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Abstract

In this article, we focus on the validation of Francfort and Marigo’s variational approach to fracture based on some classical
fracture experiments. We show that this approach can be used to faithfully account for unknown crack paths even for complex
loadings and geometry. We revisit the backtracking algorithm, aimed at avoiding some spurious local minimizers of the total
fracture energy and introduce a variant: the deep backtracking algorithm.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

The modeling of crack geometry (path) has been one of the most challenging and elusive aspects of fracture me-
chanics and has captured the interest of scientists in different disciplines for many years. The difficulty in this endeavor
is two-fold: deriving proper models capable of predicting potentially complex unknown crack paths, and coming up
with numerical schemes capable of dealing with the unknown crack geometry without remeshing. The later issue has
been tackled with some success by methods based on enriching the approximation space through cohesive [1,2] or
extended [3,4] finite elements, or non-local approximations based on phase-fields [5–7], level sets [8,9] or eigende-
formation [10].

Francfort and Marigo’s variational approach to fracture [11–13] aims at addressing both issues simultaneously by
providing a rigorous model derived from Griffith’s concept of energy restitution between bulk and surface energies,
and providing an efficient numerical implementation capable of handling complex unknown crack path. Over the last
decade, this approach was applied to many areas including elastic fracture [12,14,15], thermoelastic fracture [16,17],
thin-film fracture [18–20], thin-shells [21], electro-mechanical fracture [22,23], or dynamic fracture [24–27] to name
a few. A major difficulty associated with the variational approach to fracture is the reliance on global energy mini-
mization, which can sometimes result in unrealistic crack paths by making equally admissible “near” and “far” points
in configuration space. In this paper, we propose a variant of the backtracking algorithm from [15] that allows a more
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thorough exploration of “near” states. While most of the literature focuses on verification simulations, or numerical
investigations of the properties of such models or algorithms, we focus on the quantitative validation of our method.
We use available well-documented experimental data to illustrate the ability of this deep backtracking algorithm, com-
bined with the regularized expression of the variational fracture energy to accurately predict crack paths in realistic
situations.

We begin this paper by providing a brief a review of the variational fracture mechanics framework in Section 2. In
Section 3, we review its approximation and minimization processes and introduce the deep backtracking algorithm. In
Section 4, we compare numerical simulations with experimental results. Finally in Section 5, we summarize different
aspects of the results obtained in this article.

2. Methodology

2.1. The variational approach to elastic fracture

The foundation of the variational approach to fracture mechanics is to associate a potential energy consisting of
the stored elastic energy, the work of external forces, and the energy dissipated through fracture to any crack and
deformation configuration of a brittle body. For a body occupying a reference configuration Ω ⊂ Rn , n = 2 or 3,
subject to a displacement u and containing the set of cracks Γ ⊂ Ω , we define the potential energy Et (u,Γ )

as:

Et (u,Γ ) :=Pt (u,Γ )+S (Γ ) (1)

where Pt (u,Γ ) is the deformation energy stored in the body and S (Γ ) is the energy dissipated through fracture
(i.e., the surface energy). The mechanical energy can be written in terms of its local potential W(u) and the work of
the external forces ft acting on a part ∂N Ω , of the boundary of the domain

Pt (u,Γ ) :=
1
2


Ω\Γ

W(e(u)) dx −


∂N Ω
ft · u dx . (2)

In all that follows, we consider linear elastic materials so that

W(e(u)) := C e(u) : e(u) (3)

where C is the fourth order elastic constitutive tensor and e(u) := (∇u + ∇uT )/2 is the linear elastic strain (i.e., the
symmetric gradient). For brittle materials, we define the surface energy, S (Γ ) as:

S (Γ ) := Gc Hn−1(Γ ) (4)

where Gc is the energy required to create a unit area (unit length) of new cracks, Hm is the m-dimensional Hausdorff
measure (i.e., H2(Γ ) is the aggregate area and H1(Γ ) is the aggregate length of cracks Γ in three and two dimensions
respectively).

2.2. Non-dimensionalization

To carry out the computations, we introduce a reference displacement u0, a reference length L0, a reference stress
E0, and define the non-dimensional displacement ũ, coordinates x̃ , elastic constitutive tensor C̃, and force f̃t as:

ũ :=
u

u0
,

x̃ :=
x

L0
,

C̃ :=
C
E0

,

f̃t :=
ft

E0
.
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We then define the n-dimensional non-dimensional potential energy

Ẽ (ũ, Γ̃ ) :=
1

E0u2
0Ln−2

0

E (u,Γ )

=
1
2


Ω̃\Γ̃

C̃ ẽ(ũ) : ẽ(ũ) dx̃ −


∂N Ω̃

L0

u0
f̃t · ũ d x̃ +

Gc L

E0u2
0

Hn−1(Γ̃ ). (5)

It is then natural to define a non-dimensional fracture toughness G̃

G̃ :=
Gc L0

E0u2
0

, (6)

so that the non-dimensional total energy (5) becomes:

Ẽt (ũ, Γ̃ ) =
1
2


Ω̃\Γ̃

C̃ ẽ(ũ) : ẽ(ũ) dx̃ −


∂N Ω̃
f̃t · ũ d x̃ + G̃ Hn−1(Γ̃ ). (7)

For ease in notation, from this point on we omit the tilde on all fields, i.e., we write u for ũ and so on.

2.3. Quasi-static evolution

In this article we focus on a quasi-static evolution of fracture. For a crack set Γ , the admissible displacement set
consists of functions Kt (Γ ) := {u ∈ H1(Ω \ Γ , Rn)|u(x) = ūt (x), ∀x ∈ ∂DΩ}, where ūt (x) is a given prescribed
boundary displacement on a part ∂DΩ of ∂Ω disjoint from ∂N Ω . Following [13], the evolution of the displacement
field and associated crack set for a given loading history ft (and boundary conditions ūt ) is given by the continuous
evolution law:

Definition 1 (Quasi-static Evolution). Given a loading sequence ( ft , ūt ) for t ∈ [0, tmax], a function t → (ut ∈

Kt (Γt ), Γt ⊂ Ω̄) is the solution of the quasi-static evolution if it satisfies:

• (IR) Irreversibility of the crack evolution:

Γt ⊇ Γs, ∀ 0 ≤ s ≤ t (8)

• (GST) Unilateral global minimality: At any time t ∈ [0, tmax], the state (ut ,Γt ) is such that:

Et (ut ,Γt ) ≤ Et (u,Γ ), ∀u ∈ Kt (Γt ), ∀Γ ⊇ Γt (9)

• (EB) Energy balance: the function E (t) := Et (ut ,Γt ) is absolutely continuous in t and satisfies the condition

dE

dt
=


∂DΩ\Γ (l(t))

∇W(e(ut ))) · ˙̄ut dx −


∂N Ω
ḟt · ut ds. (10)

Since evolution in time is only accounted through the irreversibility condition the formulation here is rate-
independent; therefore, up to a rescaling of time, any monotonically increasing load can be replaced with a linear
scaling of a reference load

ft = t f0 (11)

where the parameter t is merely a scaling factor. We nevertheless refer to t as “time”.

2.4. Approximation of the energy functional

The implementation of the variational approach to fracture requires the use of sophisticated numerical algorithms.
Specifically, the minimization of the displacement field with respect to any kinematically admissible displacement and
any set of crack curves introduces a high level of complexity. We follow the approach presented in-depth in [13] and
references therein. We introduce a regularization parameter ϵ > 0 homogeneous to a length and a secondary variable
α taking its values in (0, 1) to represent the cracks. We define the regularized energy

Et,ϵ(u, α) :=Pt (u, α)+Sϵ(α), (12)
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where

Pt (u, α) :=
1
2


Ω

(1− α)2Ce(u) : e(u) dx −


∂N Ω
ft · ut ds, (13)

and the fracture (surface) energy as:

Sϵ(α) :=
Gc

4Cv


Ω

V (α)

ϵ
+ ϵ|∇α|2 dx, (14)

where

Cv =

 1

0


V (α) dα (15)

is a normalization constant (see [28] for instance). The specific choice of the dissipation potential V (α) = α is moti-
vated by the convenience of its numerical implementation and the specific properties of the model at fixed ϵ, namely
a stress-softening behavior with an elastic domain [29,30].

The form of the regularized energy (12) is motivated by a now large body of theoretical work establishing it as an
approximation, in the sense of Γ -convergence, of the fracture energy Et [31–36]. Roughly speaking, as ϵ → 0, the
displacement field minimizing (12) converges to that of minimizing (1), the field α converges to 0 almost everywhere
and goes to zero “near the jumps of u” (i.e., the cracks).

In our numerical simulations, we consider a time discretization of the quasi-static evolution: we introduce a discrete
set of loading parameters 0 = t0 ≤ · · · ≤ tN = tmax and for a given choice of the regularization parameter ϵ, we
seek minimizers of the regularized energy. At each time step, the irreversibility condition is accounted for through the
addition of constraints on the field α. Namely, for each ti , we solve the following minimization problem:

(ui , αi ) = argmin
ui ∈ K A
0 ≤ αi−1 ≤ α ≤ 1

Et,ϵ(u, α), (16)

where K A(ti ) denotes the set of kinematically admissible displacements and ϵ is some arbitrarily small parameter.

2.5. Link with gradient damage models

We have introduced our regularized energy (12) as a “phase-field” numerical approximation of a “sharp interface
problem” (1). In the last few year, there has been a growing trend in studying a broad class of rate independent gradi-
ent damage models, to which (12) belongs. In this setting, the field α is seen as an internal damage variable, and ϵ as
a material’s internal length [29,37,30,17]. The governing principle for the rate independent evolution is then similar
to that of Definition 1, where the irreversibility condition becomes the growth of the damage variable, and unilateral
global minimality is replaced by unilateral stability with respect to admissible changes of the damage variable and
displacement field. There are growing evidences that both views coincide when the size of the internal length is small
compared to the domain size, and in regimes where stability in the sense of Griffith is achieved. In this article, we do
not try to investigate the sometimes subtle role of the regularization parameter, but focus on qualitative comparison of
crack path, when these models are seen as an approximation of Francfort and Marigo’s variational model of fracture.

3. Numerical implementation

Our minimization strategy for (12) is now classical [13]. At each time step, it is achieved by alternating mini-
mizations with respect to u and α until convergence, leveraging the separate convexity of the regularized energy with
respect to each field.

In this algorithm, the spatial discretization is done using the Galerkin finite element method. The first step to obtain
u is a simple convex problem implemented by solving the associated Euler–Lagrange equation (i.e., an elasticity
problem). In the second step to solve for α we use a bounded reduced space Newton minimization scheme for the
discrete energy [38]. The variational approach to fracture mechanics requires spatial resolution of discretization to
be at most of the order of the characteristic approximation length ϵ. The resulting problems are often very large and
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necessitate the use of a parallel programming paradigm and the complex numerical tools therein. Our implementation
relies on the distributed data structures provided by libMesh [39] and for linear algebra on PETSc [40,41].

3.1. Backtracking schemes

Like many other gradient based minimizations schemes, when dealing with a nonlinear set of equations, the al-
ternate minimization cannot be guaranteed to converge to a global minimum of (12) but is known to converge to a
stationary point of the total energy [42]. The foundation of the backtracking algorithm proposed and discussed in
depth in [13] is to derive an additional necessary condition for optimality of a time evolution, and a algorithmic way
to ensure that it is satisfied.

Consider a monotonically increasing loading and two loading steps ti and t j such that t j ≤ ti . If the pair (ui , αi ) is
admissible for (12) at time t = ti , then the pair (

t j
ti

ui , αi ) is admissible for time t = t j . Therefore, if the pair (u j , α j )

is the global minimizer at time t = t j , then Et,ϵ(u j , α j ) ≤ Et,ϵ(
t j
ti

ui , αi ), so that for any 0 ≤ i ≤ N , we have

Et,ϵ(u j , α j ) ≤


t j

ti

2

Pt,ϵ(ui , αi )+Sϵ(αi ), ∀ 0 ≤ j ≤ i. (17)

In the Backtracking algorithm, condition (17) is checked against all previously computed time steps upon conver-
gence of the alternating minimization algorithm. If a violation is detected i.e., if an admissible pair attaining a lower
energy for a past step has been constructed, the time evolution backtracks to that step using the current configuration
as an initial guess.

Algorithm 1 the backtracking algorithm.
1: Set α0 = 0.
2: Let δBT > 0, δaltmin be given tolerance parameters.
3: for n = 0 to N do
4: α0

i ←− αn−1

5: while
α j
− α j−1


L∞ ≥ δaltmin do

6: u j+1
←− argmin

u∈K A

Eϵ(u, α j )

7: α j+1
←− argmin

αi≤α≤1
Eϵ(u j+1, α)

8: j ←− j + 1
9: un ←− u j

10: αn ←− α j

11: Pn ←−Pt (un, αn)

12: Sn ←− St (un, αn)

13: for k = 1 . . . n − 1 do

14: if Pk +Sk −


tk
tn

2
Pn −Sn ≥ δBT then

15: α0
←− αn

16: n←− k
17: goto 5.

The backtracking search loop (steps 13–17 of Algorithm 1) is only performed upon convergence of the alternating
minimizations algorithm. The first modification we propose is to perform it after each alternate minimization step, in
order to better explore the configuration space (u, α).

Of course, checking the backtracking condition for every iteration of the alternate minimization against all the
previous time steps may be computationally expensive. Additionally, remark that this loop can be performed for
increasing or decreasing values of k. This is potentially interesting since different directions can explore different
minima of the configuration space. This leads us to introducing a deep backtracking algorithm (Algorithm 2) based
on three parameters describing how often and in which order condition (17) is checked.
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1. the interval bi controls how often the backtracking search loop is performed;
2. the direction bd = ±1 sets which of “older” or “newer” steps are checked first;
3. the scope bs controls the interval in which the backtracking search loop is performed.

Algorithm 2 the deep backtracking algorithm.
1: Set α0 = 1.
2: Let δBT > 0, δaltmin be given tolerance parameters.
3: for n = 0 to N do
4: if n > nmax then
5: nmax ←− n
6: α0

i ←− αn−1

7: while
α j
− α j−1


L∞ > δaltmin do

8: u j+1
←− argmin

u∈K A

Eϵ(u, α j )

9: α j+1
←− argmin

αi≤α≤1
Eϵ(u j+1, α)

10: if j mod bi = 0 then
11: P

j
n ←−Pt (u j , α j )

12: S
j

n ←− St (u j , α j )

13: if bd = 1 then
14: k0 = max((nmax − bs), 1)

15: k1 = n − 1
16: else
17: k0 = n − 1
18: k1 = max((nmax − bs), 1
19: for k = k0 to k1 do

20: if Pk +Sk −


tk
tn

2
P

j
n −S

j
n ≥ δ then

21: α0
←− α j

22: n←− k
23: goto 7.
24: j ←− j + 1
25: un ←− u j+1

26: αn ←− α j+1

In the next sections, we illustrate the influence of each parameter and how they can be tuned to match well known
experimental results.

4. Numerical experiments

4.1. The L-shaped plate

The L-shaped experiment reported in [43] and described in Fig. 1 is a popular setting for the validation of numerical
techniques [44–46,9]. The experiments are done using a concrete L-shape panel 10 cm in width fixed to a mortar
foundation at the bottom and loaded by a hydraulic system connected to a mortar jacket on its right side. The material
properties taken from the aforementioned references are listed in Table 1.

For this problem, we performed series of computations using backtracking or deep backtracking, and varying the
interval, scope, and direction for two different mesh sizes. The sample geometry and loadings are depicted in Fig. 1. In
order to avoid changes in “effective toughness” induced by the relative magnitude of the mesh size h and regularization
parameter ϵ as discussed in [13], we kept their ratio fixed h/ϵ = 5. In order to speed up computations, we also used a
coarser mesh and forced α = 0 in the areas represented in gray in the schematics, while setting α = 1 along the corner
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Fig. 1. Schematics of the L-shaped plate experiment from [43], α ≡ 0 in gray areas.

Fig. 2. Crack path in the L-shaped plate: comparison of the numerical simulations results with experimental data (in gray) from [43]. Crack path
(0.9 ≤ α ≤ 1 in red) for the characteristic approximation length (left) h = 0.3125 mm and ϵ = 1.5625 mm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Material properties for the L-shape plate [43].

E (GPa) ν Gc (N m−1)

25.85 0.18 95

where crack nucleation was expected. In all cases, we observed an elastic phase, followed by the sudden nucleation
of a short crack originating from the corner of the domain and subsequently propagating in a stable manner.

As expected, we observed that the crack path is not affected by the choice of the backtracking algorithm. Fig. 2
shows the final crack path for two different values of the regularization parameter ϵ. In both cases, the computed crack
path falls within the range of experimental observations from [43], but the initial crack angle exhibits some sensitivity
upon the value of ϵ.

A closer look at crack nucleation highlights how the backtracking algorithm has little influence on the crack angle
and length at activation, as demonstrated by Fig. 3 and Table 2 showing the crack geometry and critical activation load
for the standard and deep backtracking algorithm, and two values of ϵ. As expected, the standard backtracking leads
to lower critical load at nucleation (see Table 2). Deep backtracking with a forward direction, an interval bi = 1 and
a scope bs = ∞ leads to a shorter crack, and an even lower critical load, which is consistent with the fact that this
algorithm is more exploratory than the original one.
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Fig. 3. Pseudo-color plot of the regularized crack field α after nucleation of a crack for the L-shaped plate without backtracking (left), with the
original backtracking (center) or the proposed deep backtracking (right). The material properties are that of Table 1. The mesh size and regularization
length are h = 0.625 mm, ϵ = 3.125 mm (top row) and h = 0.3125 mm, ϵ = 1.5625 mm.

Table 2
L-shaped plate numerical simulation results for different backtracking algorithms.

ϵ (mm) Backtracking
algorithm

Critical vertical
displacement (mm)

Critical
load (kN)

Initial crack
length (mm)

Initial crack angle

3.125 None 0.2496 14.6788 87.95 26.06◦

3.125 Original 0.2352 13.9066 87.95 26.06◦

3.125 Deep 0.2304 13.6322 43.39 26.06◦

1.5625 None 0.2624 15.6654 96.26 33.21◦

1.5625 Original 0.2448 14.6482 96.26 33.21◦

1.5625 Deep 0.2416 14.4592 52.81 33.21◦

In all cases, the crack angle falls within the rather large bracket of experimental measurements of 0◦–43◦, but the
critical load is overestimated, and its value appears to depend strongly on the value of ϵ. This effect is clearly visible
from the force–displacement diagrams in Fig. 4. This is again consistent with the finding of [29] who suggest that the
link between a material’s yield stress and regularization length at the onset of loss of stability of the elastic solution
in uniaxial tension experiment can be used to calibrate the regularization parameter. Using a critical yield stress of
2.7 MPa from [45] and following the approach of [17] leads to an internal length ϵ = 126.32 mm, which is within the
range of accepted values for concrete. Fig. 5 shows the force–displacement diagram and the damage field at the onset
of crack nucleation, and after full evolution. The good match between measured and computed force–displacement
diagrams before nucleation and for short cracks give credit to this approach. However, for such a large value of ϵ, the
damage distribution is very diffuse, rendering the interpretation of this experiment within the brittle fracture realm
dubious. If the widely accepted order of magnitude of 10–100 mm for the internal length of concrete is to be trusted,
this experiments needs to be conducted on a much larger sample in order to be used for the validation of brittle fracture
numerical simulations.

One of the features of the variational approach to fracture is the effortless generalization to the three dimensions.
Fig. 6 shows a 3-D (isovolume) rendering of smeared fracture field 0.9 ≤ α ≤ 1 which was done using approximately
187,000 linear tetrahedral elements with average edge size h f = 2.5 mm in the brittle computational domain (look at
Fig. 1) and regularization length ϵ = 5 mm. Again, the crack path falls with the envelope of experimentally observed
paths, demonstrating the ability of our approach to correctly identify crack path on three dimensions.
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Fig. 4. Applied force as a function of the vertical displacement at the lower left corner of the plate: comparison of the numerical simulations results
with the experimental data (in gray) [43] crack path (0.9 ≤ α ≤ 1 in red) for the characteristic approximation length (left) ϵ = 3.125 mm (right)
ϵ = 1.5625 mm. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Force–displacement curve, damage at the critical load and upon final crack evolution for the L-shaped domain with an internal length
derived from the material’s yield stress, and showing large diffuse damage.

4.2. A three-point bending experiments

In order to highlight the differences between standard and deep backtracking, we turn our attention an asymmet-
rically notched three-point bending experiment on Plexiglas sheets originally described in [47]. The experiment was
designed so that small variations of the sample geometry and loading would lead to large changes in crack path, and is
therefore a good test when estimating a method’s ability to identify crack path [48–51]. The sample geometry and its
loading are shown in Fig. 7, the material properties in Table 3, and the location and length of the initial crack in two
different configurations in specific values of the location of the top, middle and bottom holes (indicated respectively
by T, M, and B) in Table 4.

In order to reduce the computational cost and eliminate the need to deal with potential compressive cracks around
the support and force application points, we used a coarse mesh and forced α = 0 in the area shown in gray in Fig. 7.
The central part of the domain was meshed with linear triangular finite element with an average edge length of average
0.01 in. (.254 mm), for a total of approximately 1.35 million elements.
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Fig. 6. Crack path in a three-dimensional L-shaped numerical simulation.

Fig. 7. Three-point bending experiment schematics, α ≡ 0 in gray areas (all the sizes are in inches).

Table 3
Material properties for the asymmetric three-point bending.

E ν Gc

450 kpsi (3.102 GPa) 0.35 1.73 lbf/in. (304.321 N m−1)

Table 4
Geometry of the asymmetric three-point bending sample.

Configuration I II

a 1 in (25.4 mm) 2.5 in. (63.5 mm)
b 6 in (152.4 mm) 6 in. (152.4 mm)

Fig. 8 shows a comparison between the computed crack path for configuration I (see Table 4) and experimental
results. Without backtracking, we observe that after a long elastic phase, a long crack suddenly forms, spanning from
the initial notch to the middle hole, then the upper hole, then continuing through the domain itself (see Fig. 8-left). The
computed crack path only matches experimental data until it reaches the vicinity of the middle hole, and significantly
deviates afterwards. As described in [15,13], in such situation there is no expectation that energy balance (17) should
be satisfied, and indeed, it is not. Using the original backtracking algorithm leads to an evolution following the
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Fig. 8. Asymmetric three-point bending experiment configuration I: comparison of crack path (0.9 ≤ α ≤ 1 in red) with experimental data [43]
(left) original backtracking (right) deep backtracking.

Fig. 9. Asymmetric three-point bending experiment smeared fracture field α at nucleation for configuration I using (left) deep backtracking
(middle) original backtracking (right) no backtracking.

same path (recall that the backtracking search loop is only performed after the alternate minimizations algorithm has
converged, i.e., once the crack path from Fig. 8-left has been identified), but a crack growing at a significantly lower
loading, so that total energy balance is satisfied. Using the deep backtracking, still leads to sudden crack propagation
(see Fig. 9), but along a path that is closer to that observed in experiments, and does not restart from the middle hole.
The crack path is shown for a computation with bi = 5, bs = ∞ and bd = +1 is shown in Fig. 8-right. We performed
multiple experiments varying the value of the three backtracking parameters and obtained similar results, as long
as the interval is not set “too high” (indeed, bi = ∞ would correspond to the original backtracking). Additionally,
we observed that the deep backtracking leads to a solution energetically favorable compared to the original one (see
Fig. 12). This is expected as the deep backtracking algorithm explores a larger portion of the configuration space. Of
course, we do not claim that the computed solution is a global energy minimizer.

A second set of numerical simulations for configuration II highlights a similar behavior of the deep compared to
standard backtracking. Both the solution without and with standard backtracking lead to a sudden crack propagation
through the middle hole, ending in the bulk of the domain whereas the deep backtracking consistently leads to a
crack reaching the top hole, as in the experiments, despite being deflected by the presence of the middle hole (see
Figs. 10 and 11). Again, the deep backtracking algorithm leads to a energetically favorable solution over standard
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Fig. 10. Asymmetric three-point bending experiment configuration II: comparison of crack path (0.9 ≤ α ≤ 1 in red) with experimental data [43]
(left) original backtracking (right) deep backtracking. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 11. Asymmetric three-point bending experiment smeared fracture field α at nucleation for configuration II using (left) deep backtracking
(middle) original backtracking (right) no backtracking.

backtracking. We note a significant difference between the numerical and experimental solution as our numerical
simulation consistently lead to a crack reactivating out of the top hole, at its onset.

Again, no significant difference in the primary crack path (from the notch to the first intersection with one of
the holes) was observed when the numerical simulations performed were done using different combination of the
auxiliary deep backtracking parameters (i.e., direction, scope, interval).

4.3. The Nooru-Mohamed tension shear experiments

In the Nooru-Mohamed tension shear experiment, the double-edge-notched specimen is subject to mixed tensile
and shear loads [52]. The result of this experiments has been used for validation purposes in number of articles
[53–56]. Fig. 13 shows the schematic of the test specimen and Table 5 summarizes the material properties used in the
numerical simulations. Here the loading protocol 4b, as defined in [52] was investigated numerically. This protocol
specifies the loading path as follows: (i) apply constant shear load fs while keeping fn ≡ 0, (ii) apply monotonically
increasing fn while keeping fs constant. In the experiments, proper care was taken to ensure that the direction of the
two loads always remained perpendicular; to achieve the same results in the simulation, the elastic step of alternate
minimization was obtained by superposition of three loadings as depicted in Fig. 14.
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Fig. 12. Asymmetric three-point bending experiment configuration II: comparison of total energy (left) and crack length (right) using different
backtracking algorithms.

Fig. 13. Tension shear experiment schematics (all the sizes are in mm, gray areas are rigid).

Table 5
Material properties for tension shear experiment.

E (GPa) ν Gc (N m−1)

30 0.2 110

Both backtracking algorithms can be extended to account for this loading by subtracting the work of constant loads
from the bulk elastic energy so that the backtracking condition (line 14 in Algorithm 1 or line 20 in Algorithm 2)
becomes

Pk +Sk +Bk −


tk
tn

2

P
j

n −S
j

n −B
j
n ≥ δ, (18)

where B is the bulk energy due to constant loads (first and second loading stages in Fig. 14).
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Fig. 14. Elastic substeps for the tension shear numerical simulations.

Fig. 15. Nooru-Mohamed experiment: (left) comparison of simulated crack path (0.9 ≤ α ≤ 1 in red) with experimental data [52] front face (dotted
black line), back face (dashed black line), elasto-plastic simulation (gray hashed area) [57], and XFEM simulation (blue dash-dotted line) [57].
(right) Crack length as a function of the vertical displacement top crack in black and bottom crack in red. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

The loading protocol highlighted above results in the rotation of principal stresses as the crack propagates which, in
turn, results in two curvilinear crack paths. The computations in this section were done using approximately 337,000
linear triangular elements with an average 0.5 mm side length (see Fig. 7).

In this computation, we observed an elastic phase followed by the nucleation of two cracks of non-zero length,
which then propagate progressively. The type of backtracking algorithm did not change the qualitative behavior or the
overall path, but again altered the critical load upon which the crack propagated, with as expected an earliest onset for
the standard backtracking then deep backtracking.

Fig. 15 shows a comparison between the numerical results and the experimental data for fs = 10 kN along with
simulations based on XFEM and an elasto-plastic model [57]. In the variational approach, crack evolution is governed
by a global principle (energy minimization) instead of a local one (criticality of the elastic energy release rate at each
crack tip). Owing to the lack of uniqueness of solution, it may happen that symmetric sets of asymmetric solutions
be energy minimizers. Here, we observed that the overall path nearly symmetric and that both cracks are nucleated
simultaneously (see Fig. 16). However, there was a small difference in crack length at nucleation and throughout the
evolution (see Fig. 15-(right)). It is not clear if this behavior illustrates the possible non-uniqueness often solution of
the problem, or is a spurious effect induced by the lack of symmetry of the mesh or numerical error.
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Fig. 16. Pseudo-color plot of the regularized crack field α after nucleation of a crack for the L-shaped plate without backtracking (left), with the
original backtracking (center) or the proposed deep backtracking (right). The material properties are that of Table 5. The mesh size and regularization
length are h = 0.5 mm, ϵ = 2.5 mm.

Fig. 17. Schematics of the Brokenshire torsion experiment with oblique crack.

Table 6
Material properties for Brokenshire torsion experiments.

E (GPa) ν Gc (N m−1)

35 0.2 110

4.4. The Brokenshire torsion experiments

We finally focused our attention on a fully three-dimensional problem initially presented in [58] and previously
investigated in a number of articles [53,59–61]. The Brokenshire test consists of a specimen with a 45◦ oblique notch
subject to a torsional load (see Fig. 17 for a schematic description of the domain geometry). In experiments, the frame
(shown in gray in Fig. 17) is held at three of its end points, while the downward vertical displacement of the fourth one
(facing the viewer in the figure) is prescribed. All the computations in this section were done using approximately 1.45
million linear tetrahedral elements with an average edge length of 2.5 mm near the oblique. The material properties
used in our computations are consistent with the literature, and indicated in Table 6.



A. Mesgarnejad et al. / Comput. Methods Appl. Mech. Engrg. 290 (2015) 420–437 435

Fig. 18. Brokenshire torsion simulation (ϵ = 12.5 mm): final crack geometry (left) isometric view (right top) front view (right bottom) top view.

Fig. 19. Brokenshire torsion simulation: (top) Top view of the final fracture geometry 0.9 ≤ α ≤ 1.0, (bottom) Isometric view of the final deformed
geometry: (left) ϵ = 2.5 mm (middle) ϵ = 5 mm (right) ϵ = 12.5 mm.

For such a problem, quantitative comparison with experiments is difficult, but the qualitative behavior that we
observed, a three dimensional crack front turning to accommodate for change in the maximum normal stresses’ ori-
entation as it propagate (see Fig. 18) is consistent with experiments. However, as previously noticed in the literature
[53,59–61], we also observed that the crack path is very sensitive to small changes in geometry and loading, or to
changes in the regularization parameter ϵ. Fig. 19 shows changes in the final fracture geometry (isovolume renderings
of the fracture field 0.9 ≤ α ≤ 1.0) and the final deformed geometry for three different values of ϵ.

5. Conclusions

In this article, we performed several validation experiments for the variational approach to fracture [13], imple-
mented through a regularized energy, focusing on situations where complex crack paths arise. We highlighted the
adequacy of this approach for quantitative prediction of crack paths, without a priori hypotheses. We improved sig-
nificantly on the backtracking algorithm by devising a variant exploring more states in configuration space.

In four distinct problems, we performed numerical simulations predicting crack paths that are consistent with
experiments and the most accepted numerical literature. When nucleation of a crack with non-zero length is observed,
the critical loading upon which cracks nucleate is shown to depends significantly on the regularization parameter ϵ of
the regularized energy. This phenomenon should highlight the importance of the extensive study of gradient damage
models in the one-dimensional case [30], and how it can be leveraged in numerical simulations, as in [17].
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