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Abstract Fracking, or hydraulic fracturing, is a ubiquitous technique for gener-
ating fracture networks in rocks for enhanced geothermal systems or hydrocarbon
extraction from shales. For decades, models, numerical simulation tools, and prac-
tical guidelines have been based on the assumption that this process generates
networks of self-similar parallel cracks. Yet, some field and laboratory observations
show asymmetric crack growth, and material heterogeneity is routinely attributed
for it. Here, we show that simultaneous growth of multiple parallel cracks is im-
possible and that a single crack typically propagates asymmetrically in toughness
dominated hydraulic fracturing, in which viscous dissipation of the fluid is neg-
ligible. In other words, loss of symmetry is a fundamental feature of hydraulic
fracturing in a toughness dominated regime and not necessary the result of mate-
rial heterogeneities. Our findings challenge the assumptions of symmetrical growth
of hydraulic fractures commonly made in practice, and point to yet another insta-
bility other than material heterogeneity.
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1 Introduction

Starting with the work of Sneddon and Elliott [33], the problem of a penny-shaped
hydraulic fracture subjected to a uniform pressure field has been studied in depth.
The symmetries of the elastic fields have been leveraged to study its propagation,
as reviewed in [16] and references within. When multiple hydraulic cracks are in-
volved, many existing models are limited to planar geometries [28,24] or other
restrictions such as non intersecting or non-branching cracks [40,42,14,10,22,32].
These geometric restrictions are often deemed acceptable, arguing that the sym-
metry of the problem (rotational and translational in the case of an infinite array
of cracks) will translate into that of the solution. Yet, Gao and Rice [21] have
computed the stress intensity factors for a penny-shaped crack under uniaxial
tensile loads and shown that shape instabilities will arise even in an isotropic ho-
mogeneous infinite medium. Complex non-symmetric fracture patterns have been
observed in field operations by monitoring microseismic [37,19,13]. For example,
during a hydraulic fracturing operation in a horizontal well with multiple mass
injection points, the microseismic activities indicate non-symmetric fracture prop-
agation at the expense of others (see Fig. 1(a)), a phenomenon often attributed to
heterogeneities. Furthermore, non-circular fracture patterns in isotropic homoge-
neous materials observed in experiments (see Fig. 1(b-c)) are not fully explained.
In this context, it is natural to challenge the statement that loss of symmetry in
hydraulic fracturing is solely due to materials heterogeneities.

In what follows, we study the most idealized setting, often referred to as tough-
ness dominated, of an incompressible and inviscid fluid injected in a network of
(hydraulically) connected equidistant parallel cracks in an impermeable isotropic
homogeneous infinite medium. In two space dimension, we perform a stability
analysis to show that even in the case of far apart cracks, a single crack will al-
ways dominate, and that simultaneous propagation of an array of identical cracks
is actually the least stable configuration. Numerical simulations suggest that this
is still the case when crack interactions are accounted for.

Fig. 1 (a) A top view of microseismic activities during the multi–stage hydraulic fracturing
operation in a horizontal well. Microseismic activities indicate asymmetric hydraulic fracture
growth out of the perforations [19]. (b,c) Hydraulic-fracture laboratory experiment showing
how a penny-shape crack can evolve off-centered even in a synthetic homogeneous material [8].
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2 Classical analysis of a pressurized crack in an infinite domain

2.1 Non-interacting single crack

Consider a straight crack of length 2l0, Γ = (−l0, l0) × {0}, in an infinite two
dimensional (2D) domain occupied by a homogeneous isotropic perfectly brittle
material with Young’s modulus E, Poisson ratio ν, and critical elastic energy
release rate Gc. Assuming a uniform pressure p acting on both crack lips, the
elastic energy becomes [33,3]

EV (l0) :=
E′V 2

4πl20
,

where E′ = E in plane stress condition and E′ = E/(1− ν2) in plane strain. The
elastic energy release rate with respect to a volume change is

GV (l0) = −1

2

dEV
dl0

(l0) =
E′V 2

4πl30
. (1)

Assuming a quasi-static evolution driven by an increasing injection volume, we
have that GV (l0) ≤ Gc as long as

V ≤ Vc(l0) := 2

(
πGcl

3
0

E′

)1/2

,

at which point the pressure reaches the critical value

pc(l0) :=

(
GcE

′

πl0

)1/2

.

2.2 Non-interacting multiple cracks

Consider now N straight cracks of length (l1, l2, . . . , lN ) hydraulically connected
(e.g. through a wellbore) so that the fluid pressure in all cracks is p but distant
enough so that we can neglect the influence of each crack on the elastic field and
energy release rate of the others. Let V =

∑N
i=1 Vi be the total injection volume.

From the single crack analysis, we have Vi = 2πpl2i /E
′ so that

p =
V E′

2π
∑N
j=1 l

2
j

Then the elastic energy of the system for a given injected pressure is:

EV (l1, . . . lN ) =
1

2
pV =

E′

4π

V 2

∑N
j=1 l

2
j

.

LetGV (l1, . . . lN )[δl1, . . . , δlN ] be the elastic energy release rate associated with
a crack increment vector 〈δl1, . . . , δlN 〉, obtained by taking the directional deriva-
tive of EV at (l1, . . . lN ) in the direction 〈δl1, . . . , δlN 〉. Recalling that EV (l1, . . . lN )
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denotes the elastic energy associated with N cracks of length (2l1, . . . 2lN ), we have

GV (l1, . . . lN ) · 〈δl1, . . . , δlN 〉 : = −1

2
∇EV (l1, . . . lN ) · 〈δl1, . . . , δlN 〉

=
E′V 2

4π
(∑N

j=1 l
2
j

)2

N∑

p=1

lpδlp.

i.e.

GV (l1, . . . lN ) =
E′V 2

4π
(∑N

j=1 l
2
j

)2 · 〈l1, . . . , lN 〉 .

Suppose first that the li are not all equal, and let lq be the longest of the cracks.
Then, amongst all crack increments 〈δl1, . . . , δlN 〉 such that

∑N
j=1 δlj = δl, GV is

maximized by the configuration δlq = δl and δli = 0, i 6= q, i.e. Griffith criticality
will first be attained by growing only the longest crack. Since pc(l) is a decreasing
function, the same scenario will repeat itself and the longest crack will continue
to grow while all others will remain sub-critical.

When all cracks are of equal length, let l := l1 = · · · = lN . We have that

GV (l, . . . , l) · 〈δl1, . . . , δlN 〉 =
E′V 2

4πN2l3

N∑

p=1

δlp =
E′V 2δl

4πN2l3
.

To determine the crack increment with the largest energy release, we study the
eigenvalues of the Hessian matrix of the elastic energy EV with respect to variations
of crack length for fixed injected volume, i.e. by computing the gradient DGV of
the elastic energy release rate:

DGV (l, . . . l) =
E′V 2

4πN2l4

(
I− 4

N
1⊗ 1

)
,

where I denotes the identity matrix in dimension N and 1 := 〈1, . . . , 1〉. Using
the identity det (I + c⊗ d) = 1 + c · d for any c,d ∈ RN [29] (p. 475), we obtain

that the eigenvalues of DGV (l, . . . l) are λ1 =
−3E′V 2

4πN2l4
with multiplicity 1 and

λ2 = · · · = λN =
E′V 2

4πN2l4
with multiplicity N−1. The eigenvector for the negative

eigenvalue λ1 is v1 = 1 while those associated with the positive eigenvalues are
vi = e1−ej , j = 2, . . . , N , ei, i = 1, . . . , N being the vectors of the canonical basis
of RN . Note that v1, the eigenvector associated with equal growth of all cracks,
minimizes the elastic energy release rate and

DG(l, . . . , l)1 · 1 =
−3E′V 2

4N2πl4
.

In other words, in the limit of non-interacting cracks with equal length, symmetric
growth of all crack satisfies Griffith’s criterion (formally G = Gc) but it is the
worst configuration from an energetic viewpoint.



Loss of symmetry in hydraulic fractures 5

The other eigenvectors do not correspond to admissible perturbations. Maxi-
mizers of the elastic energy release rate of the form δlej , j = 1, . . . , N are obtained
by projecting them onto the cone of admissible perturbations, and

DG(l, . . . , l)ej · ej =
E′V 2

4N2πl4

(
1− 4

N

)
.

Stable configurations satisfying Griffith criterion consist therefore in growing a
single arbitrary crack.

The same argument can be extended to an infinite network of “far enough”
parallel aligned cracks where a superposition principle can be used to show that the
elastic energy of a network of equi-distributed cracks of equal length under equal
pressure is the sum of the elastic energy of each crack pressurized separately. It
also extends trivially to the three-dimensional (3D) case. Of course, the possibility
remains that interactions between “close enough” cracks plays a stabilizing role
that can lead to simultaneous propagation. We used numerical simulations to show
that this is not the case.

3 A variational phase-field model for pressurized fractures

3.1 A variational approach to the propagation of pressurized cracks under
prescribed injection volume

In the toughness dominated regime of hydraulic fracturing [17], the injected fluid
can be regarded as inviscid, incompressible and the leak-off is negligible, so that
we are not concerned with poro-elastic effects. Following the now classical work
of Francfort and Marigo [20], Griffith’s criterion [23] can be formulated as a vari-
ational principle. Consider a domain Ω ⊂ RN , N = 2 or 3 in its reference con-
figuration occupied by a perfectly brittle material with Hooke’s law A and critical
energy release rate Gc. Let Γ ⊂ Ω with Γ ∩ ∂Ω = ∅ denote a regular enough
crack set with normal vector νΓ providing an orientation from the side Γ− to Γ+.
The sound region Ω \ Γ is subject to a time independent boundary displacement
ū(t) = 0 on the Dirichlet part of its boundary ∂DΩ while the remaining part
∂NΩ = ∂Ω \ ∂DΩ remains traction-free. Following Francfort and Marigo’s varia-
tional approach to fracture [20,5], the total energy associated to a configuration
(u, Γ ) is

E(u, Γ ) :=

∫

Ω\Γ

1

2
A e(u) · e(u) dx+GcHN−1(Γ ), (2)

where HN−1 denotes the N − 1–dimensional Hausdorff measure, i.e. HN−1(Γ ) is
the aggregate length of the unknown fracture set Γ in 2D and its surface area in
3D.

The total volume of the cavity formed by the crack Γ in the deformed config-
uration is

V (u) :=

∫

Γ

(
u+ − u−

)
· νΓ dHN−1,

where u+ and u− represent the one-sided traces of u along Γ+ and Γ− respec-
tively. Given a discrete set of time steps 0 = t0 < t1 < · · · < tm = T and injection
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volumes V1, . . . Vm, we seek configurations (ui, Γi) minimizing E amongst all kine-
matically admissible displacement fields u such that V (u) = Vi and all crack
sets Γ satisfying a growth condition Γj ⊂ Γi for all j < i, with Γ0 representing
pre-existing cracks if any. It is worth emphasizing that the model makes no as-
sumptions on the crack geometry Γi besides the irreversibility condition. Instead,
the crack geometry is fully determined by the successive minimization of the total
energy (2).

Let L(u, Γ, q) := E(u, Γ ) − q (V (u)− Vi) be the Lagrangian associated with
this constrained minimization problem (ignoring the growth constraint for the
sake of simplicity), q denoting the Lagrange multiplier associated with the volume
constraint. Stability with respect to q gives the volume constraint, and stability
with respect to u, considering an admissible perturbation v ∈ H1(Ω \ Γ ;RN )
vanishing on ∂DΩ gives

〈Lu(u, Γ, q),v〉 =

∫

Ω\Γ
A e(u) · e(v) dx− q

∫

Γ

(
v+ − v−

)
· νΓ dHN−1 = 0.

Using Green’s formula on Ω \ Γ , we get

−
∫

Ω\Γ
div (A e(u)) · v dx+

∫

∂Ω

A e(u)νΩ · v dHN−1

+

∫

Γ+

A e(u)(−νΓ ) · v dHN−1 +

∫

Γ−
A e(u)νΓ · v dHN−1

− q
∫

Γ+

v+ · νΓ dHN−1 + q

∫

Γ−
v− · νΓ dHN−1 = 0,

νΩ denoting the outer normal vector to Ω. From the arbitrariness of v, we re-
cover the equations of linearized elasticity where the Lagrange multiplier q can be
interpreted as the injection pressure p:

−divσ = 0 in Ω \ Γ,
σνΩ = 0 on ∂Ω,

σνΓ = −pνΓ on Γ±,

with σ = A e(u).

Note that from Clapeyron’s formula, we get that if u minimizes (2) and p is
the Lagrange multiplier associated with the volume constraint V , one has that

∫

Ω\Γ
A e(u) · e(u) dx = p

∫

Γ

(
u+ − u−

)
· νΓ dHN−1 = pV,

so that

E(u, Γ, V ) =
1

2
pV +GcHN−1(Γ ).
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3.2 Variational phase-field approximation

The main difficulty in numerical implementation of (2) is to handle discontinuous
displacements along unknown surfaces. Variational phase-field models, originally
devised in image reconstruction and extended to brittle fracture [4,5], have become
increasingly popular due to their ability to handle arbitrary crack geometries in
2D and 3D on a fixed mesh.

We follow this approach by introducing a regularization length `, an auxil-
iary field α with values in [0, 1] representing the unknown crack surface, and the
regularized energy

E`(u, α) =

∫

Ω

1

2
(1 − α)2

A e(u) · e(u) dx +
3Gc

8

∫

Ω

α

`
+ `|∇α|2 dx, (3)

where α = 0 corresponds to the undamaged state of material while cracks are
represented by smooth transition from 0 to 1 and back to 0 concentrated on regions
of width O(`). Note that (3) (often referred to as AT1) is slightly different from
the regularization proposed in [3] (AT2). This regularization has been shown to
capture crack nucleation more accurately [31,27,35]. In order to account for the
volume constraint, we follow the approach of [3,12], and notice that the total
aperture V (u) (hence the work of the pressure force) can be approximated by

V`(u, α) = −
∫

Ω

u · ∇α dx.

At each time step, the constrained minimization of the fracture energy E is then
replaced with that of E`, with respect to all (ui, αi) such that ui is kinematically
admissible, satisfies the regularized volume constraint V`(ui, α) = Vi and the crack
growth constraint 0 ≤ αi−1 ≤ αi ≤ 1.

As ` → 0, classical approximation results can be extended to show the Γ -
convergence of (3) to (2) [5]. This result provides the basic rationale for the
phase-field approximation, i.e. that the minimizers of E` converge to that of E
as ` → 0. Typically, one focuses on the minimization of E` for a given fixed but
“small” `, noticing that such problem only involves smooth (H1) functions that
can be properly approximated by conventional finite elements on a fixed mesh, for
instance.

3.3 Numerical implementation

We can extend the alternate minimization algorithm [4] to volume-constrained
minimization [3]. Energy minimization with respect to the displacement field un-
der a volume constraint can be achieved in two steps: compute the elastic displace-
ment associated with a unit pressure p for a given phase-field variable (or crack
geometry) then compute the value of the pressure for which the target volume
is attained (i.e. the Lagrange multiplier associated with the volume constraint.)
which is a simple rescaling for linear elastic materials. Our minimization algorithm
is given in Algorithm 1, where δα is a fixed tolerance and kmax a large parameter
aimed at preventing endless iteration should the algorithm diverge.

Here we are not concerned with unilateral contact (material interpenetration),
so that minimization of the total energy with respect to the displacement is a
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simple linear problem whose solution depends linearly on the constant pressure
field. Hence, the mapping between injected volume and injection pressure (for a
given α) is linear so that pk+1

i can be computed explicitly.

Algorithm 1 Volume driven hydraulic fracturing algorithm

1: Let α−1 = 0 (or construct a phase field compatible with initial cracks)
2: for i = 1 to m do
3: k ← 1, α0

i = αi−1

4: repeat
5: Compute the displacement with p = 1:

vk+1
i ← argmin

u∈Ci

{
E`(u, αki ); p = 1

}
6: Compute the crack pressure

pk+1
i ←

Vi

−
∫
Ω v

k+1
i · αki dx

vk+1
i

7: Scale the displacement with the volume constraint

uk+1
i ← pk+1

i vk+1
i

8: Minimize the total energy with respect to α

αk+1
i ← argmin

α≥αi−1

{
E`(uk+1, α); p = pk+1

i

}

9: until
∣∣∣αk+1
i − αki

∣∣∣
L∞
≤ δα or k = kmax

10: ui ← uk+1
i

11: αi ← αk+1
i

4 Variational analysis of multi-fracturing

4.1 Interacting cracks

Consider an infinite network of evenly distributed, aligned, parallel cracks with
length 2l and spacing 2δ (see Fig. 2) subject to a given pressure p. The volume of
each crack is [34]

Vp(ρ) =
8pδ2

E′
ρ2f(ρ),

where ρ = lπ/2δ and1 f(ρ) = 1/
√

1 + ρ2. The pressure that meets the Griffith
criterion is

p(ρ) =

√
E′Gc

δ (ρ2f(ρ))′
.

1 The expression from [34] is f(ρ) = 1 − ρ2/2 + ρ4/3 + o(ρ6), whereas [30] gives f(ρ) =

1− ρ2/2 + 3ρ4/8 + o(ρ6) which is the first terms of the McLaurin series of 1/
√

1 + ρ2.
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Fig. 2 (left): infinite network of cracks studied in [34], (right) decomposition in periodicity
cell of increasing size.

We performed a series of numerical simulations using a variational phase-field
model [2] on sub-domains of width 2L with initial cracks of length 2l0 containing n
initial cracks (n = 1, 2, 4, 6) denoted by Ω1, Ω2, Ω4, and Ω6 respectively (Fig. 2).
This numerical approach does not assume any a priori hypotheses on the crack
path [4,5] so that any number of crack can grow in any direction in our simulations.
The prescribed displacements on the top and bottom boundaries are uy(0) =
uy(nδ) = 0 and ux(±L) = 0 on the sides, so that we can view these domains
as periodicity cells of an infinite network of cracks. We rewrite the energy in
non-dimensional form by rescaling the displacements by a factor

√
E′/Gc, and

the pressure by 1/
√
GcE′, so that in our computations, we can use unit Young’s

modulus and fracture toughness. The parameters used in the computations are
(in non-dimensional form) L = 10, δ = 1, l0 = 0.115, and ν = 0. The choice of a
zero Poisson ratio is dictated by numerical convenience. Because the main driver
in the development of instabilities in the crack length is the convexity of the total
energy with respect to individual crack length, this choice does not impact the
qualitative behavior illustrated below. The mesh size and regularization parameter
in the simulations (see Appendix) are h = 0.005 and ` = 3h. Using symmetries and
translations, we can reconstruct periodic solutions for the infinite domain problem
(see Fig 3). In all cases, a single crack propagates, which is consistent with the
previous analysis.

Figure 4 (top-left) compares the normalized pressure and a total energy “den-
sity” defined as En :=

(
1
2pV +Gcl

)
/n (using (3.1)) against the closed form so-

lution given earlier. As expected, until the onset of propagation, all cases behave
identically. Simulation on Ω1 (corresponding to all cracks propagating) closely
matches the theoretical pressure and total energy but larger computational do-
mains lead to a larger pressure drop and lower total energy. When the computa-
tional domain is interpreted as a periodicity cell of growing size, the total energy
of the system decreases when the number of growing cracks decreases. Again, this
lends credentials to our claim that growth of a single crack is always the state
of least total energy (i.e. is the most stable state) associated with the largest in-
jection pressure drop. This behavior is further quantified in Fig. 4 (bottom). The
solid lines show the the computed critical pressure normalized by pc(l0) from [34]
against the crack density (or spacing 1/ρ to be precise). The dashed lines are the
ratio rp(ρ) := p(ρ)/pc(l), the closed form critical propagation pressure in an array
of crack of density ρ over that of a single crack of the same length, whose density
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Fig. 3 Domains in the deformed configuration (deformation magnified) for Ω1 (top-left), Ω2

(top-right), Ω4 (bottom-left) and Ω6 (bottom-right). The fractured material corresponding to
α close to 1 is removed for visualization purpose. The color-saturated region in the bottom of
each picture is the computational domain. A succession of mirror symmetries and translations
can map the computational domain into an infinite vertical strip of width 2L.

is replaced with the “effective” density ρ/n, which reads

rp =

√
2((ρ/n)2 + 1)3/2

(ρ/n)2 + 2
.
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Fig. 4 Normalized pressure (top-left) and the energy density (top-right) vs. injected volume
in numerical simulations (solid lines) compared to the closed form solution (dashed lines).
(bottom) Ratio of critical pressures (multi-fracturing over single fracture) vs. the inverse of
the fracture density in numerical simulations (solid lines) compared to rp(ρ/n) (dashed lines).

As the initial cracks spacing increases, all curves coalesce and all these cases be-
come equivalent. For a given spacing δ or density ρ, the critical pressure decrease
when the size of the periodicity cell n increases, and the ratio approaches 1. In
other words, given any density of initial cracks, one and only one of the initial
cracks will start propagating at the critical pressure pc(l0). In a system consist-
ing of a finite number of equi-distributed cracks, the same analysis implies that
a single crack will grow at a critical pressure that is strictly greater than pc(l0).
Our simulation shows that the critical pressure ratio is very close to the analytic
expression rp(ρ/n). As in the case of non-interacting cracks, an analysis based on
Griffith criterion [34] gives a good estimate of the critical propagation pressure,
but fails to identify the proper propagation pattern.

4.2 Interacting dense cracks

For closely packed initial cracks, the difference becomes even more striking. Fig-
ure 5 (top) shows 2D simulations with δ = 2l0 in the configuration Ω2 and Ω4.
Again, a single crack grows in all cases with the notable difference that only one
tip of one crack propagates, breaking the mirror symmetry of the solution. Simi-
larly, a 3D simulation in the Ω2 configuration (Figure 5 (bottom)) shows that a
single crack grows into a non axially symmetric egg shape, which is consistent with
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the observations in Figure 1(c). In light of these simulations, it is reasonable to

Fig. 5 (top,middle) 2D simulations. Fractured materials are removed for visualization pur-
pose. The transparent regions correspond to mirrored domains using the symmetries. In all
simulations only one of the crack tips propagates in one direction in the simulated domain.
(bottom) Penny-shape crack propagation in a parallel network with δ = 2l0. The initial crack
is indicated by a white line. Only one of the cracks propagates, breaking the rotational sym-
metry.

challenge the classical assumption of penny-shaped or bi-wing cracks under some
conditions.
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5 Discussion and conclusion

Problems in hydraulic fracturing are commonly quantified in terms of a non-
dimensional toughness and a non-dimensional viscosity [17]. The stability anal-
ysis of a system of two cracks in [41], input power analysis in [6], and numerical
simulations in [12,18] suggested that in the toughness dominated regime, when
viscous dissipation and fluid migration from the crack to the surrounding rock can
be neglected, multiple symmetric hydraulic fractures do not grow simultaneously.
Indeed, it is a common industry practice to employ limited entry techniques to
restrict the inflow in each crack [7,26]. By introducing additional viscous dissi-
pation, this approach is thought to contribute to an even distribution of fluid in
cracks.

Our analysis and numerical simulations are consistent with the literature and
empirical evidences. We show that in the toughness-dominated regime, a single
crack propagating is the most stable configuration. In the case of closely packed
initial cracks, we also show that asymmetric propagation is energetically favored. In
all cases, the asymptotic formulas [33,34] are a good approximation of the critical
pressure upon which cracks will propagate but cannot predict the pressure drop
during crack propagation as the configuration consisting of a single crack propa-
gating is also associated with the highest injection pressure drop. Furthermore, the
unstable nature of the propagation of multiple hydraulic cracks is a consequence
of the non-convexity of the energy driving fracture propagation. As such, it is not
altered by adding in-situ stresses or pore pressure, so the fracture behavior will be
identical in these situations.

Note that this behavior should not come up as a surprise. The problem of
two hydraulic cracks is also essentially similar to the classical experiment in which
two connected balloons are pressurized but only one inflates [38] with the added
complexity of the crack growth hypothesis.

Our findings challenge a common assumption in many computational mod-
els [39,36,25,28,11] and theoretical works [1]. While our analysis only applies to
the toughness dominated regime, many systems, especially geothermal and carbon
sequestration projects, fall within this regime because of the low fluid viscosity and
the high fracture toughness.

6 Appendix

6.1 Propagation of a single hydraulic crack in an infinite domain

Here we discuss the closed form solutions of a pressurized straight crack in 2D
and a penny-shape crack in 3D in more details. We start by recalling classical
results [33] that provide an upper bound on the critical propagation pressure in
two space dimensions (2D) followed by three dimensions (3D).

For 2D, the normal displacement on the crack is given by [33,34]:

uy(x, 0±) = ± 2p

E′

√
l20 − x2,

and the pressurized crack forms an elliptical cavity of volume

V :=
Wp(l0)

p
,
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in the deformed configuration. The work of the pressure force is

Wp(l0) =
2πp2

E′
l20.

Owing to Clapeyron’s theorem, the elastic energy is given by

Ep(l0) = −πp
2l20
E′

,

and the elastic energy release rate with respect to a pressure change, assuming
propagation along the x-axis, is

Gp(l0) := −1

2

∂Ep
∂l

(l0) =
πp2l0
E′

.

Assuming a quasi-static evolution driven by an increasing injection pressure, sta-
bility in the sense of Griffith criterion Gp ≤ Gc is satisfied as long as p ≤ p0

with

p0 :=

(
GcE

′

πl0

)1/2

,

and the volume of the cavity in the deformed configuration is

V0 := 2

(
πGcl

3
0

E′

)1/2

. (4)

Note that p0 is a decreasing function of l0 so that once the injection pressure
attains the critical value p0, Griffith stability can no longer be attained.

When the driving parameter is the volume of the fracture in the deformed
configuration (or injected fluid volume, assuming that the pressure force is achieved
by injecting an incompressible fluid), the situation is different. The elastic energy
becomes

EV (l0) :=
E′V 2

4πl20
,

and the elastic energy release rate with respect to a volume change is

GV (l0) = −1

2

dEV
dl0

(l0) =
E′V 2

4πl30
.

Griffith’s stability for a crack of length l0 is satisfied as long as V ≤ V0 given
in 4. When V reaches V0, the crack must grow while satisfying G(V, l) = Gc, from
which we derive that

p(V ) =

(
2E′Gc

πV

)1/3

,

and

l(V ) =

(
E′V 2

4πGc

)1/3

,

i.e. recovering the classical scaling law for the pressure drop in a propagating
hydraulic crack [15].
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Note that the same analysis can be performed in 3D, assuming a penny-shaped
crack throughout the evolution with initial radius R0. In this case, the critical
pressure and volumes are given by

p0 :=

(
πGcE

′

4R0

)1/2

,

and

V0 :=
8

3

(
πGcR

5
0

E′

)1/2

,

As the critical volume is exceeded, the injection pressure and crack radius are
given by

p(V ) =

(
G3

cE
′2π3

12V

)1/5

,

and

R(V ) =

(
9E′V 2

64πGc

)1/5

.

6.2 Verification simulation

Here we present the verification of our numerical model against the closed form
solution of a single hydraulic fracture in 2D and 3D. All computations were per-
formed with the vDef open-source implementation of the variational phase-field
approach to fracture [2] in non-dimensional form2.

All the geometric parameters are defined in an invariant geometry (a reflexion
axis in 2D and a rotation in 3D) depicted in Figure 6. Note, however, that we
computed the simulations in the full domain. We set up all the geometric and
material parameters identically for both problems as summarized in Table 1. To
simulate the infinite domain considered in the closed form solutions, we set the
edge size of the computational domain to 100 times the initial crack length, and
refined the mesh near the expected area of propagation of the crack as shown in
Figure 6.

h L H W l0 E ν Gc `
0.005 100 11h 75h 0.114 1 0 1 3h

Table 1 Parameters used for the simulation of a single fracture in 2D and 3D.

The initial phase-field function needs to be constructed carefully when per-
forming simulations of crack re-nucleation [35]. To obtain a proper phase-field
profile, we seeded an initial crack of length strictly less than l0. We then applied
a pressure field in the pre-existing crack and monitored its propagation until the
length, estimated from the level line α = 0.8, reached l0.

2 Taking advantage of the linearity of the problem, all the parameters are scaled for com-
putational efficiency. We can scale them back by multiplying the computed displacement by√
Gc/E and the pressure by

√
GcE using the actual values of Gc and E. More details on the

rescaling can be found in [12]
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refined mesh, 
size h

coarsen mesh

symmetry axis

Fig. 6 Sketch of of the computational domain geometry. The symmetry axis being a reflection
in 2D and a revolution axis in 3D.

Figure 7 shows snapshots of the evolution of the phase-field. The top figure
represents the initial damage field obtained by enforcing α = 1 on a one-element
wide strip of length < l0. The center figure shows the damage field associated
with a crack of length l0 obtained by pressurizing the initial crack. The lower
figure shows the phase-field profile during the propagation phase. Notice the small
difference between the phase profile near the crack tips in the first two figures.

Fig. 7 Snapshots of phase-field profile for the line crack example at different loadings. Prior
to the critical pressure loading (top), after the critical pressure loading (middle) and during
the propagation (bottom). The red color represents fully damage material (fracture) and blue
undamaged.

Figure 8 shows the crack in a 3D computation, by plotting the level surface
α = 0.99. Whereas the crack remains penny-shaped, it is not symmetrical with
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respect to the injection source. Such asymmetric growth has also been observed
in laboratory experiments [9,8].

Fig. 8 A snapshot (view from above) of fracture damage (α ≥ .99) for the penny shape crack
during the propagation (left). The solid white line indicates the initial crack and black line is
the limit of the casing. An off–centered penny shape crack propagation was also observed in a
toughness dominated hydraulic fracturing experiment as reported in [8] (right).

Figure 9 show the excellent agreement between crack radius and injection pres-
sure from phase-field computations with the closed form solution in 2D and 3D.
In both cases as long as the V ≤ Vc the crack does not grow and for V > Vc
the pressure starts to decline as p ∼ V −1/3 (line fracture) and p ∼ V −1/5

(penny-shape crack). Note that we have accounted for the “effective” toughness
(Gc)eff = Gc (1 + 3h/8` ) induced by the finite discretization size [5].

Acknowledgements Support for BB was provided in part by a grant from the U.S. National
Science Foundation “Diffusion-driven fracture” DMS 1716763.
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