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We address the problem of fracture in homogenous linear elastic thin films using a
variational model. We restrict our attention to quasi-static problems assuming that kinetic
effects are minimal. We focus on out-of-plane displacement of the film and investigate the
effect of bending on fracture. Our analysis is based on a two-dimensional model where the
thickness of the film does not need to be resolved. We derive this model through a formal
asymptotic analysis. We present numerical simulations in a highly idealized setting for the
purpose of verification, as well as more realistic micro-indentation experiments.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal barrier coatings, thin-lubricant films, and electronic display devices are examples of applications in which the
integrity of mechanical components depends largely on the integrity of a thin film of material applied on the surface of a
substrate. The need to gain insight into the nature of thin films under various thermal and mechanical loadings has led to a
large body of theoretical, experimental and numerical publications reviewed in detail in Mishnaevsky and Gross (2004) and
Lawn et al. (2002). Classical fracture mechanics has been widely used in the past few decades, and the majority of published
works deal with the determination of critical loading for a pre-existing crack, usually growing on a pre-defined path. Such
an assumption may be too restrictive when dealing with real life applications in which the nucleation point may be
unknown and multiple cracks may be interacting or growing along unknown paths. Fig. 1, for instance, shows fracture
patterns obtained during micro-indentation experiments and illustrates how qualitatively and quantitatively different crack
patterns arise for different scales or material properties.

To treat the problem of pre-tensioned films subject to in-plane displacements, Hutchinson and Suo (1992) introduced a
non-dimensional fracture driving force Z ¼ G=Ee, where G is the elastic energy release rate and Ee is the stored elastic energy
per unit volume of the material. Using this parameter, they were able to categorize different fracture patterns in thin films
and, more specifically, showed cases where surface cracks occur or a network of channel fractures develops. More recently,
in Xia and Hutchinson (2000) developed a two-dimensional membrane model and derived solutions for a single crack and
a network of parallel cracks, as well as spiral cracks based on linear fracture mechanics. Some of these solutions were
recovered through a variational approach in Léon Baldelli et al. (2013).
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Fig. 1. Micro-indentation experiments reproduced from Sierros et al. (2011, Figure 3) (left) and Lawn et al. (2002, Figure 7–8) (center, right); reproduced
with permission.
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Our aim in this article is to examine the fracture of thin films with negligible thickness compared to the dimensions of
the domain being analyzed, and in which transverse cracks span the entire cross-section of the film. We introduce a bulk
energy consisting of two terms: the energy stored in the thin film and a Winkler foundation-type (Szilard, 2004) energy due
to deformation in the bond between the thin film and the substrate. We justify these under specific scaling properties of the
thickness and elastic properties of the film and bonding layers by an asymptotic analysis argument. This reduces the settings
of our problem from three to two dimensions.

We propose to adopt the point of view of the variational approach to fracture mechanics (Francfort and Marigo, 1998;
Bourdin and Chambolle, 2000; Bourdin, 2007; Bourdin et al., 2008), which we adapt to our specific situation, in order to
eliminate the reliance on a priori knowledge of the crack path or morphology. We build upon the work of Léon Baldelli et al.
(2013), but focus on the out-of-plane deformation of a film perfectly bonded to an elastic substrate. The postulated evolution
law is based on sequences of unilateral global minimization of a total energy consisting of the sum of a bulk energy associated
with the elastic deformation of the thin film away from cracks and the surface energy due to creation of transverse cracks.
The assumption of cracks propagating in a quasi-static setting is consistent with our focus on the asymptotic limit of a film
of vanishing thickness and on cracks that are long compared to the thickness of the film.

We propose a numerical approach based on a regularized energy similar to the one presented in Bourdin and Chambolle
(2000). To verify our approach we focus on highly idealized situations, in particular in one-dimensional cases where exact
solutions can be built. Using this relatively simple model, we are able to highlight several observed behaviors of cracks in
thin films, including the nucleation of arrays of parallel cracks (see Sections 3 and 4.1), fracture branching, cell formation,
and formation of networks of channel cracks (see Section 4.2).

The article is organized as follows. In Section 2.1, we give the elastic and fracture energies for a static problem, and derive
a model for quasi-static evolutions in Section 2.2. In Section 2.3, we propose a non-dimensional formulation. In Section 2.4,
we present our numerical approach. Section 3 is devoted to the verification of the numerical implementation in an idealized
setting. In Section 4, we offer two more realistic numerical experiments highlighting the versatility of our formulation.
Additionally, a numerical approach leading to an exact solution of the one dimensional problem is presented in Appendices A
and B is devoted to the formal derivation of our reduced model.
2. Variational model for fracture of a thin film

2.1. Formulation of the problem

A host of problems arises in applications that are based on a reduced dimensional formulation. Plate and shell models, in
theory of elasticity, are examples of such a dimension reduction. Here we are interested in one such problem with an elastic
homogenous thin layer bonded to a substrate. For the engineering minded reader, this model is similar to a plate with an
elastic foundation (Szilard, 2004).

We consider an elastic thin film bonded to the upper surface Ω⊂R2 of the substrate W⊂R3 by a Winkler type foundation.
We denote the thin film's domain Ωf ¼Ω� ð0;hÞ⊂R3. We focus on channel cracks Γf ¼ Γ � ð0;hÞ⊂R2 in the thin film. We
consider loading through an imposed displacement at upper surface of the substrate namely wt ¼wjΩ�f0g. Intuitively, it is
reasonable to assume that the thin film does not carry any vertical load and that its deformation is driven by the movement
of substrate (Hutchinson and Suo, 1992). In all that follows, the displacement of the substrate–film interface is supposed to
be known a priori.

To use the variational approach to fracture mechanics, the potential energy of the system must be calculated. Our model
applies to situations where the dominant term in the elastic energy comes from bending effects. We account for a simplified
configuration where the cohesive bond between the film and the substrate acts as an elastic highly anisotropic (essentially
one-dimensional) medium (i.e., a Winkler foundation). Rigorous validation of such a formulation requires examination of
the three-dimensional elastic energies of the film and that of the cohesive bond when thicknesses of both layers approach
zero. In fact, it is possible to rigorously derive the two-dimensional problem as a limit of a three-dimensional energy when
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Fig. 2. Problem's schematics.
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thickness of the film approaches zero (h-0) using suitable scaling hypotheses. The derivation using asymptotic analysis can
be found in Appendix B (Fig. 2).

Remark 1. The assumptions made while deriving the two-dimensional form of the energy translates to assumptions on the
magnitude of the in and out-of-plane loadings. In terms of applications this implies:
�
 That thermal and residual stresses, as well as surface traction, are minimal. For cases like indentation of thin films this
assumption seems valid since the in-plane normal stresses are largely due to the bending effects on the thin film.
�
 That the elastic modulus of the substrate in the vertical direction is small compared to its modulus in horizontal direction
and also to that of the film. This applies to a film bonded on a compliant substrate such as the ones presented in Sierros
et al. (2011) and Rhee et al. (2001).

Using Appendix B, the expression for the bulk energy can be written as the sum of the bending energy of thin film plus
that of the Winkler foundation. We can write the bulk energy of the film and cohesive bond for vertical displacement
u∈H2ðΩ\ΓÞ of square integrable displacement fields with square integrable first and second derivatives as:

Ptðu;ΓÞ≔
Z
Ω\Γ

WbðuÞ dxþ
Z
Ω
Wcðu;wtÞ dx;

WbðuÞ≔
D
2
WðD2uÞ;

Wcðu;wtÞ≔
K
2
ðu−wtÞ2; ð1Þ

where D2 represents the second derivative matrix defined as

D2ðvðx1; x2ÞÞ≔
v;11 v;12
v;12 v;22

" #
ð2Þ

in two-dimensions, and where W is the elastic potential associated with any 2 by 2 matrix Φ by

WðΦÞ≔ðΦ11 þΦ22Þ2−2ð1−νÞðΦ11Φ22−Φ2
12Þ; ð3Þ

and D and K are the flexural stiffness of the film and the modulus of the Winkler foundation is defined as

D≔
Eh3

12ð1−ν2Þ ð4Þ

where E; ν are elastic modulus and Poisson's ratio for the thin film.
Following the variational approach to fracture mechanics, we model fracture as an energy-releasing mechanism, in

which the energy released varies linearly with respect to the new surfaces formed. This is, in essence, the premise of
Griffith's criterion. Since we use a reduced two-dimensional formulation, where we lump the changes in thickness, cracks
are simply reduced to one-dimensional entities that go through the film thickness, i.e. form channel cracks. Hence, the
energy release is assumed to be proportional to the crack surface area

SðΓÞ≔hGcH1ðΓÞ ð5Þ
where H1 is the one-dimensional Hausdorff measure (i.e., H1ðΓtÞ is the aggregate length of the cracks) and Gc is the critical
elastic energy release rate associated with an infinitesimal increment of crack length.

Combining (1) with (5) yields the total potential energy

Etðu;ΓÞ≔Ptðu;ΓÞ þ SðΓÞ ð6Þ
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2.2. Quasi-static evolution

Throughout this article, we focus on a quasi-static evolution. For a crack set Γ, the admissible displacement set consists of
functions CðΓÞ≔H2ðΩ\ΓÞ. The evolution of the displacement field and associated crack set for a given loading history wt is
given by the continuous evolution law (see Bourdin et al., 2008 for instance):

Definition 1 (Quasi-static evolution). Given a loading sequence wt for t∈½0; tmax�, a function t-ðut∈CðΓtÞ;Γt⊂ΩÞ is the
solution of quasi-static evolution if it satisfies
1.
 Irreversibility of the crack evolution:

Γt⊇Γs; ∀ 0≤s≤t ð7Þ
2.
 Unilateral global stability. At any time t, the state ðut∈CðΓtÞ;ΓtÞ is the global minimizer of total energy among all
admissible states:

Etðut ;ΓtÞ≤Etðu;ΓÞ; ∀u∈CtðΓtÞ; ∀ Γ⊇Γt ð8Þ
3.
 Energy balance. The function EðtÞ≔Etðut ;ΓtÞ is absolutely continuous in t and satisfies the condition

EðtÞ−Eð0Þ ¼ −
Z t

0

Z
Ω
st
∂wt

∂t
dx dt ð9Þ

where st≔Kðu−wtÞ.

Since the process is assumed to be rate-independent, evolution in time is only accounted through the irreversibility
condition. Thus, it is easy to see that up to rescaling of time, any monotonically increasing load can be replaced with a linear
scaling of a reference load

wt ¼ tw0; ð10Þ
where the parameter t is merely a scaling factor; although this designation is admittedly imprecise, we occasionally refer to t as
“time”.
2.3. Non-dimensionalization

We begin our analysis by providing a rescaled version of the total energy in Eq. (6). We consider the normalized space
variable ~x≔x=x0, the normalized displacement ~u≔u=u0, and the normalized loading parameter ~wt≔wt=u0. In a similar
fashion, we define ~Ω ¼Ω=x0≔fx=x0; x∈Ωg, and ~Γ ¼ Γ=x0≔fx=x0; x∈Γg. Upon substituting the rescaled qualities in the
expression of the total energy, we obtain

x20
u2
0D

Etð ~u; ~Γ Þ ¼
1
2

Z
~Ω\ ~Γ

WðD2 ~uÞ d ~x þ 1
2
Kx40
D

Z
~Ω
ð ~u− ~wtÞ2 d ~x þ Gchx

3
0

u2
0D

H1ð ~Γ Þ ð11Þ

In what follows, we set x0 ¼ u0 ¼ L, where L is some characteristic length of the domainΩ. With this choice of parameters, we
can rewrite (6) as

~E tð ~u; ~Γ Þ≔1
2

Z
~Ω\ ~Γ

WðD2 ~uÞ d ~x þ
~K

2 ~a4

Z
~Ω
ð ~u− ~wÞ2 d ~x þ

~G
~a
H1ð ~Γ Þ ð12Þ

where ~K , and ~G, and ~a are dimensionless parameters defined as

~K≔
12Khð1−ν2Þ

E
;

~G≔
12Gcð1−ν2Þ

Eh
;

~a≔
h
L
:

8>>>>>>><
>>>>>>>:

ð13Þ

Remark 2. The actual choice of the normalization parameters x0 and u0 is arbitrary. Another possible choice, similar to the

one adopted in Léon Baldelli et al. (2013), is x0 ¼ ðD=KÞ1=4 and u0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gchx

3
0=D

q
so that all coefficients in (11) become equal to 1.

Our choice leads to the domain size and displacement magnitude of the order of 1 and is motivated by our focus on the
numerical implementation, at the expense of slightly more complicated expressions.
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For the sake of conciseness and in order to simplify the notation, from this point on we omit the tilde on all fields, i.e. we
write u for ~u and so on.

2.4. Numerical implementation

The variational approach to fracture frees itself from the need of an a priori knowledge of the crack path or specification
of an additional branching criterion. Nevertheless, an implementation requires sophisticated numerical methods capable of
dealing with free discontinuity problems. Specifically, the method requires performing the minimization of the total energy
with respect to any kinematically admissible displacement field u and any cracks defined by a curve or set of curves Γ. The
method is derived from the one presented in-depth in Bourdin et al. (2008) and references therein. In what follows, we give
a brief overview of the method focusing on the necessary changes required to deal with the biharmonic problem and refer
the interested reader to the aforementioned references for more details.

Following the approach pioneered in Ambrosio and Tortorelli (1990) for an image segmentation problem and studied in-
depth in Braides (1998), we introduce a regularization parameter η40 homogeneous to a length and a secondary variable α
taking its values in (0,1) to represent the presence of cracks (in a sense to be clarified further below). We define the
regularized energy

Et;ηðu;αÞ≔Ptðu; αÞ þ SηðαÞ; ð14Þ
where

Ptðu; αÞ≔
1
2

Z
Ω
ð1−αÞ2WðD2uÞ dxþ K

2a4

Z
Ω
ðu−wtÞ2 dx; ð15Þ

and

SηðαÞ≔3G
8a

Z
Ω

α

η
þ η ∇αj2 dx:
�� ð16Þ

In the setting of the Mumford–Shah functional or of anti-plane shear, the behavior of the regularized problem can be
rigorously established. More specifically, it can be shown that as η-0, Et;η converges to Et in the sense of Γ–convergence.
From there, it is easily seen that the global minimizer of Et;η converges to that of Et as η-0. Roughly speaking, as η-0,
the displacement field minimizing (14) becomes arbitrarily close to that of minimizing (12), and that the α field converges
to 1 “near the jumps of u” (i.e., the cracks) and to 0 almost everywhere else. This Γ–convergence result can be extended
further to encompass the entire discrete and then continuous time evolution (see Giacomini, 2005). These results are
mathematically complex and we do not attempt to extend them to our setting. Instead, we assume that they hold in the case
of a bi-harmonic bulk term and proceeded by induction. We believe that the numerical results presented further along in
Sections 3 and 4 give credit to this assumption, even though, admittedly, they are no substitute for a formal proof.

The numerical implementation and, in particular, the minimization strategy of (14) is now regarded classical. Following
Bourdin et al. (2008), by considering a discrete set of loading parameters ti and for a given choice of the regularization
parameter η, we seek sequences of minimizers of the regularized energy. At each time step, the crack growth condition (7) is
accounted for through the addition of constraints on the field α. Namely, for each ti, we solve the following minimization
problem:

ðui; αiÞ ¼ arg min
ui∈KA

αi∈Aϵ ðαi−1 Þ

Et;ηðu; αÞ; ð17Þ

where KAðtiÞ denotes the set of kinematically admissible displacements and A is defined by

AϵðαÞ ¼ fx∈Ω; αðxÞo1−ϵg; ð18Þ
and ϵ is some arbitrarily small parameter.

The actual minimization of (14) is achieved using a combination of alternate minimizations and a backtracking algorithm.
At each time step, we iterate minimization with respect to u and α until the results converge. In this algorithm, the first step
to obtain u is a simple convex problem which is implemented by solving the associated Euler–Lagrange equation (i.e., the
elasticity problem) using the method of finite differences. The second step to solve for α is to apply a bounded Trust Region
Newton minimization scheme for the discrete energy. Upon convergence of the alternate minimizations algorithm, we
compare the results to all the previous loading steps in order to avoid settling on some local minimizers (see Bourdin, 2007
for more details on the backtracking idea). Of course, we cannot claim that this approach always leads to a global minimizer.
In some situations, we were able to compute the actual global minimizer of the regularized energy using dynamic
programming and compare the results with the outcome of our minimization strategy (see Section 3.2).

Our implementation relies on the distributed data structures and linear algebra provided by PETSc (Balay et al., 1997,
2010a,b), whereas the constrained optimization problems are solved using TAO (Munson et al., 2012).

The astute reader will also have noticed the similarity between the regularized functional (14) and non-local gradient
damage (Pham et al., 2011) or phase field (Hakim and Karma, 2009; Henry and Levine, 2004; Karma and Lobkovsky, 2004)
models. In these models, the regularization parameter is given a physical interpretation (e.g., internal length, interaction
distance). However, our approach is somewhat different. The parameter η is treated purely as a numerical artifact of the
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energy functional (14), which itself is treated as an intermediate expression in a two-step numerical method based on
regularization followed by discretization. In short, our model is based on the minimization of a free discontinuity energy
(12) and the specific form of its regularization (15) bears no special physical significance.

3. A one-dimensional verification problem

Under restrictive enough hypothesis on the loading, the geometry of the domain, and the structure of the solution, it is
possible to build a closed-form (but non-trivial) solution of our model. This highly idealized situation provides valuable
insight into the properties of the proposed model, and will allow us to provide some element of verification of our numerical
implementation. We consider an elongated rectangular domain Ω¼ω� ð−ly=2; ly=2Þ where ω is some interval and ly⪡1, and
assume that the loading function wt depends only on x (Fig. 3).

In this situation, it is natural to consider only displacement fields that depend on x and transverse cracks in the form
Γ ¼ γ � ð−ly=2; ly=2Þ when γ consists of a discrete set of points in ω. Introducing the function vt≔u−wt , we define rescaled
elastic, surface and total energies as

Etðvt ; γÞ≔Ptðvt ; γÞ þ SðγÞ; ð19Þ
where one-dimensional bulk energy Pt, and one-dimensional surface energy S are defined as

Ptðvt ; γÞ≔ 1
ly
Ptðu;ΓÞ ¼ 1

2

Z
ω\γ

ðvt″þwt″Þ2 dxþ K
2a4

Z
ω
v2t dx; ð20Þ

SðγÞ≔ 1
ly
SðΓÞ ¼ G

a
#ðγÞ; ð21Þ

and #ðγÞ denotes the counting measure of γ (i.e., the number of points in γ).
In the 1-D case, we adopt a slightly different viewpoint by focusing on the film's fragments instead of its crack points.

Given any interval ω, we note that the choice of a countable family of n points γ ¼ fx1;…; xng is exactly equivalent to
partitioning ω into n+1 disjoint open intervals fω0;ω1;…;ωng such that ωi∩ωj ¼∅ if i≠j and ⋃0≤i ≤nωi ¼ ω. With a slight
abuse of notation, for any such partition X ¼ fω0;…;ωng and any displacement field vt twice differentiable in each ωi we
define

Etðvt ;XÞ≔Ptðvt ;X Þ þ SðX Þ; ð22Þ
where

Ptðvt ;XÞ≔1
2

∑
n

i ¼ 0

Z
ωi

ðvt″þw″tÞ2 dxþ
K
2a4

Z
ωi

v2t dx
� �

ð23Þ

SðXÞ≔G
a
½#ðXÞ−1�: ð24Þ

Hereafter, we focus on a specific choice of the loading function wtðxÞ ¼−tx2=2 for which the elastic energy becomes

Ptðvt ;XÞ ¼ 1
2

∑
nþ1

i ¼ 1

Z
ωi

ðvt″−tÞ2 dxþ
K
2a4

Z
ωi

v2t dx
� �

: ð25Þ

Despite its similarity with the problem of a homogeneous elastic membrane under constant in-plane strain studied in Xia
and Hutchinson (2000) and Léon Baldelli et al. (2013), the minimization of Et is much more challenging as we will see below.

3.1. An explicit formula for the total energy of a film broken into n+1 fragments

We start our analysis by providing an explicit formula for the total energy of a film in elastic equilibrium. First, we write
the elastic energy of a single fragment of length l free at both ends, noting that the modified elastic energy (25) is invariant
by translation, so that the actual position of the fragment (i.e., choice of X) plays no role.

Consider an unfractured film occupying an interval ωk ¼ ðxk; xkþ1Þ of length l¼ xkþ1−xk. Up to a translation, the modified
displacement vt is given by the minimizer of

Ptðvt ; fð−l=2; l=2ÞgÞ ¼
Z l=2

−l=2
ðv″t−tÞ2 dxþ K

2a4

Z l=2

−l=2
v2t dx; ð26Þ



Fig. 4. Elastic energy (30) of fragment of length l with traction-free boundary conditions on both ends at unit load t¼1 (left) and scaling function FλðlÞ (31)
(right) as a function of l for various values of λ.

A. Mesgarnejad et al. / J. Mech. Phys. Solids 61 (2013) 2360–23792366
leading to the Euler–Lagrange equations

vð4Þt þ K
a4

vt ¼ 0 ð27Þ

subject to the traction-free boundary conditions

v″tð7 l=2Þ ¼ t; vð3Þt ð7 l=2Þ ¼ 0: ð28Þ
After some tedious algebra, one obtains an explicit expression for the minimizing modified displacement

vnt ðxÞ ¼
2

λ2ð sin ðλlÞ þ sinhðλlÞÞ − cos
λl
2

� �
sinh

λl
2

� �
sin ðλxÞsinhðλxÞ

�

þ sin λl
2

� 	
cosh

λl
2

� �
cos ðλxÞcoshðλxÞ− cos

λl
2

� �
sinh

λl
2

� �
cos ðλxÞcoshðλxÞ

− sin
λl
2

� �
cosh

λl
2

� �
sin ðλxÞsinhðλxÞ

�
; ð29Þ

and for the associated elastic energy

En

t ðlÞ≔
t2

2
ðlþ FλðlÞÞ; ð30Þ

where λ≔K1=4=a
ffiffiffi
2

p
is an internal scaling factor that represents the ratio between cohesive energy and bending energy, and

the function Fλ is defined by

FλðlÞ≔
2ð cos ðλlÞ−coshðλlÞÞ
λð sin ðλlÞ þ sinhðλlÞÞ : ð31Þ

Fig. 4 shows the elastic energy En

t ðlÞ and function FλðlÞ as a function of the fragment length l for several values of the
internal scaling factor λ. It is worth noting that the linear part of the energy is simply due to the work of imposed moments
(i.e., v″t ¼ t) and the non-linear scaling function is due to the work of the modified displacement (i.e., vnt ).

Using (30), it is easy to obtain a general formula for the total energy of a film broken into n+1 fragments, summarized as
follows.

Proposition 1. Consider a partition Y ¼ fI0;…; Img of an interval I. Let vnt be the equilibrium modified displacement associated
with the loading wtðxÞ ¼ −tx2=2, i.e., vnt jIj ¼ arg minvEtðv; fIjgÞ. Then, the total energy associated to Y is

En

t ðYÞ≔Etðvnt ;YÞ ¼
t2

2
jIj þ ∑

m

j ¼ 0
FλðjIjjÞ

 !
þmG

a
; ð32Þ

if m40, and

En

t ðYÞ≔Etðvnt ; IÞ ¼
t2

2
ð I0 þFλð I0 ÞÞ

�������� ð33Þ

otherwise.

In the case of the homogenous elastic membrane under constant in-plane strain in Léon Baldelli et al. (2013), a simple
argument of convexity for the equivalent of Fλ leads to the conclusion that for a given value of n, the partition X minimizing
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En

t ðXÞ consists of n equal length fragments in ω. Here, Fλ is non-convex and such a result does not hold true a priori, which
renders obtaining a closed-form minimizer for EnðtÞ much more challenging. Instead, we use a dynamic programming
technique inspired by Chambolle (1995) to compute the true global minimizer of the total energy, and illustrate via
examples that the optimal crack configuration may not result in fragments of equal length. In the next two sections, we use
exact solutions obtained by a dynamic programming algorithm to verify the numerical implementation of the regularized
functional (14). The details of this algorithm are presented in Appendix A.

3.2. Comparison with the elliptic regularization approach

A major hurdle is the stiffness of the elastic term in the regularized energy. Substituting λ in (15), it is clear that for small
values of λ, the minimization of the total energy with respect to the displacement field becomes numerically ill-conditioned.
Since realistic situations correspond to large values of the parameter λ, we chose to partially ignore this issue: we
implemented a one dimensional version of the regularized energy by means of finite differences on a regular grid, which
we used to replicate the experiments in Figs. A1 and A2. We then focused on the more realistic situations using
two-dimensional finite differences.

In this section, we used the one-dimensional implementation of the regularized energy (14) for the problem in Fig. A1.
Fig. 5 (left) compares each component of the fracture energy obtained with both methods, while the displacement vt
and fracture α fields are plotted on the right, respectively, after the first and second crack nucleation (t¼1, 2). The space
discretization consists of 800 grid points (δx ¼ 6:25� 10−4), while the loading interval 0≤t≤3:0 is discretized in 100 time
steps and the regularization parameter is η¼ 10δx. The backtracking algorithm from Bourdin (2007) was used in order to
ensure energy balance at the crack nucleation loads. The agreement between both models, in terms of value of the energies,
critical loads at nucleation and crack location is excellent.

In Fig. 6, the same process is repeated for the computation leading to an asymmetric crack pattern shown in Fig. A2. Here,
the agreement is not as good. Whereas dynamic programming computations predict that single cracks should be nucleated
respectively at x¼−0.06, x¼0.22, and x¼−0.28 at t¼0.67,0.73, and 0.91, alternate minimizations of (14) lead to the nucleation
of two symmetric cracks at x≃70:09 at t≃0:75, followed by the nucleation of two more cracks at x≃70:24 at t≃1:09. Fig. 6
(left) compares the total energy obtained with our dynamic programing algorithm (solid blue line) to that obtained through
numerical minimization of (14), and highlights the difficulty of this problem. Note in particular how the solution with two
symmetric cracks obtained with the alternate minimizations algorithm enhanced with the backtracking scheme is close to
the global minimizer. Yet it appears to be a stable critical point of the regularized energy. Notice also how the optimal 3-crack
configuration is not achievable from the two-crack configuration by virtue of irreversibility. This explains how the second
bifurcation takes place at a higher loading value in the numerical simulation based on minimization of (14).
Fig. 5. Fracture of a one-dimensional sample uniformly loaded. Comparison between the dynamic programing solution from Fig. A1 and the minimization
of the regularized energy (14) with λ¼ 10, l0¼0.5, Ga−1 ¼ 0:05, η¼ 10δx. Left: total energy as a function of the loading (blue solid line) compared to the
dynamic programming solution (dashed lines). Right: displacement u (blue dotted line) and α field (red solid line) at t¼1.0 (top) and t¼2.0 (bottom). (For
interpretation of the references to color in this figure caption, the reader is referred to the online version of this article.)

Fig. 6. Fracture of a one-dimensional sample uniformly loaded. Comparison between the dynamic programing solution from Fig. A2 and the minimization
of the regularized energy (14) with λ¼ 10, l0¼0.8, Ga−1 ¼ 0:05, η¼ 10δx. Left: total energy as a function of the loading (blue solid line) compared to the
dynamic programming solution (red dashed line). Right: displacement u (blue dotted line) and α field (red solid line) at t¼0.8 (top) and t¼1.5 (bottom).
(For interpretation of the references to color in this figure caption, the reader is referred to the online version of this article.)



Fig. 7. Fracture of a two-dimensional sample under pure bending. Comparison between the dynamic programing solution from Fig. A4 and the minimi-
zation of the regularized energy (14) with λ¼ 31:6, l0 ¼ 1, Ga−1 ¼ 1, η¼ 5δx. Evolution of the energy (black: total, blue: energy, red: surface energy) and
comparison with the 1d global minimizer (thick lines) (top), fracture field α at t¼5, 5.4, 5.8 (from top to bottom). (For interpretation of the references to
color in this figure caption, the reader is referred to the online version of this article.)
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That the alternate minimizations algorithm fails to properly identify the proper solution is not a surprise, since it can
only be shown to converge to a critical point of the energy. Thus, by virtue of its non-convexity, it may admit many local
minimizers. In fact, whereas the variational approach to fracture postulates that crack nucleation is given by global
minimizers of a non-convex energy, in the numerics what often triggers such events is the stability of the elastic solutions
(see Pham et al., 2011). A continuation method, similar to the one implemented in Maurini et al. (2013) may be useful here,
but was not tested, as we focused our attention towards more realistic situations.

We conclude this section by focusing on an example with more realistic parameters, which we can use for the verification of our
two-dimensional finite difference implementation. We consider a two dimensional domain Ω¼ ð−0:5;0:5Þ � ð−0:1;0:1Þ
discretized by a 300�60 grid (δx¼ 3:3� 10−3). The internal scaling factor is λ¼ 31:6, and the regularization parameter is
η¼ 5δx. Fig. 7 shows the comparison between the global minimizer of the energy Et obtained by dynamic programming and the
energy of discrete regularized energy Et;η. The backtracking algorithm described in Bourdin et al. (2008) was used to avoid some
classes of local minimizers and ensure energy balance.

As can be seen in Fig. 7, evenwith a relatively large regularization parameter η, the total energy of the numerical solution
is very close to that of the global minimizer for the one-dimensional problem. Also note that the total energy obtained from
two-dimensional numerical solution is smaller compared to that of the true one-dimensional global minimizer which can
be attributed to the two-dimensional features near the boundary x2 ¼ 7 ly=2 (see Fig. 7). Note also that while the surface
and elastic energies of the numerical solutions are overall close to that of the global minimizer, one observes some
discrepancy when the loading parameter t is such that 4:5≤t≤6. This can be explained by two properties of our numerical
solutions. Firstly, when 4:5≤t≤6, our numerical solution is not the translation of a one-dimensional crack pattern (see in
Fig. 7 how at the onset of nucleation, the cracks only span parts of the cross-section of our domain). Also, before crack
nucleation, we observe that the α field does not remain near 0. This leads to a softening effect similar to that of distributed
damage. As the regularization parameter η becomes smaller, this effect should progressively vanish. For larger loads the
fracture field α remains overall near 0, with smooth but well-focused transitions to 1 at x¼70.4,70.3,70.2,70.1,0.0,
corresponding to the 9 cracks observed in the global minimizer (see Fig. A4).

4. Numerical simulations

While the previous section is mostly concerned with verification of our implementation based on a highly idealized problems
with little regard for the physical relevance of the rescaled material properties, we also focused on two more realistic problems.
We first describe the fracture of a film coating on a cantilever beam then a spherical indentation of a film on compliant substrate.

4.1. Coated cantilever beam

In order to simulate the transverse crack on a thin film coating a cantilever beam, we considered a rectangular domain
Ω¼ ð0; lxÞ � ð−ly=2; ly=2Þ subject to a substrate displacement wt ¼ tx2ð3lx−xÞ corresponding to clamping the edge x¼0 and
applying a point force of magnitude F ¼−t=6 at x¼ lx (Fig. 8). We chose for unit of length L¼ lx in (12) so that our
computational domain corresponds to a rectangle of unit length and height ly=lx, which we discretized with a uniform grid
of 400�40 cells. We focused instead on the minimization of the regularized energy (14) over adapting the dynamic
programing algorithm.

Fig. 9 shows snapshots of the fracture field a multiple increments of the loading parameter t. Again, we observe the
progressive nucleation of an array of equidistant transverse cracks, growing from the clamped end towards the loaded end
of the domain. The characteristic crack spacing appears to depend most strongly on the non-dimensional cohesive stiffness
Ka−4. Qualitatively, this behavior is similar to the one observed in Bourdin et al. (2008, Section 6) for the in-plane loading of
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Fig. 8. Coated cantilever beam problem schematic.

Fig. 9. Fracture of a two-dimensional coated cantilever beam with L¼1.0, Ga−1 ¼ 1:, η¼ 5δx: (left) Ka−4 ¼ 6� 106, (right) Ka−4 ¼ 1:2� 107.

Fig. 10. Evolution of the elastic, surface and total energies for a two-dimensional coated cantilever beam with l0¼1.0, Ga−1 ¼ 1:, η¼ 5δx: (left) Ka−4 ¼ 6� 106,
(right) Ka−4 ¼ 1:2� 107.
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a layered material. Fig. 10 shows the evolution of the elastic, surface and total energy for these two cases. Interestingly, it
appears that after a loading phase during which the elastic energy grows as a quadratic function of the loading parameter,
its growth become linear. This suggests that asymptotically, when the length of the domain becomes large compared to the
crack spacing, the effective mechanical behavior associated with the growing network of parallel cracks is that of a damaged
region growing from the left edge of the domain at the same rate.
4.2. Indentation of thin films

We finally present numerical simulations indentation experiments of thin films, a truly two-dimensional problem of
significant importance commonly used as testing methodology to measure different physical properties of thin films (Lawn,
1998; Mesarovic and Fleck, 1999; Morasch and Bahr, 2007). We considered a two-dimensional domain Ω¼ ð−0:5;0:5Þ2
discretized by a structured mesh consisting of 1500�1500 nodes (δx¼ 0:0025) with regularization parameter η¼ 5δx¼
0:005. We consider the action of a spherical indenter centered at ð0;0;Rð1−tÞÞ from the film surface, t being as usual the
loading parameter. Fig. 11 shows the settings of the problem. The displacement of the substrate is given by

Wtðx; yÞ ¼
0 if x2 þ y2≥R2tð2−tÞ;
Rð1−tÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2−x2−y2

q
otherwise;

8<
:

i.e., we neglect the deflection of the substrate unless it is in contact with the indenter. This is essentially similar to assuming
a fully plastic substrate, and consistent with the experimental literature for very flexible substrate (Chai and Lawn, 2004;
Sierros et al., 2011). Also since this loading is not monotonically increasing, we did not use the backtracking algorithm.

Fig. 12 shows snapshots of the evolution of the fracture field α for increasing values of the loading parameter. The values
for non-dimensional fracture toughness G¼5�10−3 was calculated based on fracture toughness of Indium Tin Oxide (ITO)
films as shown in Table 1 for a film of thickness h¼ 0:1 μm. The value of K was then calibrated based on the experimental
observation. We did not attempt at performing a full quantitative comparison with experiments. However, features of our
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Fig. 11. Schematics of the micro-indentation problem.

Fig. 12. Fracture of a two-dimensional thin-film with compliant substrate under spherical indenter of radius R¼0.3 with Ka−4 ¼ 4� 106, Ga−1 ¼ 1, and
η¼ 5δx at (from top left) t¼0.3, 0.5, 0.7, 0.9, 1.0.

Table 1
Physical properties of Indium Tin Oxide.

Young modulus (Zeng et al., 2003) Critical stress intensity factor KIC (Chen, 2012)

99.8713.6 GPa 2:270:3 MPa
ffiffiffiffiffi
m

p
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numerical simulations compare favorably with experiments and common observations. In particular, the combination of
circular cracks linked by smaller radial cracks was observed in Sierros et al. (2011, Fig. 3) reproduced here in Fig. 1.

Figs. 13 and 14 show sets of radial cracks obtained for two set of parameters corresponding to a thinner film or a larger
indenter radius compared to that of the numerical experiments in Fig. 12. This cracks geometry is reminiscent of
experiments presented in Lawn et al. (2002, Figs. 7 and 8), which were reproduced in Fig. 1. In an actual experiment, one
observes that ring cracks evolve from the contact edge downward whereas radial cracks evolve from the interface upward.
This behavior cannot be accounted for in our model as we assume that cracks always tunnel through the entire thickness of
the film. Instead, we observe that cracks nucleate with a strictly positive length, which is consistent with the analysis of
Chambolle et al. (2008). These cracks propagate with increasing load until the high values of t where ring cracks initiate at
their outer radii. We can, however replicate some common observations of thin-film fracture; in particular, perpendicular
crossing of fracture path in Fig. 13 and 1201 branching of cracks in Fig. 14. Furthermore, in Fig. 14 one can see that as the
non-dimensional fracture toughness of the film is reduced, there is transition from one branch (Fig. 14 (left)) to two very



Fig. 13. Crossing of cracks in fracture of a two-dimensional thin-film with compliant substrate under spherical indenter of radius R¼0.1 zoomed to
ð−0:1;0:1Þ2 with η¼ 5δx (from left) Ka4 ¼ 4� 106, Ga−1 ¼ 1 at t¼0.23 (left), t¼0.24 (right).

Fig. 14. Branching of cracks in fracture of a two-dimensional thin-film with compliant substrate under spherical indenter of radius R¼0.1 zoomed to
ð−0:1;0:1Þ2 with η¼ 5δx (left) Ka4 ¼ 6:4� 107, Ga−1 ¼ 2:0 at t¼0.17, (center) Ka4 ¼ 6:4� 107, Ga−1 ¼ 1:5 at t¼0.1 (right), Ka4 ¼ 6:4� 107, Ga−1 ¼ 0:7 at
t¼0.075.
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close branches (Fig. 14 (center)) and finally the distancing of the branching points (Fig. 14 (right)). This is similar to the
observations made by Maurini et al. (2013) for drying driven fractures.

5. Conclusions

In this article, we extend the variational approach to fracture mechanics (Francfort and Marigo, 1998; Bourdin and
Chambolle, 2000; Bourdin, 2007; Bourdin et al., 2008) to fracture of elastic thin films with elastic bonds to the substrate. The
analysis is based on the bending effects in thin films in contrast to the available literature in this area where the focus is on
in-plane effects (Xia and Hutchinson, 2000; Léon Baldelli et al., 2013).

The form of the total energy is obtained from three-dimensional linearized elasticity using asymptotic analysis under
suitable assumptions in Appendix B. We also present an in-depth analysis of a highly idealized problem and verify
our approach via numerical experiments. This is not easy since the analytical solution is only available in a few cases. In
Section 3 we offer a case where it is possible to retrieve the global minimizer for quasi-static evolution. The results are
compared to both one- and two-dimensional numerical experiments. Comparisons between the numerical results and predictions
based on global minimality show that the regularization as offered in Section 2.4 converges to those predicted analytically.

We extend the numerical experiments in Section 4 to coated cantilever beams and spherical indentation of thin films to
show different cases where the formulation can be applied. Two-dimensional loads, such as the ones offered here, lead to an
intriguing array of phenomena (e.g. fracture networks, parallel fractures, spiral fracture patterns, fracture-made-cells, etc.).
Specifically in Section 4.1 the numerical experiments offer an insight on existence of a second length scale (cracks spacing)
different from the Griffith length scale that strongly depends on the non-dimensional cohesive stiffness Ka4.

Although at this point we make no effort in quantitative validation of our model, in Section 4.2 we capture a wide range
of observed phenomena in fracture of thin films on compliant substrates as well as thin-film fracture in general. These
include transition of fracture patterns from circular to radial as well as branching and crossing of cracks.

The main objective of this work is to lay a solid background for the analysis of fracture in thin films. Variational approach
to thin-film fracture mechanics shows its potential for prediction of crack nucleation and propagation path. Unlike other
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methodologies in fracture mechanics by using variational approach to fracture mechanics, no ad-hoc treatment is necessary
for crack nucleation or crack propagation and bifurcation. Instead, they are naturally predicted through minimization over
all crack paths.
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Appendix A. A global minimization algorithm based on dynamic programming

Although the closed-form minimization of the total energy functional (32) is not feasible, it is possible to produce an
algorithm that can be proven to converge to its global minimizer. This algorithm is derived from a dynamic programming
approach devised in Chambolle (1995) for Mumford–Shah problem. It relies on the following key observation:

Consider a film occupying an interval ω¼ ða;bÞ subject to a load of magnitude t, and let Xω ¼ fω0;ω1;…;ωmg be the
partition minimizing En

t ð�Þ amongst all partitions of ω. Then X−≔fω0;ω1;…;ωm−1g minimizes En

t ð�Þ amongst all partitions
ω\ωm, and

En

t ðXωÞ ¼ En

t ðX−Þ þ En

t ðfωmgÞ þ
G
a
: ðA:1Þ

From there, it is easy to deduce that given any interval ω¼ ða; bÞ,

min
X partition of ða;bÞ

En

t ðX Þ ¼min
x0∈ω

min
X− partition of ða;x0Þ

En

t ðX−Þ þ En

t ðfðx0; bÞgÞ þ
G
a

� �
; ðA:2Þ

and that the minimum on the right-hand-side of (A.2) is achieved by x0 and X−, then the minimum on the left hand side is
achieved by X≔X−∪ðx0; bÞ.

Noting finally that the energy is invariant by translation of the domain, i.e., only the length of ω matters, we arrive at the
following algorithm:

Algorithm 1. Dynamic programing approach to the global minimization of (22) for a given loading parameter t.

1:
 assume ω¼ ð0; lÞ and let jωj ¼ l

2:
 for a given nx define li ¼ i

nx−1 l
3:
 for i¼ nx−1 to 1 do

4:
 X1

l−li⟵fð0; l−liÞg

5:
 U1

l−li⟵En

t ðX1
l−li Þ
6:
 end for

7:
 nmax⟵a

GE
n

t ðfð0; lÞgÞ þ 1

8:
 for n¼2 to nmax do

9:
 for i¼1 to nx−1 do

10:
 Compute Xn

li
¼ arg min

0o jo i
ðUn−1

li−lj þ En

t ðX1
lj
ÞÞ
11:
 Un
li⟵En

t ðXn
li
Þ

12:
 end for

13:
 end for

14:
 Compute Xn≔arg min

1 ≤n ≤nmax

Un
l

15:
 Un⟵En

t ðXnÞ
Considering quasi-static loading, and for a loading discretization ftig; 0≤i≤N; t0 ¼ 0; tN ¼ T , if we assume X ðiÞ≔
fωðiÞ

0 ;…;ωðiÞ
mi
g is the optimal partition for film ω¼ ða; bÞ at loading ti then admissible partition at loading tiþ1 consists of

the union of optimal partitions of each ωðiÞ
j ; 0≤j≤mi. This, in turn, enforces the irreversibility condition (IR) for each

loading step.
Using the above observation we adapt this algorithm to account for the quasi-static evolution and the irreversibility

constraint. Algorithm 2 finds the global minimizer partition Xn

ðiÞ of Eq. (22) for a monotonically increasing load at each step:

Algorithm 2. Dynamic programing approach to the global minimization of (22) under monotonically increasing load

1:
 Initiate Xn

ð1Þ ¼ fð0; lÞg

2:
 Define PðωÞ≔ set of all partitions of ω

3:
 for i¼1 to N do
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4:
ig. A1. Op
ith Ga−1
assume Xn

ði−1Þ ¼ fωði−1Þ
1 ;…;ωði−1Þ

n g and let n⟵#ðX ði−1ÞÞ

5:
 for j¼1 to n do

6:
 Yj ¼ arg min

Yj∈Pðωði−1Þ
j

Þ
En

t ðYjÞ (using Algorithm 1)
7:
 end for

8:
 Xn

ðiÞ⟵⋃fω∈Yj;1≤j≤ng

9:
 Un

ðiÞ⟵En

t ðXn

ðiÞÞ

10:
 end for
A.1. Numerical results using dynamic programming

Here we present two sets of results obtained using the dynamic programming Algorithm 2. The first set of results are
from a set of parameters where the global minimizer of (22) similar to that of Léon Baldelli et al. (2013) is attained by
fracture by bisection. The second set of results on the other hand highlights the effect of non-convexity of (22) resulting in
an asymmetrical fracture pattern.

Fig. A1 shows the evolution of the total energy En

t (left) and a schematic representation of the cracks’ locations (right) for
the 1-D problem as a function of the loading parameter t for a domain of length l0 ¼ 0:5 with λ¼ 10, and Ga−1 ¼ 0:05.

At t¼0.68, the configuration corresponding to a single crack at the center of the domain (x¼0) becomes energetically
favored over the untracked one. This is illustrated by the crossing of the energy curves corresponding, respectively, to the
un-cracked configuration and the one with a single centered crack in Fig. A1 (left). A similar process takes place at t¼1.62
when the configuration associated with 3 equi-distributed cracks (x¼−0:25;0;0:25) becomes energetically less costly than
the one with a single centered crack. This evolution by successive bisections is similar to the one observed in Léon Baldelli
et al. (2013) in the case of constant in-plane strain.

On a longer domain, the non-convexity of the function F leads to a loss of symmetry. Fig. A2 represents the outcome of a
numerical simulation similar to that of Fig. A1 with l0 ¼ 0:8. In this situation, the first crack nucleation at t¼0.67 is off-center
at x¼−0.06. Successive crack nucleations take place at the center of each ligament, but are staggered in time at t¼0.73,
x¼0.22 and t¼0.91, x¼−0.28. Note that Fig. A2 depicts one of the two solutions of this problem, the other being obtained by
symmetry with respect to the domain center.

The link between non-convexity of the elastic energy functional and loss of symmetry can be easily seen from the graph
of Fλ (31). From (32), it is easy to see that finding the optimal configuration consisting of a single crack is equivalent to
solving the one-dimensional minimization problem

min
0≤l≤l0

FλðlÞ þ Fλðl0−lÞ:

From the shape of the graph of F in Fig. 4, one would indeed expect that for small values of l0, FλðlÞ þ Fλðl0−lÞ admits a unique
global minimizer at l0=2 whereas when l0 becomes larger, it becomes a “two-well” function and admits two global
minimizers. This is illustrated in Fig. A3 where FλðlÞ þ Fλðl0−lÞ is plotted for λ¼ 10 and l0 ¼ 0:5;0:8. The non-convexity for
l0 ¼ 0:8 is made more obvious in the rightmost graph by zooming in around the origin.

In practical applications, the parameter λ is expected to be very large. Fig. A4 represents a summary of the crack evolution
for a more realistic set of parameters: l0 ¼ 1, λ¼ 31:62, and Ga−1 ¼ 1. We chose the scaling factor so that upon a critical load,
9 equi-distributed cracks nucleate together γ ¼ f70:4; 70:3; 70:2; 70:1;0g. Again, the qualitative difference between this
evolution and the recursive subdivision observed in Léon Baldelli et al. (2013) comes from the non-convexity of the elastic
energy with respect to the fragment length.
timal energy (left) and crack location (right) of a sample of length l0¼0.5 under pure bending obtained using dynamic programming algorithm
¼ 0:05, λ¼ 10.



Fig. A3. Elastic energy of a configuration with a single crack as a position of its location, for a domain length l0 ¼ 0:5 and l0 ¼ 0:8. In order to make
comparisons easier, the graphs are shifted towards the left by l0=2.

Fig. A2. Optimal energy (left) and crack location (right) of a sample of length l0¼0.8 under pure bending obtained using dynamic programming algorithm
with Ga−1 ¼ 0:05, λ¼ 10.

Fig. A4. Optimal energy (left) and crack location (right) of a sample of length l0 ¼ 1 under pure bending obtained using dynamic programming algorithm
with Ga−1 ¼ 1, λ¼ 31:62.

A. Mesgarnejad et al. / J. Mech. Phys. Solids 61 (2013) 2360–23792374
Appendix B. Derivation of the lower dimensional model

We show how the reduced-dimension expression of the elastic energy can be formally derived from the full three
dimensional model using a proper rescaling of the layers' thicknesses and elastic properties. We focus on the case of non-
homogenous boundary condition i.e., uϵ ¼ ð0;0; g ϵðxϵ1; xϵ2ÞÞ at lower boundary of cohesive bond layer. We use the convention
that greek letter subscripts stand for indices 1, 2 and latin letters for 1, 2, 3.

We consider a film of thickness ϵ occupying a region Ωϵ≔ω� ð0; ϵÞ where ω⊂R2 and a transversely anisotropic bonding
layer occupying Ω′ϵ≔ω� ð−ϵ;0�.
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The Hooke's law of the film and the bonding layers are given respectively for any kinematically admissible displacement
field uϵ by

sϵijðuϵÞ≔λϵeϵkkðuϵÞδij þ 2μeϵijðuϵÞ; ðB:1Þ

and

sϵαβðuϵÞ≔½λ′ϵeϵττðuϵÞ þ λ″ϵeϵ33ðuϵÞ�δαβ þ 2μ′ϵeϵαβðuϵÞ
sϵα3ðuϵÞ≔2μ″ϵeϵαβðuϵÞ
sϵ33ðuϵÞ≔λ″ϵeϵkkðuϵÞ þ 2μ″eϵ33ðuϵÞ:

8><
>: ðB:2Þ

The total energy associated with uϵðxϵÞ in the film and bonding layer is then given by

EϵðuϵÞ ¼ 1
2

Z
Ωϵ∪Ω′ϵ

sϵðuϵÞ : eϵðuϵÞ dxϵ ðB:3Þ

Using a change of variables vϵ ¼ uϵ−ð0;0; gϵÞ where

gϵðxϵ1; xϵ2; xϵ3Þ ¼
0 if xϵ∈Ωϵ

−xϵ3g
ϵðxϵ1; xϵ2Þ if xϵ∈Ω′ϵ

(
ðB:4Þ

is the extension of g ϵ to Ωϵ∪Ω′ϵ, we can write (B.3) as

EϵðvϵÞ ¼ 1
2

Z
Ωϵ∪Ω′ϵ

sϵðvϵ þ gϵÞ : eϵðvϵ þ gϵÞ dxϵ≔JϵðvϵÞ þ J′ϵðvϵ; gϵÞ; ðB:5Þ

Using the expression of the Hooke's laws, (B.5) can be rewritten as

JϵðvϵÞ≔
1
2

Z
Ωϵ

λeϵααðvϵÞeϵββðvϵÞ þ 2μeϵαβðvϵÞeϵαβðuϵÞ dxϵ þ 1
2

Z
Ωϵ

λeϵααðvϵÞeϵ33ðvϵÞ þ 4μeϵα3ðvϵÞeϵα3ðvϵÞ dxϵ

þ1
2

Z
Ωϵ

ðλþ 2μÞeϵ33ðvϵÞeϵ33ðuϵÞ dxϵ; ðB:6Þ

and

J′ϵðvϵ; gϵÞ≔1
2

Z
Ω′ϵ

λ′eϵααðvϵÞeϵββðvϵÞ þ 2μ′eϵαβðvϵÞeϵαβðvϵÞ dxϵ þ
1
2

Z
Ω′ϵ

λ″eϵααðvϵÞðeϵ33ðvϵÞ−g ϵÞ dxϵ

þ1
2

Z
Ω′ϵ

4μ″ eϵα3ðvϵÞ−
xϵ3
2
g ϵ
;α

� �
eϵα3ðvϵÞ−

xϵ3
2
g ϵ
;α

� �
dxϵ

þ1
2

Z
Ω′ϵ

ðλ″þ 2μ″Þðeϵ33ðvϵÞ−g ϵÞðeϵ33ðvϵÞ−g ϵÞ dxϵ: ðB:7Þ

We then introduce the classical (see Ciarlet, 1997 for instance) scaling of the coordinate system and deformations

ðxα; x3Þ≔ðxϵα;
1
ϵ
xϵ3Þ; ðvα; v3Þ≔ðvϵα; ϵvϵ3Þ ðB:8Þ

leading to the classical transformation of strains

eαβðvÞ≔eϵαβðvϵÞ
eα3ðvÞ≔ϵeϵα3ðvϵÞ
e33ðvÞ≔ϵ2eϵ33ðvϵÞ:

8><
>: ðB:9Þ

Also to satisfy consistency of the order of magnitudes of ϵ for displacement field components, we suppose that g ¼ ϵ2gϵ.
The specific form of the linear elastic energy considered in this article can be derived under the assumption that the in-

plane elastic modulii of the bonding layer are small compared to that of the film, and that the out of plane modulii are small
compared to the in plane ones. Namely, we assume that

ðλϵ; μϵÞ≔ðλ; μÞ
ðλ′ϵ; μ′ϵÞ≔ϵ2ðλ′; μ′Þ
ðλ″ϵ; μ″ϵÞ≔ϵ4ðλ′; μ′Þ: ðB:10Þ

Furthermore, we assume that the loading is such that g ¼ ϵ2g ϵ so that the total energy is of order ϵ, and define

FϵðvÞ≔ EϵðvÞ
ϵ

¼ GϵðvÞ þ Gϵ′ðv; gÞ; ðB:11Þ

with

GϵðvÞ≔
1
2

Z
Ω1

λeααðvÞeββðvÞ þ 2μeαβðvÞeαβðvÞ dx
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þ 1
2ϵ2

Z
Ω1

2λeααðvÞe33ðvÞ þ 4μeα3ðvÞeα3ðvÞ dxþ
1
2ϵ4

Z
Ω1

ðλþ 2μÞe33ðvÞe33ðvÞ dx; ðB:12Þ

and

Gϵ′ðv; gÞ≔ ϵ2

2

Z
Ω′1

λ′eααðvÞeββðvÞ þ 2μ′eαβðvÞeαβðvÞ dx

þ ϵ2

2

Z
Ω′1

2λ′eααðvÞðe33ðvÞ−gÞdxþ
ϵ2

2

Z
Ω′1

4μ′ eα3ðvÞ−
x3
2
g ;α


 �
eα3ðvÞ−

x3
2
g ;α


 �
dx

þ1
2

Z
Ω′1

ðλ′þ 2μ′Þðe33ðvÞ−gÞðe33ðvÞ−gÞ dx; ðB:13Þ

where, for the sake of conciseness, for ϵ¼ 1 we write Ω1 ¼Ωϵ ¼ 1, Ω′1 ¼Ω′ϵ ¼ 1 are the rescaled domains.
Consider now a minimizer v of Fϵ, and the set V of admissible test functions V≔fϕ∈H1ðΩ1∪Ω′1Þ;ϕðxα;−1Þ ¼ 0g. The first

order optimality conditions for Fϵ become

Aϵðv;ϕ; ϵÞ þ A′ϵðv;ϕ; ϵÞ ¼ 0 ∀ϕ∈V ðB:14Þ
with

Aϵðv;ϕÞ≔
Z
Ω1

λeααðvðϵÞÞeββðϕÞ þ 2μeαβðvðϵÞÞeαβðϕÞ dxþ
1
ϵ2

Z
Ω1

λeααðvðϵÞÞe33ðϕÞ þ λe33ðvðϵÞÞeααðϕÞ dx

þ 1
ϵ2

Z
Ω1

4μeα3ðvðϵÞÞeα3ðϕÞ dxþ
1
ϵ4

Z
Ω1

ðλþ 2μÞe33ðvðϵÞÞe33ðϕÞ dx; ðB:15Þ

and

Aϵ′ðv;ϕÞ≔ϵ2
Z
Ω′1

λ′eααðvðϵÞÞeββðvÞ þ 2μ′eαβðvðϵÞÞeαβðvÞ dx

þϵ2
Z
Ω′1

λ′eααðvðϵÞÞe33ðvÞ þ λ′ðe33ðvðϵÞÞ−2gÞeααðvÞ dx

þϵ2
Z
Ω′1

4μ′ðeα3ðvðϵÞÞ−x3g ;αÞeα3ðvÞ dx

þ
Z
Ω′1

ðλ′þ 2μ′Þðe33ðvðϵÞÞ−gÞe33ðvÞ dx: ðB:16Þ

We now consider an expansion of v in even powers of ϵ (odd powers of ϵ would trivially cancel in the sequel)

vðϵÞ ¼ v0 þ ϵ2v2 þ ϵ4v4 þOðϵ6Þ; ðB:17Þ
where v0; v2; v4∈V. Substituting this expression in the first order optimality conditions, we get that

ϵ−4a−4ðv;ϕÞ þ ϵ−2a−2ðv;ϕÞ þ a0ðv;ϕÞ þ Oðϵ2Þ ¼ 0 ∀ϕ∈V ðB:18Þ
where

a−4ðv;ϕÞ≔
Z
Ω1

ðλþ 2μÞe33ðv0Þe33ðvÞ dx ðB:19Þ

a−2ðv;ϕÞ≔
Z
Ω1

λðeααðv0Þe33ðvÞ þ e33ðv0ÞeααðvÞÞ dxþ
Z
Ω1

4μeα3ðv0Þeα3ðvÞ dxþ
Z
Ω1

ðλþ 2μÞe33ðv2Þe33ðvÞ dx ðB:20Þ

a0ðv;ϕÞ≔
Z
Ω1

λeααðv0ÞeββðvÞ þ 2μeαβðv0ÞeαβðvÞ dxþ
Z
Ω1

λðeααðv2Þe33ðvÞ þ e33ðv2ÞeααðvÞÞ dx

þ
Z
Ω1

4μeα3ðv2Þeα3ðvÞ dxþ
Z
Ω1

ðλþ 2μÞe33ðv4Þe33ðvÞ dx

þ
Z
Ω′1

ðλ′þ 2μ′Þðe33ðv0Þ−gÞe33ðvÞ dx ðB:21Þ

Assuming then that convergence takes place at each scale and from the expression of a−4, it is easy to obtain that

e33ðv0Þ ¼ 0 in Ω1; ðB:22Þ
so that

a−4ðv;ϕÞ ¼ 0 ∀v∈V: ðB:23Þ
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At order ϵ−2, we first consider a test function v in the form vðxα; x3Þ ¼ f ðx3Þe3 with f continuously differentiable on ð0;1Þ.
From (B.18) and (B.20), we obtain thatZ

Ω1

ðλeααðv0Þ þ ðλþ 2μÞe33ðv2ÞÞf ′ dx¼ 0;

and from the arbitrariness of f, that

e33ðv2Þ ¼−
λ

λþ 2μ
eααðv0Þ in Ω1: ðB:24Þ

Combining (B.22), (B.24), and (B.20), we get that
R
Ω1
4μeα3ðv0Þeα3ðvÞdx¼ 0 for all v∈V , so that

eα3ðv0Þ ¼ 0 in Ω1; ðB:25Þ
so that

a−2ðv;ϕÞ ¼ 0 ∀v∈V: ðB:26Þ

Remark 3. Combining (B.22) and (B.25), it is easy to see that v0 is a Kirchhoff–Love field in Ω1, i.e., that there exists a function
U0 of xα such that

ðv0Þα ¼ −ðx3−1
2Þðv0Þ3;αðxαÞ þ ðU0ÞαðxαÞ; α¼ 1;2: ðB:27Þ

From (B.22), we deduce that ðv0Þ3 depends only on xα, so that

ðv0Þ3 ¼ f ðxαÞ
for some function f. Accounting then for (B.25), we get that

ðv0Þα;3 ¼ −ðv0Þ3;α ¼ −
∂f
∂xα

in Ω1; α¼ 1;2;

and integrating along the x3 direction we can obtain (B.27)

ðv0Þα ¼ − x3−
1
2

� �
∂f
∂xα

þ ðU0ÞαðxαÞ in Ω1; α¼ 1;2;

where ðU0Þα is the in-plane displacement in Ω1 on x3 ¼ 1
2 plane.

We finally turn our attention to the terms of order 1. Consider first a test function in the form ϕ¼ f ðx3Þe3, with f∈C∞
c ð0;1Þ.

Substituting in (B.21), we get thatZ
Ω1

ðλeααðv2Þ þ ðλþ 2μÞe33ðv4ÞÞf ′ðx3Þ dx¼ 0;

so that

e33ðv4Þ ¼−
λ

λþ 2μ
eααðv2Þ in Ω1: ðB:28Þ

We then consider a test function in the form ϕ¼ f ðxαÞe3 with f ðxαÞ∈C∞
c ð0;1Þ. Again, substitution into (B.21) yieldsZ

Ω1

2μeα3ðv2Þeα3ðϕÞ dx¼ 0

so that

eα3ðv2Þ ¼ 0 in Ω1: ðB:29Þ
Finally, we consider a third test function in the form ϕ¼ f ðx3Þe3 with f ðx3Þ∈C∞

c ð−1;0Þ. Substituting in (B.21), and
integrating by parts in the x3 direction, we get that

0¼
Z
Ω′1

ðλ′þ 2μ′Þðe33ðv0Þ−gðxαÞÞf ′ðx3Þ dx

¼ ½ððv0Þ3;3ðxα;0Þ−gðxαÞÞf ð0Þ−ððv0Þ3;3ðxα;−1Þ−gðxαÞÞf ð−1Þ�−
Z
Ω′1

ðλ′þ 2μ′Þðv0Þ3;33f ðx3Þ dx:

Since f ð0Þ ¼ f ð−1Þ ¼ 0, we obtainZ
Ω′1

ðλ′þ 2μ′Þðv0Þ3;33f ðx3Þ dx¼ 0;

and therefore

ðv0Þ3;33 ¼ 0 in Ω′1:
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Using then the continuity of v0 at x3 ¼ 0 (along the interface between film and the cohesive bond), we deduce

ðv0Þ3 ¼ ð1þ x3Þðv0Þ3ðxα;0þÞ in Ω′1: ðB:30Þ
Using (B.23), (B.26) replacing in (B.15) we get

Aðv;ϕÞ ¼
Z
Ω1

λeααðv0ÞeββðϕÞ þ 2μeαβðv0ÞeαβðϕÞ dxþ
Z
Ω1

λðeααðv2Þe33ðϕÞ þ e33ðv2ÞeααðϕÞÞ dx

þ
Z
Ω1

4μeα3ðv2Þeα3ðϕÞ dxþ
Z
Ω1

ðλþ 2μÞe33ðv4Þe33ðϕÞ dxþ Oðϵ2Þ ðB:31Þ

using first (B.28) and (B.29) we get

Aðv;ϕÞ ¼
Z
Ω1

λeααðv0ÞeββðϕÞ þ 2μeαβðv0ÞeαβðϕÞ dxþ
Z
Ω1

λe33ðv2ÞeααðϕÞ dxþ Oðϵ2Þ ðB:32Þ

finally accounting for (B.24), we get

Aðv;ϕÞ ¼
Z
Ω1

2μλ
λþ 2μ

eααðv0ÞeββðϕÞ þ 2μeαβðv0ÞeαβðϕÞ dxþ Oðϵ2Þ: ðB:33Þ

Similarly for (B.16) we get

A′ðv;ϕÞ ¼
Z
Ω′1

ðλ′þ 2μ′Þðe33ðv0Þ−gÞe33ðϕÞ dxþ Oðϵ2Þ ðB:34Þ

We can derive the asymptotic energy from (B.(33) and B.34) as

GðuÞ ¼ 1
2

Z
Ω1

2μλ
λþ 2μ

eααðv0Þeββðv0Þ þ 2μeαβðv0Þeαβðv0Þ dxþ Oðϵ2Þ ðB:35Þ

G′ðuÞ ¼ 1
2

Z
Ω′1

ðλ′þ 2μ′Þðe33ðv0Þ−gÞðe33ðv0Þ−gÞ dxþ Oðϵ2Þ: ðB:36Þ

Changing variables from v to u, integrating in x3, and using (B.27) we get

GϵðuÞ ¼
1
2

Z
Γ

2μλ
12ðλþ 2μÞ ðu0Þ3;ααðu0Þ3;ββ þ

μ

6
ðu0Þ3;αβðu0Þ3;αβ dxþ

Z
Γ

2μλ
λþ 2μ

eααðU0ÞeββðU0Þ þ 2μeαβðU0ÞeαβðU0Þ dxþ Oðϵ2Þ

ðB:37Þ
where u0 ¼ v0 þ g is the leading term for in-homogenous scaled displacement field u¼v+g.

Similarly in Ω′1 using (B.30) (taking in account that ðv0Þ3;3 ¼ ðu0Þ3;3 ¼ 0 in Ω1), we can write

G′ϵðuÞ ¼
1
2

Z
Γ
ðλ′þ 2μ′Þ ðu0Þ3ðxαÞ−gðxαÞj2 dxþ Oðϵ2Þ;

�� ðB:38Þ

where Γ ¼ ð�; 12Þ is film's mid surface and U0 is the in-plane displacement in Γ. In this particular case since out-of-plane
(ðu0Þ3) and in-plane (U0) terms are decoupled and since there is no loading in the in-plane direction (i.e., gα ¼ 0) we get

FðuÞ ¼ 1
2

Z
Γ

2μλ
12ðλþ 2μÞ ðu0Þ3;ααðu0Þ3;ββ þ

μ

6
ðu0Þ3;αβðu0Þ3;αβ dxþ

1
2

Z
Γ
ðλ′þ 2μ′Þ ðu0Þ3−g j2 dxþ Oðϵ2Þ

�� ðB:39Þ
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