we recall the results of Gauthier et al. (2010)
and search for least-energy solutions amongst the class
of star-shaped cracks. This allows us to identify some
semi-analytical solutions to be used as reference for the
verification of the numerical implementation. We then
seek to fully identify the crack geometry by numer-
ical minimization of a regularized form of the total
energy functional (Sect. 5). There, we briefly describe
the details of the approach then introduce a selection
principle. We illustrate our approach by providing a
qualitative and quantitative comparison with experi-
mental and semi-analytical results in Sect. 7.

2 Experiments

Experiments are conducted in circular or square glass
capillary tubes. The height of the tubes is typically
10 cm and the radius of the cross-section of the circular
tubes are R = 0.05 mm, R = 0.15 mm, R = 0.5 mm or
R = 0.75 mm while the edge length of the square tubes
is 2R = 1 mm. According to the manufacturer, the pre-
cision on the radii is 10 %. The tubes are positioned in
vertical orientation and colloidal suspension is sucked
up from their bottom until they are 3/4 full (see Fig. 1a).
The top of the tubes is closed and maintained at a pres-
sure slightly below that of the surrounding. Because of
the capillary effect, this prevents the fluid from flow-
ing under gravity. Two type of colloids have been used,
both made of water silica dispersions: Ludox™HS40
and SM30 designated as HS40 and SM30 in the
following. HS40 and SM30 differ in mass fraction
(30 and 40 % mass fraction of silica particles for SM30
and HS40 respectively) and in particle size (r ≃ 3.5 nm
and r ≃ 6 nm for SM30 and HS40 respectively). As
soon as capillary tubes are filled, water contained in the
suspension evaporates from the bottom of the tube. In
the early stages of drying, particles aggregate at the wall
close to the open edge until they fill a section of the tube.
Once this porous layer is formed, the liquid interface
is composed of a high number of meniscus with a typi-
cal radius of curvature of the order of the particle size.
These meniscus generate high negative pressure that
cause the water to flow. The water flow drives the silica
particles to accumulate at the porous upper surface and
a porous plug further develops. Drying is then governed

by Darcy’s law (Dufresne et al. 2003, 2006). Since the
pressure gradient decreases as the plug extends, dry-
ing velocity decreases. However for plugs long enough
(∼20 tube diameters) drying velocity is almost constant
over few diameters (∼5). It is this region that is stud-
ied in the sequel. Once the plug height is about twenty
times the diameter, the tubes are placed in controlled
environment maintained at a constant relative humidity
(RH) and temperature (T). Experiments are performed
at three different conditions: (i) at a room tempera-
ture T ≃ 20 ◦C and RH maintained below 10% by
using desiccant, (ii) at T ≃ 20 ◦C and RH maintained
over 90 % by introducing water in the chamber, (iii) at
T ≃ 3 ◦C and RH < 10 %.

The high negative capillary pressure, imposed by
the interface, in the draining fluid generates high ten-
sile stresses in the gel (Dufresne et al. 2003) that cause it
to crack. The cracks pattern can be visualized either by
transparency, which allows to follow the crack prop-
agation during the drying, or by cutting the tube at
the desired height, to observe the cross-sectional crack
shape. Disordered cracks are first observed in the bot-
tom. As the plug extends, the cracks self-organize,
become vertical and grow along the drying direction
preserving their cross-sectional shape for a length cor-
responding to several tube diameters (Gauthier et al.
(2007) for a more detail description of the evolu-
tion). Examples are given in Fig. 1b. For square tubes,
two perpendicular diagonal cracks appear. For circular
tubes, star-shaped cracks where the tube cross section
is divided into n sectors (with a central angle 2π/n) are
observed. Once these cracks have appeared, the porous
medium continues to dry and to undergo high tensile
stresses leading to secondary cracks appearing later on
along the cross section of the tube.

In the sequel, we focus only on (i) the tube region
where the crack cross-sectional geometry is indepen-
dent of the depth and on (ii) the time period after
the disordered cracks have self-organized and before
the appearance of secondary cracks. We observe that
the cross-sectional crack shape for a given suspen-
sion and tube geometry depends on the drying con-
ditions through the drying velocity only. Indeed drying
at T ≃ 3 ◦C/RH ≤ 10 % or at T ≃ 20 ◦C/RH ≥ 90 %
gives the same crack tip velocities and the same crack
patterns. Thus we refer to experiments conducted at
T ≃ 3 ◦C/RH ≤ 10 % or at T ≃ 20 ◦C/RH ≥ 90 % as
slow velocity (SV) experiments, and those conducted
at T ≃ 20 ◦C/RH ≤ 10 % as high velocity (HV)
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Fig. 1 A glass capillary
tube oriented vertically is
filled with a colloidal
suspension; the opened
bottom edge allows for
evaporation of the water in
an environment maintained
at a constant relative
humidity (RH) and
temperature (T ). The
cross-sectional shape of the
cracks depend on the tube
shape and size and on the
drying conditions. a
Experimental setup and
sketch of the self-organized
star-shaped cracks. b
Pictures of some cross
section cuts (the colors
depend on the light used)
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experiments. A summary of experiments made can be
found in Table 3 (Sect. 7). For small enough diameters,
the number of cracks observed increases with the diam-
eter. For larger containers, it is obvious that the crack
pattern in the center becomes independent of the walls
of the tube. We also observe that changing the dry-
ing conditions from SV to HV or HV to SV during
the same experiment produces a transition between the
two cross-sectional crack patterns obtained in pure HV
and SV experiments (Gauthier et al. 2010) and that this
rearrangement takes places over a distance approxi-
mately equal to the tube diameter. This suggests that
history effects can be neglected.

3 Model

3.1 Basic hypotheses

In this work, we focus our attention on the steady-
state regime where the cross-sectional geometry of the
cracks remains constant. We model the problem as a

two-dimensional plane-strain one on the cross-section
of the tube. We assume that (i) the only effect of dry-
ing is to introduce an inelastic strain ϵ0 = ϵ0 1, where
1 denotes the identity matrix and ϵ0 < 0 is assumed
constant throughout the cross section of the domain
and that (ii) the solid adheres perfectly to the tube
walls. Following the variational approach to brittle frac-
ture (Francfort and Marigo 1998), for a given loading
ϵ0, we search for the deformation and crack configu-
ration corresponding to a minimum of the total energy
defined as the sum of the bulk elastic energy and the
crack surface energy. The latter is of Griffith type, that
is: the energy S(γ ) per height unit, associated to a crack
set γ is proportional to its length and given by

S(γ ) := GcL(γ ),

where Gc is the specific fracture energy of the material,
and L denotes the length of the crack. For the elastic
energy, we suppose that the material is perfectly elas-
tic prior to failure, and we adopt the linearized theory
under the small displacement approximation. Finally,
we assume that the crack surfaces are stress-free.
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In the above formulation of the fracture mechanics
problem, we simply look for the optimal cross-sectional
crack pattern, according the energy minimality cri-
terion, for given values of the loading ϵ0. We do
not introduce any concept of history dependence of
the crack patterns. We solve a two-dimensional sta-
tic problem and not the three-dimensional quasi-static
evolution problem, in which one looks for the initia-
tion and propagation of cracks as a function of time
starting from a well-defined initial condition. Omit-
ting history effects is suggested by the reversibility of
the cross-sectional experimental patterns, using a two-
dimensional approximation by the experimental obser-
vations of depth-independence of the cross-sectional
crack patterns. The good agreement between numeri-
cal and experimental findings presented in Sect. 7 also
justifies this hypothesis, a posteriori.

3.2 Variational fracture model

Let us introduce the following equivalent two-dimen-
sional inelastic strain defined by ϵ2d

0 = (1 + ν)ϵ0 12,
where 12 is the 2×2 identity matrix. With this notation
and the aforementioned hypotheses, the strain energy
can be written as:

w(ϵ, ϵ0) := E
2(1 + ν)

(
ν

(1 − 2ν)
tr2(ϵ − ϵ2d

0 )

+(ϵ − ϵ2d
0 ) · (ϵ − ϵ2d

0 )
)

(1)

where E and ν are the Young modulus and the Poisson
ratio of the material, ϵ is the symmetric second-order
2 × 2 matrix representing the linearized plane strain,
tr denote the trace operator, and the dot is used for the
scalar product. In linear elasticity, kinematic compat-
ibility implies that ϵ(u) = 1

2 (∇u + ∇uT ), where u
is the displacement field, ∇ the gradient operator, and
the superscript T denotes the transpose operator. We
parameterize the inelastic strain ϵ2d

0 representing the
drying loading by a non dimensional drying intensity
ϵ̄, defined by (see the first remark at the end of this
section)

ϵ2d
0 := −ϵ̄

√
Gc

E R
12 (2)

where R is a characteristic length associated with the
cross-section, typically its radius. Hence, the potential
energy Pϵ̄ of the cross-section occupying the open set
C and associated to a displacement field u and a crack
set γ for a loading parameter ϵ̄ is given by

Pϵ̄(u, γ ) :=
∫

C/γ

wϵ̄(ϵ(u))dS, with

wϵ̄(ϵ) := w
(
ϵ,−ϵ̄

√
Gc/E R 12

)
. (3)

The total energy is defined as the sum of the potential
energy and the surface energy required to create the
cracks:

Eϵ̄(u, γ ) := Pϵ̄(u, γ ) + S(γ ). (4)

For any given loading parameter ϵ̄, we seek to find
the crack set γ and displacement field u as the global
minimizer of (4) amongst any admissible crack set
and kinematically admissible displacement fields. The
admissible crack sets consist of all possible curves or
sets of curves inside the boundary of C. For any given
crack set γ , the space of the admissible displacements
is

U(γ ) := {u ∈ H1(C \ γ ; R2), u = 0 on ∂C}, (5)

i.e. it consists of all vector valued fields satisfying the
adhesion boundary condition and sufficiently smooth
(square integrable with square integrable first deriva-
tives) on the uncracked domain. More precisely, the
global minimality condition can be expressed as:

Find γ ⊂ C, u ∈ U(γ ) : Eϵ̄(u, γ ) ≤ Eϵ̄(u∗, γ ∗),

∀γ ∗ ⊂ C, u∗ ∈ U(γ ∗). (6)

Remark 1 The scaling factor
√

Gc/E R in (2) renders
all the results, presented in terms of ϵ̄ in the rest of
the paper, independent of the material constants and
cross-sectional dimension. Other choices for the rele-
vant non dimensional parameter are possible. In partic-
ular, as in Gauthier et al. (2010), one could also chose to
parameterize the loading in terms of the Griffith length
Lc := EGc/σ

2
0 , where σ0 is a prestress. After some

calculations, one can relate ϵ̄ and Lc by

Lc = R
ϵ̄2 (1 − 2ν)2(1 + ν)2. (7)

This relation will be useful in Sect. 7 as it will allow us
to estimate the value of ϵ̄ for various experiments.

4 Simple illustration: star-shaped cracks
in circular tubes

Before we dwell upon numerical implementation and
numerical experiments, it is possible to gain some
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(a) (b)

Fig. 2 Energy minimization amongst star-shaped cracks. a Total energy associated with γn for n = 1, 2, 3, 4, 5. b The lower envelope
of the family of energy curves gives the energy of the minimizer

valuable insight on the model by restricting the set of
admissible cracks to radial ones. It is essentially equiv-
alent to the work of Gauthier et al. (2010) with the
difference that the loading parameter we consider here
is the inelastic strain instead of the prestress. The con-
struction of the semi-analytic radial crack solution will
also be used as a reference point for the analysis of
the numerical solutions and the verification of the sug-
gested numerical approach.

We consider a circular tube with radius R and
star-shaped cracks. By γn , (n > 1), we denote a curve
consisting of the union of n equi-distributed radial seg-
ments partitioning the tube into n polar regions. By
analogy, we write γ1 = ∅. Our motivation for consid-
ering such geometries comes from the fact that they
are frequently observed in the experiments, at least for
small values of n.

Note first that for a given crack pattern γ , the poten-
tial energy can be computed by solving a linear elas-
ticity problem, and we write

Pϵ̄(γ ) := min
u∈U(γ )

Pϵ̄(u, γ ), (8)

the potential energy of the equilibrium displacement.
It is then easy to see that the form of the strain energy
density (1) implies that Pϵ̄(γ ) = ϵ̄2P1(γ ), so that we
can rewrite the total energy in the form

Eϵ̄(γ ) = ϵ̄2P1(γ ) + S(γ ). (9)

Furthermore, for a star-shaped crack γn , using eq. (1),
one has

Eϵ̄(γn) = ϵ̄2P1(γn) + n Gc R. (10)

For n = 1 the problem can be solved in closed form,
the elastic equilibrium is achieved for u = 0 and the
total energy is Eϵ̄(∅) = Pϵ̄(∅) = ϵ̄2πGc R/(1 + ν)

(1 − 2ν). For n > 1, P1(γn) can be computed by
a simple finite element computation. In this setting,
for a given loading parameter ϵ̄, energy minimiza-
tion reduces to a discrete minimization problem with
respect to n. And the total energy of the solution as
a function of the loading parameter can be obtained
by taking the lower envelope of the family of energy
curves associated to each configuration.

Figure 2a represents the total energy associated
with γn as a function of the loading parameter ϵ̄ for
n = 1, 2, 3, 4, 5 and ν = 0.3. Using this graph and the
global minimality principle (6), it is easy to identify
the optimal crack configuration associated with a given
load (the branch of the energy with the smallest value
for a given ϵ̄) as well as the bifurcation points upon
which the geometry of the optimal crack set changes
(the crossing points upon which the energy branch
achieving minimality changes). We obtain that there
exists a family (0 = ϵ̄0, ϵ̄1, ϵ̄2, . . . ) of critical loadings
such that for ϵ̄i−1 < ϵ̄ < ϵ̄i , i = 1, 2, . . . , the opti-
mal crack configuration is any curve in the family γi .
Of course, in the absence of defects or impurities, the
solution for a given loading parameter is unique up to
a rotation. The numerical values of the critical load-
ings are ϵ̄1 ≃ 0.73, ϵ̄2 ≃ 0.97, ϵ̄3 ≃ 1.55, ϵ̄4 ≃ 2.15,
and ϵ̄5 ≃ 2.76. Figure 2b shows the energy associ-
ated with the optimal configuration, obtained by taking
the lower envelope of the family of curves plotted in
the left.
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Before closing this simple example, we stress again
that this analysis is based upon the assumption that
the optimal crack geometry is a star-shaped pattern.
As we will see in the following sections, relaxing this
hypothesis allows to show that the star-shape cracks
are indeed optimum for not too high loading and can
yield to more complicated but energetically least costly
crack patterns for higher loading.

5 General case: minimization over arbitrary crack
geometries

In the variational formulation (6), the admissible dis-
placement fields are potentially discontinuous across
cracks γ , but the location of the potential discontinu-
ities themselves is not known a priori. This renders
the numerical minimization of (4) challenging as most
numerical methods such as cohesive, discontinuous or
extended finite element methods require at least some
a priori knowledge of the crack path or of its topology.
Indeed, this problem falls into the broader class of free
discontinuity problems for which a wealth of mathe-
matical and numerical literature now exists (Ambrosio
et al. 2000). In the following, we solely focus on the
numerical implementation using an extension of that
proposed in Bourdin et al. (2000) and Bourdin (2007).
It relies on the concept of variational approximation
of the total energy functional by a family of regular-
ized elliptic functionals (Ambrosio and Tortorelli 1990,
1992; Braides 1998), depending on a scalar regular-
ization parameter ℓ, and discretized by standard finite
elements. In the regularized functional, sharp cracks
are represented by a smooth auxiliary variable α in the
sense that for small ℓ, the non-zero values of α are local-
ized along thin bands of high strains which can be inter-
preted as smeared representation of the cracks. From a
technical standpoint, the approximation takes place in
the sense of Γ -convergence (Braides 2002), i.e. one can
prove that as the regularization parameter ℓ goes to 0,
the global minimizers and the energy values of the regu-
larized functionals approaches those of the total energy
with sharp discontinuities. We briefly recall the numer-
ical approach below and refer the reader to the literature
for further details. Note however that all the previ-
ous studies on the numerical simulations on fracture
mechanics using the variational approach focussed on
the quasi-static evolution problem. The fact that we

consider here the static problem entails further issues
on the selection of the solutions.

5.1 Regularization by elliptic functionals

The main idea of our approach was originally devel-
oped by Ambrosio and Tortorelli (1990, 1992) for an
image segmentation (Mumford and Shah 1989) prob-
lem, and adapted to fracture mechanics by Bourdin
et al. (2000). One introduces a small parameter ℓ with
dimension of a length, a secondary variable α taking
its values in [0, 1] and representing the crack set, and
the regularized functional

E (ℓ)
ϵ̄ (u,α) :=

∫

C

((1 − α)2 + kℓ)wϵ̄(ϵ(u))dS

+3Gc

8

∫

C

[α

ℓ
+ ℓ∇α · ∇α

]
dS. (11)

Hence, one approximates the solution of (6) by those
of the following minimization problem:

min
u ∈U ,α ∈A

E (ℓ)
ϵ̄ (u,α) (12)

where U = {u ∈ H1(C; R2), u = 0 on ∂C} and
A = {0 ≤ α ≤ 1, α ∈ H1(C; R), α = 0 on ∂C}.
The main advantages of this regularized formulation is
that it eliminates the issue of representing discontinu-
ous fields when their discontinuity set is not known a
priori. It also reduces energy minimization with respect
to any admissible crack geometry to minimization with
respect to a smooth field, a much simpler problem. In
addition, it can be discretized numerically using stan-
dard continuous finite elements.

This regularized functional can be shown to con-
verge in the sense of Γ -convergence to the total
energy (4). This implies that for any ϵ̄, the global min-
imizers of E (ℓ)

ϵ̄ converge as ℓ → 0 to global mini-
mizers of Eϵ̄ , and that each term in (11) converges to
the matching one in (4). The parameter kℓ is a small
residual stiffness introduced mainly for numerical pur-
poses which is known to have very little impact on
the minimizers. The convergence result is valid pro-
vided that kℓ = o(ℓ). We refer the interested reader
to Braides (2002), Dal Maso (1993) for more details on
Γ –convergence and to Braides (1998); Bourdin et al.
(2008) for details on the approximation of Eϵ̄ by E (ℓ)

ϵ̄ .
Formally, as ℓ goes to 0, α remains close to 0 away
from the cracks, and approaches 1 along the cracks.
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For small but non-zero values of ℓ, both arguments
u and α of E (ℓ)

ϵ̄ are continuous functions with high gra-
dients (of order 1/ℓ) in bands of width ℓ. The regular-
ized energy we use here is slightly different from the
one in Bourdin et al. (2000) and Bourdin et al. (2008).
The form used here has some advantages from numeri-
cal and theoretical standpoints, which are not discussed
here. The interested reader is referred to Pham et al.
(2011a) for further details on this point.

Several authors noticed that the regularized form
of the energy may be interesting as a model per
se (Del Piero et al. 2007; Amor et al. 2009; Lancioni
and Royer-Carfagni 2009; Freddi and Royer-Carfagni
2010). In particular, it may be interpreted as the energy
of a gradient damage model, where α plays the role
of the damage field and ℓ of the internal length (Pham
et al. 2011a,b). The regularized formulation also resem-
bles phase field approximations of sharp interfaces
models (Hakim and Karma 2009; Corson et al. 2009).
However, there are significant differences between our
numerical approach and the phase-field fracture mod-
els. Even in the static or quasi-static case, phase-field
models are formulated as a rate-dependent evolution
equation and stated as fracture models per se.

In the present work, we do not see the regularized
formulation as a model in itself, but we consider it as a
mere numerical approximation of the total energy of the
variational approach of Francfort and Marigo (1998).
This approximation is deeply rooted in the mathemat-
ical literature on free-discontinuity problems (Braides
1998). In particular the minimization principle for the
regularized energy is derived from that of the varia-
tional model in the static case, which explains our focus
on global minimizations even though for gradient dam-
age laws, there are quasi-static models based on local
minimality. This comes with an added difficulty, that
of finding global minimizers of a non-convex func-
tional. This is a very challenging issue that we do not
claim to fully address in this article. Instead, we propose
some strategies leading to local minima with decreas-
ing energy which are therefore better candidates for
global optimality.

5.2 Numerical implementation

The numerical minimization of (11) is implemented
in a way similar to that described in Bourdin (2007).
We discretize the regularized energy by means of linear

Lagrange finite elements over an unstructured mesh. As
long as the mesh size h is such that h = o(ℓ), the Γ -
convergence property of (11) to (4) is also true for the
discretization of the regularized energy (see Bellettini
and Coscia (1994); Bourdin (1999); Burke et al. (2010)
for instance). This compatibility condition leads to fine
meshes, which are better dealt with using parallel super-
computers. We use PETSc (Balay et al. 1997, 2010,
2011) for data distribution, parallel linear algebra, and
TAO (Benson et al. 2010) for the constrained optimiza-
tion. In order to avoid preferred directions in the mesh,
we use the Delaunay-Voronoi mesh algorithm imple-
mented in Cubit, from Sandia National Laboratories
(see Negri (1999); Chambolle (1999) for an analy-
sis of the anisotropy induced by structured meshes or
grids).

Due to the size of the problems, global minimiza-
tion algorithms are not practical. Instead, we look for
local minima by imposing numerically the first-order
necessary optimality conditions for (12). We notice that
although (11) is not convex, it is convex with respect
to each variable individually. We alternate minimiza-
tions with respect to u and α, an algorithm akin to a
block Newton method or a segregated solver. Note that
minimization with respect to u is equivalent to solv-
ing a simple linear elasticity problem, but that mini-
mization with respect to α ∈ [0, 1] requires an actual
box-constrained minimization algorithm. Of course,
as the total energy is not convex, one cannot expect
convergence to a global minimizer. However, one can
prove that the alternate minimization process is uncon-
ditionally stable and globally decreasing and that it
leads to a stationary point of (11) which may be a
local (or global) minimizer or a saddle point of the
energy.

This approach may fall short of our stated goal
of achieving global minimization of the regularized
energy as the outcome of a descent-based algorithms
for such a non-convex problem may depend on the reg-
ularization parameter ℓ, the mesh size and type, and the
starting guess. From a practical standpoint we observe
that the algorithm is quite robust with respect to the
mesh discretization, provided that the regularization
length ℓ is large enough compared to the mesh size.
However it can be sensitive with respect to the initial
value of α. Different choices of the initial guess α or of
the regularization parameter ℓ can lead to convergence
to different solutions. This issue is much more trouble-
some in the present case, in which we attempt to solve
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a static problem, than when considering a quasi-static
evolution. In the quasi-static setting, one can follow
the evolution of the crack state as the loading increases
starting from a well-defined initial state, and formu-
lations based on local minimality of (11) may gain
a pertinent physical interpretation, linking the critical
load for fracture initiation to the value of the regular-
ization parameter (Pham et al. 2011a). In the present
static settings, for the lack of the concepts of history
and irreversibility, there is no physically consistent base
state and a selection criterion of the solutions obtained
by local minimization is necessary. Consistently with
the Francfort-Marigo model, we adopt a least energy
criterion: among a set of local minima correspond-
ing to a given ϵ̄ and different choices of the initial
guesses, we select the one with lowest energy. Again,
we make no claim of achieving global minimization of
the regularized energy. In our mind, that our numeri-
cal simulations match the semi-analytical solutions and
the experiments is the best (although still somewhat
unsatisfying) argument we can give in favor of this
approach.

6 Numerical simulations

We first illustrate our numerical approach on circu-
lar tubes (Sect. 6.1). The comparisons of the numer-
ical results with the semi-analytical results for the star-
shaped cracks from Sect. 4 gives a partial verification of
our numerical approach (Sect. 6.2). Results for square
tubes are briefly presented in Sect. 6.3.

6.1 Crack shapes for circular tubes

The presentation is organized in three steps: (i) first
we report the results obtained as a function of the dry-
ing intensity ϵ̄ and the non-dimensional the internal
length ℓ̄ = ℓ/R, by taking the elastic solution as ini-
tial guess for the alternate minimization algorithm; (ii)
then we show that a ℓ-refinement technique may reduce
the dependence of the results on ℓ̄ and produce lowest
energy solutions; (iii) finally, using the fact that the
elastic energy is a 2-homogeneous function of ϵ̄, we
identify for each value of the loading the crack shape
with the lowest energy among all those obtained after
ℓ-refinement.

6.1.1 Results as function of ϵ̄ and ℓ̄ taking the elastic
uncracked state as initial guess

Figure 3 presents the fieldα obtained by numerical min-
imization of (11) for various choices of the parameters
ϵ̄ and ℓ̄ with a tube of radius R = 1. The material para-
meters (E, Gc) were set to 1 without loss of generality,
and the Poisson ratio to 0.3. In each computation, the
mesh size was h = 0.025 and the residual stiffness was
set to kℓ = 10−6. The alternate minimization algorithm
was initialized with α = 0. The value 1 (correspond-
ing to cracks) of α is encoded in red and the value
0 (the un-cracked material) in blue. A first glance at
the table highlights the wide variety of crack geome-
tries obtained, and that the complexity of the fracture
pattern increases with the loading parameter. Again we
stress that no hypothesis on this geometry is made in the
model and that the shape of the crack patterns is purely
an outcome of the minimization of the regularized
energy. We observe that the width of the transition zone
from 1 to 0 decreases as ℓ̄ goes to 0, which is consistent
with the Γ -convergence property stated in Sect. 5. For
“large” values of ℓ̄, when the width of the transition
zone is of the order of the diameter of the tube and as
ϵ̄ increases, one cannot distinguish between neigh-
boring cracks (see for instance the case ℓ̄ = 0.2 for
ϵ̄ = 5.0).

A closer look at Fig. 3a highlights the dependency
of the crack pattern upon the regularization parame-
ter ℓ̄. See for instance how for a loading parameter
ϵ̄ = 1.2, we obtain a triple junction for ℓ̄ = 0.2,
but a complex crack made of two triple junctions for
ℓ̄ = 0.1, and no cracks at all for ℓ̄ = 0.05. Each of
these configuration correspond to a critical point of the
energy (11) (likely local minimizers). It may be theoret-
ically shown that below a critical load ϵ̄∗(ℓ̄) depending
on ℓ̄, the un-cracked configurationα = 0 is a stable crit-
ical point of (11). In a simpler 1d setting, it is known
that ϵ̄∗(ℓ̄) = O(1/

√
ℓ̄) (Pham et al. 2011a). Here, we

observe that ϵ̄∗(ℓ̄) increases as ℓ̄ → 0. When alternate
minimizations iterates “escape” the un-cracked solu-
tion, they converge to the “nearest” critical point which
may or may not be the global minimizer of the energy. If
the regularized model (11) is seen as a gradient damage
model with internal length ℓ̄ (see Pham et al. 2011a),
and if one focusses on criticality instead of global min-
imality, this behavior is consistent with a scale effect
linking the critical load and the ratio of the struc-
tural dimension and the internal length (Bažant 1999).
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Fig. 3 Numerical results by
minimization of
functional (11) for circular
cross-sections. The results
are obtained using uniform
Delaunay-Voronoi
unstructured meshes with
size h = 0.025 on disk of
radius R = 1. The material
properties are
E = 1, Gc = 1, ν = 0.3. a
Direct numerical
simulations. Each problem
was solved independently
initializing the alternate
minimizations algorithm
with the un-cracked solution
α = 0. b Numerical results
obtained using ℓ̄-refinement.
Each row corresponds to a
set of computations, each
taking the one at its left as a
first guess for u and α

(a) (b)

In the case of a quasi-static evolution, Lancioni and
Royer-Carfagni (2009) and Pham et al. (2011a) sug-
gested that the internal length can be identified from
the critical load at the onset of crack nucleation. In

our context, where we only consider a static problem
and focus on the limiting energy (4), this interpreta-
tion is not meaningful. Also, in the experiments, the
initial state corresponds to that of the plug with many
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existing disordered cracks and the mechanism leading
to the selection of the steady state fracture pattern is
the self-organization of those cracks and not that of
loss of stability of the elastic solution. Hence, we stand
by the interpretation that the regularization length is an
artificial numerical parameter.

6.1.2 ℓ-refinement

To obtain an accurate resolution for complex crack
patterns and, at the same time, avoid the persistence
of the purely elastic solution, we implemented an ℓ̄-
refinement technique. For a given loading ϵ̄ and mesh
size h, we minimize the total energy E (ℓ̄) for decreas-
ing values of the regularization length, initializing each
computation with the α field obtained at the previous
one. Figure 3b represents the outcome of such a series
of computations highlighting, how this approach signif-
icantly reduces the sensitivity of the numerical results
on the regularization length ℓ̄ and allows us to retrieve
an accurate representation of a large family of crack
geometries for small and high loadings. The outcome
of this set of simulations may still depend on the initial
value of ℓ̄. This value, 0.2 for Fig. 3b, is chosen large
enough to avoid the persistence of the purely elastic
solution and small enough to allow for localization of
α within the domain. In practice, these two criteria do
not give a large range for the choice of this parameter.
The key properties of the final result of Figs. 3b and
of the following Fig. 4b do not sensibly depend on the
initial value of ℓ̄, provided that it fits within the (quite
strict) criteria above.

Table 1 provides a quantitative comparison of the
energies of the solutions of Fig. 3a, b for ℓ̄ =
0.05. In each case, the configurations obtained using
ℓ̄-refinement (last column of Fig. 3b) have a lesser
energy than the one obtained through a direct com-
putation (Fig. 3a). To obtain accurate values of the
fracture energies with this choice of h = O(ℓ̄),
and following the discussion in Bourdin et al. (2008)
(Sec 8.1.1 p.103), the reported surface energies are
computed using the effective fracture toughness
G(num)

c = Gc/(1 + 3h/8ℓ̄).

6.1.3 Lowest energy crack shapes

For each drying intensity ϵ̄ we select the final cross-
sectional crack geometry on the basis of a least
energy criterion inspired by the global minimality

(a)

(b)

Fig. 4 Minimization over star-shaped cracks vs. minimization of
functional (11). As the loading increases, our numerical method
identifies crack configurations with much lower energetically
than star-shaped cracks. a Energies associated with the crack
geometries identified in Fig. 3b as a function of the loading para-
meter. Thick black lines distinguishes among all the energy curves
(blue lines), the ones corresponding to configurations attaining
the minimal energy for some value of the loading parameters.
The vertical dotted lines correspond to the critical loading upon
which the energy branch for which energy minimality is attained
changes. Note that for large ϵ̄ the identification of critical load-
ings becomes difficult. b Comparison of the optimal energy
obtained using minimization over star-shaped cracks (dashed
line) and numerical simulation (continuous line). The contin-
uous line is the lower envelope of the curves in Fig. 4a . The
pictures represent the optimal crack shapes in each range of the
loading parameter delimited by the vertical dotted lines

principle (12). To this end, we use a method similar
to that in Sect. 4. Noticing that for a given α-field (i.e.
crack geometry) the elastic part of the total energy (11)
scales quadratically with the loading, one can calculate
the total energy that each of the crack patterns obtained
numerically for a given loading ϵ̄∗ would have for any ϵ̄.
Figure 4a represents the total energy obtained in this
way for each of the crack patterns in the last column
of Fig. 3b. From this figure, for each ϵ̄, is possible to
select the crack pattern with the lowest energy level.
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Table 1 Energies of the numerical solutions in Fig. 3 for
ℓ̄ = 0.05 without (top) or with (bottom) ℓ̄-refinement

ϵ̄ Elastic Surface Total

0.6 2.2 0 2.2

0.8 3.9 0 3.9

1.0 6.0 0 6.0

1.2 8.7 0 8.7

1.4 1.6 3.9 5.5

1.6 2.0 4.0 6.0

1.8 1.9 4.9 6.8

2.0 2.0 5.3 7.3

2.2 2.1 5.7 7.8

2.5 2.1 6.4 8.5

3.0 2.1 7.3 9.4

4.5 2.3 9.6 11.8

5.0 2.4 9.8 12.2

ϵ̄ Elastic Surface Total

0.6 2.2 0 2.2

0.8 1.5 1.8 3.4

1.0 1.3 2.8 4.1

1.2 1.7 2.9 4.6

1.4 2.0 3.3 5.3

1.6 2.0 3.9 5.9

1.8 2.0 4.4 6.4

2.0 2.0 4.9 6.9

2.2 2.0 5.4 7.4

2.5 2.1 5.9 8.0

3.0 2.1 6.9 9.1

4.5 2.3 9.2 11.5

5.0 2.4 9.9 12.3

Amongst all the curves, the ones attaining the lowest
energy for some value of the loading parameter are plot-
ted in black and thicker line width. Their lower enve-
lope is the continuous black line reported in Fig. 4b,
together with the associated optimal crack geometries.
Although it is of course never possible to prove global
optimality, the crack geometries depicted in Fig. 4b are
the lowest energy configurations we were able to attain,
and the ones which we will compare with star-shaped
cracks and experiments in the sequel.

6.2 Comparison with star-shaped cracks

Figure 4b compares the total energy of these con-
figurations with the energy of the star-shaped cracks

taken from Fig. 2 (dashed line). For small values of
the loading parameter, we obtain similar geometries
and critical loading. The surface energy obtained is
close to the number of branches, and the critical load-
ing upon which we obtain a single straight crack is
0.71 (vs. a theoretical value of ϵ̄2 = 0.73). Bifurca-
tion between straight and Y-shaped cracks take place
at ϵ̄ ≃ 0.94 (vs. a theoretical value of ϵ̄2 = 0.97).
More interestingly, for larger values of ℓ̄, our numeri-
cal simulations have identified multiple configurations
that are energetically close to each other but always
less expensive than star-shaped cracks. In particular,
we show that perfect 5-branch stars are never optimal
and that configurations consisting of either two triple
junctions very close to each others (see for instance
ϵ̄ = 1.6 in Fig. 3b), a 4-branch star whose branches
split in two near the tube boundary (see for instance
ϵ̄ = 1.8, 2.0, 2.2 in Fig. 3b), or a more complicated
patterns like the “stick figure” looking 5 cracks config-
uration that we obtain for ϵ̄ = 2.5 have lesser energy.
Of course, that the local geometry near the crack cross-
ing resembles 2 triple junctions near each others rather
that an “X” does not really come up as a surprise.
As mentioned earlier, the fracture energy (4) resem-
bles the Mumford-Shah energy for edge segmentation
(Mumford and Shah 1989). Therefore, it seems nat-
ural to expect that if they posses some form of regu-
larity, optimal crack geometries satisfy the Mumford-
Shah conjecture which rules out crack crossing, kinks
and only allows cracks to meet at 120◦ triple junctions,
locally.

6.3 Square tubes

Finally, we performed another set of numerical sim-
ulations on unit square tubes. The results obtained
by the same ℓ̄-refinement method, as in Fig. 3b for
circular tubes, are depicted on Fig. 5. The materials
parameters and mesh size are unchanged (E = 1,
Gc = 1, ν = 1, h = 0.025). Whereas for circular
tubes, star-shaped cracks are natural candidates, there
were no obvious family of cracks in this case. This
geometry also leads to a rich variety of crack patterns
and highlights the strength of the proposed method in
identifying complex crack patterns without a priori
hypothesis. Some of the quantitative properties of the
optimal cracks highlighted in the case of circular tubes
are still observed. Again, cracks seem to split near the
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Fig. 5 Numerical results
for square tubes by
minimization of
functional (11) using the
ℓ̄-continuation method

edges of the tubes. Again, triple junctions seem to be
favored over crack crossing, although in the case of
two diagonal or longitudinal cracks, the resolution of
our numerical experiments does not allow us to clearly
identify the configuration. As for the circular tube, one
can further post process the numerical result in order
to identify the range of loadings for which each of the
identified configuration is optimal. This is presented
in Fig. 6. Again, for small values of the loading para-
meters, simple and somewhat predictable crack geome-
tries are obtained. For larger values of ϵ̄, more complex
and less intuitive patterns are energetically more advan-
tageous.

7 Comparison between experimental
and numerical results

7.1 Identification of the loading parameter ϵ̄

Dimensional analysis shows that the model relies on a
single parameter, ϵ̄ whose value needs to be estimated
in order to perform quantitative comparison between
experiments and numerical simulation. As ϵ̄ depends
on experimental conditions, colloidal suspension type,
and tube geometry, one solution is to try to measure

Fig. 6 Range of parameters in which the configuration identified
in Fig. 5 are optimal. The blue lines correspond to the energy
associated with cracks patterns that were identified in Fig. 5 but
are never optimal

separately ϵ0, E , and Gc appearing in the definition (2)
of ϵ̄. One may obtain the material constants E, Gc by
indentation (Malzbender et al. 2002) and the mismatch
strain ϵ0 by beam deflection technics (Tirumkudulu
and Russel 2004; Chekchaki et al. 2011) from a thin
film drying experiments, for instance. However, such
direct measurements are difficult, and transposing the
values obtained from one type of experiments (thin
film drying) to another (directional drying) is question-
able. Indeed, the parameters may depend on the type of
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Table 2 Values of Griffith’s length Lc (in µm) for several
Ludox®suspensions and drying rates (SV = [T ≃ 3 ◦C and
RH ≤10 % or at T ≃ 20 ◦C and RH ≥90 %] and HV = [T ≃
20 ◦C and RH ≤10 %])

Lc Ludox®SM30 Ludox®HS40
(r ≃ 3.5 nm) (r ≃ 6 nm)

HV 34 ± 10 40 ± 10

SV 60 ± 18 45 ± 15

experiments and even evolve in time. For example, the
material constants E and Gc of the porous medium may
depend on the microstructure, influenced by formation
dynamics.

Instead of performing such difficult measurements,
whose relevance to our problem may be questionable,
we used the method presented in Gauthier et al. (2010),
which we briefly summarize. The basis of the method is
to consider a directional drying experiment in thin rec-
tangular tubes (Allain and Limat 1995). In this geome-
try, an array of parallel tunneling cracks is obtained and
the cracks spacing λ can be correlated with the Griffith
length Lc := EGc/σ

2
0 (σ0 being the prestress induced

by the film’s drying). Using an energy minimization
principle similar to the one in Sect. 4, one can show
that the spacing λ is proportional to

√
Lct, t being the

tube’s thickness and in particular, for ν = 0.3, one
obtains λ ∼ 3.1

√
Lct . For a given material and drying

parameter, the value of Lc can therefore be deduced
from measurements of λ. Table 2 presents the value of
Lc for Ludox®SM30 (r ≃ 3.5 nm) and Ludox®HS40
(r ≃ 6 nm) under high velocity and slow velocity con-
ditions.

We assume that the Griffith length Lc is a well-
defined parameter for a given suspension and drying
condition, and that it is independent of the cross-
sectional geometry of the directional drying experi-
ment. Hence, from the values of Lc in Table 2, we
estimate the value of ϵ̄ in the directional drying of cir-
cular and square tubes of different diameters using the
relation (7), which gives ϵ̄ = 0.52

√
R/Lc for ν = 0.3.

7.2 Results and analysis

Table 3 reports on the series of experiments on circular
tubes described in Sect. 2. From a qualitative stand-
point we observe that star-shaped appear above a crit-
ical load, and that the number of branches increases

with the loading, which is consistent with the analysis
in Sect. 4 and the numerical simulations of Sect. 6. In
order to perform a quantitative comparison, we summa-
rize all the results obtained in the case of circular tubes
in Fig. 7. The first row corresponds to the outcome of the
semi-analytical minimization over star-shaped cracks:
the critical values of the loading parameters computed
in Sect. 4 upon which bifurcation between different
morphologies take place is printed in red letters, and
represented by red dashed vertical lines. The second
row corresponds to the numerical experiments with-
out a priori hypotheses on the crack path. The critical
loads extracted from Fig. 4a are printed in black letters,
and represented by vertical solid black lines. As high-
lighted in Fig. 4b, the critical loads obtained in the case
of the bifurcation from γ1 to γ2, then γ3 and γ4 are very
close. This part of the table can be seen as a verifica-
tion of the numerical implementation, i.e. as evidences
that the computed solutions are indeed solution of the
variational fracture model. The third row summarizes
the outcome of the experiments from Table 3. For each
experiment, the value of the loading parameter is shown
together with the accuracy of the measurement. When
available, pictures of the cross sections are also dis-
played. We observe that for every single choice of ϵ̄,
the crack geometry predicted by our approach matches
the one observed in the experiment. This acts as a vali-
dation of the variational fracture model as a predictive
tool in the setting of drying of colloidal suspension.

We also did a single experiment on a square tube, for
an estimated value ϵ̄ ≃ 1.8 of the loading parameter for
which we obtained two diagonal cracks (see the bottom
image in Figure 1b). Again, the numerical simulation
in this case matches the experiment (see Figs. 5 and 6).

Despite the modeling simplifying assumption, the
complexity of the numerical technique, and the uncer-
tainty of the measurement of the parameters, the agree-
ment between analysis, simulation, and experiments is
excellent. Our model correctly captures the essential
physics of the crack formation giving credit to the idea
that crack growth can be predicted by minimization
of the sum of elastic and surface energy over all pos-
sible crack path. In order to further justify this idea,
one will need to compare experiments and simulations
for higher loading parameters ϵ̄ in which case numeri-
cal simulations identify complex crack patterns with
significantly lower energy than classical star-shaped
solutions. For instance, better quality imaging will be
required to unambiguously determine if the 5 cracks
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Table 3 Experimental results on circular tubes. The value of n corresponds to the number of sectors delimited by the cracks as in
Sect. 4

Ludox® HV/SV Lc(µm) R (µm) n ϵ̄

a SM30 HV 34 ±10 50 ± 5 1 0.6 ± 0.12

b SM30 SV 60 ±18 150 ± 15 2 0.8 ± 0.16

c SM30 SV 60 ±18 500 ± 50 3 1.5 ± 0.30

d HS40 SV 45 ±15 500 ± 50 4 1.7 ± 0.37

e HS40 HV 40 ±10 500 ± 50 4 1.8 ± 0.27

f SM30 HV 34 ±10 500 ± 50 4 2.0 ± 0.39

g HS40 HV 40 ±10 750 ± 75 5 2.3 ± 0.41

h SM30 HV 34 ±10 750 ± 75 5 2.4 ± 0.48

Fig. 7 Comparison between semi-analytical, numerical and experimental results for circular tubes

configurations we observe experimentally (see Fig. 1b
or 7) resembles a “stick figure” as in our numerical
simulation (cf. Fig. 3 for ϵ̄ = 2.5), a regular 5-branch
star, or something completely different.

8 Conclusions and future work

In this paper, we have shown that a numerical imple-
mentation (Bourdin et al. 2000) of the variational
approach to fracture mechanics (Francfort and Marigo
1998) enhanced with a selection criterion is capa-
ble to qualitatively and quantitatively predict complex
crack shapes starting from an undamaged material.
For this, we have studied some unidirectional drying

experiments of colloidal suspensions performed in cap-
illary tubes where solvent evaporation leads to the for-
mation of a growing porous solid medium. In these
experiments, adhesion on the tubes walls combined
with shrinkage lead to high tensile stresses and give
rise to cracks whose morphologies depend on the tube
geometry and the drying velocities. We verified that the
changes in crack geometry can be accounted by a two-
dimensional static simple model depending on a single
dimensionless parameter ϵ̄ which represents the ratio
of the bulk elastic energy (which depends on the inten-
sity of the tensile strain induced by drying) over the
cost of fracture. Under the assumption that cracks are
star-shaped, the number of branches has been obtained
as a function of the loading parameter.
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We then presented a numerical method based on
the regularization of the total energy introduced in the
variational model, and enhanced it with a selection prin-
ciple and a refinement method. For small enough values
of the loading, this allowed us to verify that star-shaped
cracks are actually favored in circular tubes, to predict
cracks shapes in square tubes and to achieve quali-
tative and quantitative agreement between numerical
simulation, semi-analytical solutions and experiments.
This results are summarized in Fig. 7. For higher val-
ues of the loading parameters, more complex cracks
geometries are observed. These are the situations where
the virtue of the variational approach to fracture over
more conventional ones requiring at least some a pri-
ori knowledge of the crack path becomes more striking.
But at this point, though, we were not able to compare
them with experiments that will require additional work
in order to deal with larger tubes for instance. In these
situations, the main difficulty is the post-mortem analy-
sis of the crack geometry. Microphotography though
the sides of the tubes becomes hard to interpret, and
cutting the tubes without perturbing the cracks geom-
etry is difficult. Perhaps the solution lies in full three-
dimensional imaging of the tubes and post-processing
in order to highlight the location of the cracks.

From the modeling perspective, a full three-dimen-
sional linear poroelasticity model (Biot 1941) would be
welcome in particular to study the entire propagation
from the crack initiation to the crack self-organisation.
The complexity of this task mainly lies in the time-
dependence of the solid domain and of the material con-
stants. Finally, from a physico-chemical point of view,
the link between the drying velocity and the macro-
scopic ϵ̄ signature will have to be explored.
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