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a b s t r a c t 

Phase-field models, sometimes referred to as gradient damage or smeared crack models, 

are widely used methods for the numerical simulation of crack propagation in brittle ma- 

terials. Theoretical results and numerical evidences show that they can predict the propa- 

gation of a pre-existing crack according to Griffith’ criterion. For a one-dimensional prob- 

lem, it has been shown that they can predict nucleation upon a critical stress, provided 

that the regularization parameter be identified with the material’s internal or character- 

istic length. In this article, we draw on numerical simulations to study crack nucleation 

in commonly encountered geometries for which closed-form solutions are not available. 

We use U- and V-notches to show that the nucleation load varies smoothly from that pre- 

dicted by a strength criterion to that of a toughness criterion when the strength of the 

stress concentration or singularity varies. We present validation and verification numeri- 

cal simulations for both types of geometries. We consider the problem of an elliptic cavity 

in an infinite or elongated domain to show that variational phase field models properly 

account for structural and material size effects. 

Our main claim, supported by validation and verification in a broad range of materials 

and geometries, is that crack nucleation can be accurately predicted by minimization of a 

nonlinear energy in variational phase field models, and does not require the introduction 

of ad-hoc criteria. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

1. Introduction 

Despite its many successes, Griffith’s theory of brittle fracture ( Griffith, 1921 ) and its heir, Linear Elastic Fracture Me-

chanics (LEFM), still faces many challenges. In order to identify crack path, additional branching criteria whose choice is

still unsettled have to be considered. Accounting for scale effects in LEFM is also challenging, as illustrated by the follow-

ing example: consider a reference structure of unit size rescaled by a factor L . The critical loading at the onset of fracture

scales then as 1 / 
√ 

L , leading to a infinite nucleation load as the structure size approaches 0, which is inconsistent with

experimental observation for small structures ( Bažant, 1997; Issa et al., 20 0 0; Chudnovsky, 2014 ). 
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It is well accepted that this discrepancy is due to the lack of a critical stress (or a critical lengthscale) in Griffith’s

theory. Yet, augmenting LEFM to account for a critical stress is very challenging. In essence, the idea of material strength is

incompatible with the concept of elastic energy release rate near stress singularity, the pillar of Griffith-like theories, as it

would imply crack nucleation under an infinitesimal loading. Furthermore, a nucleation criterion based solely on pointwise

maximum stress will be unable to handle crack formation in a body subject to a uniform stress distribution. 

Many approaches have been proposed to provide models capable of addressing the aforementioned issues. Some pro-

pose to stray from Griffith fundamental hypotheses by incorporating cohesive fracture energies ( Ortiz and Pandolfi, 1999;

de Borst et al., 2004; Charlotte et al., 2006; Del Piero et al., 2013 ) or material non-linearities ( Gou et al., 2015 ). Others have

proposed dual-criteria involving both elastic energy release rate and material strength such as Leguillon (2002) , for instance.

Models based on the peridynamics theory ( Silling, 20 0 0 ) may present an alternative way to handle these issues, but to our

knowledge, they are still falling short of providing robust quantitative predictions at the structural scale. 

Francfort and Marigo (1998) set to devise a formulation of brittle fracture based solely on Griffith’s idea of competition

between elastic and fracture energy, yet capable of handling the issues of crack path and crack nucleation. However, as

already pointed-out in Francfort and Marigo (1998) , their model inherits a fundamental limitation of the Griffith theory and

LEFM: the lack of an internal length scale and of maximum allowable stresses. 

Amongst many numerical methods originally devised for the numerical implementation of the Francfort–Marigo

model ( Bourdin and Chambolle, 20 0 0; Negri and Paolini, 2001; Fraternali, 2007; Schmidt et al., 2009 ), Ambrosio–Tortorelli

regularizations ( Ambrosio and Tortorelli, 1990; 1992 ), originally introduced in Bourdin et al. (20 0 0) , have become ubiqui-

tous. They are nowadays known as phase-field models of fracture, and share several common points with the approaches

coming from Ginzburg–Landau models for phase-transition ( Karma et al., 2001 ). They have been applied to a wide variety

of fracture problems including fracture of ferro-magnetic and piezo-electric materials ( Abdollahi and Arias, 2012; Wilson

et al., 2013 ), thermal and drying cracks ( Maurini et al., 2013; Bourdin et al., 2014 ), or hydraulic fracturing ( Bourdin et al.,

2012; Wheeler et al., 2014; Chukwudozie, 2016; Wilson and Landis, 2016 ) to name a few. They have been expended to ac-

count for dynamic effects ( Larsen et al., 2010; Bourdin et al., 2011; Borden et al., 2012; Hofacker and Miehe, 2013 ), ductile

behavior ( Alessi et al., 2014; Ambati et al., 2015a; Miehe et al., 2015 ), cohesive effects ( Conti et al., 2016; Crismale and Laz-

zaroni, 2016; Freddi and Iurlano, 2017 ), large deformations ( Ambati et al., 2015b; Borden et al., 2016; Miehe et al., 2016 ), or

anisotropy ( Li et al., 2014 ), for instance. 

Although phase-field models were originally conceived as approximations of Francfort and Marigo’s variational approach

to fracture in the vanishing limit of their regularization parameter, a growing body of literature is concerned with their links

with gradient damage models ( Frémond and Nedjar, 1996; Lorentz and Andrieux, 2003 ). In this setting, the regularization

parameter � is kept fixed and interpreted as a material’s internal length ( Freddi and Royer Carfagni, 2010; Pham et al., 2011b;

Del Piero, 2013 ). In particular, Pham and Marigo (2010a, 2010b) proposed an evolution principle for an Ambrosio–Tortorelli

like energy based on irreversibility, stability and energy balance, where the regularization parameter � is kept fixed and

interpreted as a material’s internal length. This approach, which we refer to as variational phase-field models, introduces

a critical stress proportional to 1 / 
√ 

� . As observed in Pham et al. (2011b ); Bourdin et al. (2014) ; Nguyen et al. (2016) , it

can potentially reconcile stress and toughness criteria for crack nucleation, recover pertinent size effect at small and large

length-scales, and provide a robust and relatively simple approach to model crack propagation in complex two- and three-

dimensional settings. However, the few studies providing experimental verifications ( Bourdin et al., 2014; Nguyen et al.,

2016; Pham et al., 2017 ) are still insufficient to fully support this conjecture. 

The goal of this article is precisely to provide such evidences, focusing on nucleation and size-effects for mode-I cracks.

We provide quantitative comparison of nucleation loads near stress concentrations and singularities with published experi-

mental results for a range of materials. We show that variational phase-field models can reconcile strength and toughness

thresholds and account for scale effect at the structural and the material length-scale. In passing, we leverage the predictive

power of our approach to propose a new way to measure a material’s tensile strength from the nucleation load of a crack

near a stress concentration or a weak singularity. In this study, we focus solely on the identification of the critical stress at

the first crack nucleation event and are not concerned by the post-critical fracture behavior. 

The article is organized as follows: in Section 2 , we introduce variational phase-field models and recall some of their

properties. Section 3 focuses on the links between stress singularities or concentrations and crack nucleation in these mod-

els. We provide validation and verification results for nucleation induced by stress singularities using V-shaped notches, and

concentrations using U-notches. Section 4 is concerned with shape and size effects. We investigate the role of the internal

length on nucleation near a defect, focusing on an elliptical cavity and a mode-I crack, and discussing scale effects at the

material and structural length scales. Conclusions are finally drawn in Section 5 . 

2. Variational phase-field models 

We start by recalling some important properties of variational phase-field models, focussing first on their construction

as approximation method of Francfort and Marigo’s variational approach to fracture, then on their alternative formulation

and interpretation as gradient-damage models. 
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Fig. 1. Mode-I “surfing” experiment along straight (left) and circular (right) paths. Dependence of the crack length and elastic energy release rate on the 

loading parameter for multiple values of � . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1. Regularization of the Francfort–Marigo fracture energy 

Consider a perfectly brittle material with Hooke’s law A and critical elastic energy release rate G c occupying a region � ⊂
R 

n , subject to a time dependent boundary displacement ū on a part ∂ D � of its boundary and stress-free on the remainder

∂ N �. In the variational approach to fracture, the quasi-static equilibrium displacement u i and crack set �i at a given discrete

time step t i are given by the minimization problem (see also Bourdin et al., 2008 ) 

(u i , �i ) = argmin 

u = ̄u i on ∂ D �

�⊃�i −1 

E(u, �) := 

∫ 
�\ �

1 

2 

A e(u ) · e(u ) dx + G c H 

n −1 (� ∩ �̄ \ ∂ N �) , (1)

where H 

n −1 (�) denotes the Hausdorff ( n − 1 )–dimensional measure of the unknown crack �, i.e. its aggregate length in two

dimensions or surface area in three dimensions, and e(u ) := 

1 
2 (∇u + ∇ 

T u ) denotes the symmetrized gradient of u . 

Because in (1) the crack geometry � is unknown, special numerical methods had to be crafted. Various approaches based

for instance on adaptive or discontinuous finite elements were introduced ( Bourdin and Chambolle, 20 0 0; Giacomini and

Ponsiglione, 2003; Fraternali, 2007 ). Variational phase-field methods, take their roots in Ambrosio and Tortorelli’s regular-

ization of the Mumford–Shah problem in image processing ( Ambrosio and Tortorelli, 1990; 1992 ), adapted to brittle fracture

in Bourdin et al. (20 0 0) . In this framework, a regularized energy E � depending on a regularization length � > 0 and a “phase–

field” variable α taking its values in [0, 1] is introduced. A broad class of such functionals was introduced in Braides (1998) .

They are 

E � (u, α) = 

∫ 
�

a (α) + η� 

2 

A e(u ) · e(u ) dx + 

G c 

4 c w 

∫ 
�

(
w (α) 

� 
+ � |∇α| 2 

)
dx, (2) 

where a and w are continuous monotonic functions such that a (0) = 1 , a (1) = 0 , w (0) = 0 , and w (1) = 1 , η� = o(� ) , and

c w 

:= 

∫ 1 
0 

√ 

w (s ) ds is a normalization parameter. The approximation of E by E � takes place with the framework of �–

convergence (see Dal Maso, 1993; Braides, 2002 for instance). More precisely, if E � �–converges to E, then the global mini-

mizers of E � converge to that of E . The �–convergence of a broad class of energies, including the ones above was achieved

with various degrees of refinement going from static scalar elasticity to time discrete and time continuous quasi-static evo-

lution linearized elasticity, and their finite element discretization ( Bellettini and Coscia, 1994; Braides, 1998; Bourdin, 1999;

Giacomini and Ponsiglione, 2003; Chambolle, 2004; 2005; Giacomini, 2005; Burke et al., 2010; 2013; Iurlano, 2014 ). 

Throughout this article, we focus on two specific models: 

E � (u, α) = 

∫ 
�

(1 − α) 2 + η� 

2 

A e(u ) · e(u ) dx + 

G c 

2 

∫ 
�

(
α2 

� 
+ � |∇α| 2 

)
dx, AT 2 

introduced in Ambrosio and Tortorelli (1992) for the Mumford–Shah problem and in Bourdin et al. (20 0 0) for brittle fracture,

and 

E � (u, α) = 

∫ 
�

(1 − α) 2 + η� 

2 

A e(u ) · e(u ) dx + 

3 G c 

8 

∫ 
�

(
α

� 
+ � |∇α| 2 

)
dx AT 1 

used in Bourdin et al. (2014) . 

The “surfing” problem introduced in Hossain et al. (2014) consists in applying a translating boundary displacement on ∂�

given by ū (x, y ) = ū I (x − V t, y ) , where ū I denotes the asymptotic far-field displacement field associated with a mode-I crack

along the x -axis with tip at (0, 0), V is a prescribed loading “velocity”, and t a loading parameter (“time”). Fig. 1 (left) shows

the outcome of a surfing experiment on a rectangular domain � = [0 , 5] × [ − 1 
2 , 

1 
2 ] with an initial crack �0 = [0 , l 0 ] × { 0 }

for several values of � . The AT 1 model is used, assuming plane stress conditions, and the mesh size h is adjusted so that

�/h = 5 , keeping the “effective” numerical toughness G eff := G c 

(
1 + 

h 
4 c � 

)
fixed (see Bourdin et al., 2008 ). The Poisson ratio
w 
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is ν = 0 . 3 , the Young’s modulus is E = 1 , the fracture toughness is G c = 1 . 5 , and the loading rate V = 4 . As expected, after

a transition stage, the crack length depends linearly on the loading parameter with slope 3.99; 4.00; 4.01 for � = 0.1; 0.05;

0.025 respectively. The elastic energy release rate G , computed using the G θ method ( Destuynder and Djaoua, 1981; Sicsic

and Marigo, 2013; Li et al., 2016 ) is very close to G eff. Even though �–convergence only mandates that the elastic energy

release rate in the regularized energy converges to that of Griffith as � → 0, we observe that as long as � is “compatible”

with the discretization size and domain geometry, its influence on crack propagation is insignificant. Similar observations

were reported in Klinsmann et al. (2015) , Pham et al. (2017) , Zhang et al. (2017) . 

Fig. 1 (right) repeats the same experiment for a curve propagating along a circular path. Here, the boundary displacement

is given by Muskhelishvili’s exact solution for a crack propagating in mode-I along a circular path ( Muskhelishvili, 1977 ). The

Young’s modulus, fracture toughness, and loading rate are set to 1. Again, we see that even for a fixed regularization length,

the crack obeys Griffith’s criterion. 

When crack nucleation is involved, the picture is considerably different. Consider a one-dimensional domain of length L ,

fixed at one end and submitted to an applied displacement ū = e L at the other end. For the lack of an elastic singularity,

LEFM is incapable of predicting crack nucleation here, and predicts a structure capable of supporting arbitrarily large loads

without failing. A quick calculation shows that the global minimizer of (1) corresponds to an uncracked elastic solution if

e < e c := 

√ 

2 G c 
EL , while at e = e c , a single crack nucleates at an arbitrary location (see Francfort and Marigo, 1998; Bourdin

et al., 2008 ). The failure stress is σc = 

√ 

2 G c E /L , which is consistent with the scaling law σc = O 

(
1 / 

√ 

L 
)

mentioned in the

introduction. The uncracked configuration is always a stable local minimizer of (1) , so that if local minimization of (1) is

considered, nucleation never takes place. Just as before, one can argue that for the lack of a critical stress, an evolution

governed by the generalized Griffith energy (1) does not properly account for nucleation and scaling laws. 

When performing global minimization of (2) using the backtracking algorithm of Bourdin (2007) for instance, a single

crack nucleates at an � –dependent load. As predicted by the �–convergence of E � to E, the critical stress at nucleation con-

verges to 
√ 

2 G c E /L as � → 0. Local minimization of (2) using the alternate minimizations algorithm of Bourdin et al. (20 0 0) ,

or presumably any gradient-based monotonically decreasing scheme, leads to the nucleation of a single crack at a critical

load e c , associated with a critical stress σc = O 

(√ 

G c E/� 

)
, as described in Bourdin (2007) for example. In the limit of van-

ishing � , local and global minimization of (2) inherit therefore the weaknesses of Griffith-like theories when dealing with

scaling properties and crack nucleation. 

2.2. Variational phase-field models as gradient damage models 

More recent works have seek to leverage the link between σ c and � . Ambrosio–Tortorelli functionals are then seen as

the free energy of a gradient damage model ( Frémond and Nedjar, 1996; Lorentz and Andrieux, 2003; Benallal and Marigo,

2007; Pham and Marigo, 2010a; 2010b ) where α plays the role of a scalar damage field . In Pham et al. (2011b ), a thorough

investigation of a one-dimensional tension problem led to interpreting � as a material’s internal or characteristic length

linked to a material’s tensile strength. An overview of this latter approach, which is the one adopted in the rest of this

work, is given below. 

In all that follows, we focus on a time-discrete evolution but refer the reader to Pham and Marigo (2010a; 2010b) ;

Marigo et al. (2016) for a time-continuous formulation which can be justified within the framework of generalized stan-

dard materials ( Halphen and Nguyen, 1975 ) and rate-independent processes ( Mielke, 2005 ). At any time step i > 1, the sets

of admissible displacement and damage fields C i and D i , equipped with their natural H 

1 norm, are 

C i = { u ∈ H 

1 (�) : u = ū i on ∂ D �} , 
D i = { β ∈ H 

1 (�) : αi −1 (x ) ≤ β(x ) ≤ 1 , ∀ x ∈ �} , 
where the constraint αi −1 (x ) ≤ β(x ) ≤ 1 in the definition of D i mandates that the damage be an increasing function of time,

accounting for the irreversible nature of the damage process. The damage and displacement fields ( u i , αi ) are then local

minimizers of the energy E � , i.e. there exists h i > 0 such that 

∀ (v , β) ∈ C i × D i such that ‖ (v , β) − (u i , αi ) ‖ ≤ h i , E � (u i , αi ) ≤ E � (v , β) , (3)

where ‖·‖ denotes the natural H 

1 norm of C i × D i . We briefly summarize the solution of the uniaxial tension of a homoge-

neous bar ( Pham et al., 2011a; 2011b ), referring the reader to the recent review ( Marigo et al., 2016 ) for further details: As

one increases the applied strain, the damage field remains 0 and the stress field constant until it reaches the elastic limit 

σe = 

√ 

G c E 

c w 

� 

√ 

w 

′ (0) 

2 s ′ (0) 
. (4)

where E is the Young modulus of the undamaged material, and s (α) = 1 /a (α) . If the applied displacement is increased

further, the damage field increases but remains spatially constant. Stress hardening is observed until peak stress σ c , followed

by stress softening. A stability analysis shows that for long enough domains ( i.e. when L � � ), the homogeneous solution is

never stable in the stress softening phase, and that a snap-back to a fully localized solution such that max x ∈ (0 ,L ) α(x ) = 1

is observed. The profile of the localized solution and the width D of the localization can be derived explicitly from the
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Table 1 

Properties of the gradient damage models considered in this work: the elas- 

tic limit σ e , the material strength σ c , the width of the damage band D , 

and the conventional material length � ch defined in (5) . We use the classical 

convention E ′ = E in three dimension and in plane stress, and E ′ = 

E 
1 −ν2 in 

plane strain. 

Model w ( α) a ( α) c w σ e σ c D � ch 

AT 1 α (1 − α) 2 2 
3 

√ 

3 G c E ′ 
8 � 

√ 

3 G c E ′ 
8 � 

4 � 8 
3 
� 

AT 2 α2 (1 − α) 2 1 
2 

0 3 
16 

√ 

3 G c E ′ 
� 

∞ 

256 
27 

� 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

functions a and w . With the choice of normalization of (2) , the surface energy associated to the fully localized solution is

exactly G c and its elastic energy is 0, so that the overall response of the bar is that of a brittle material with toughness G c 

and strength σ c . 

Knowing the material’s toughness G c and the Young’s modulus E , one can then adjust � in such a way that the peak

stress σ c matches the nominal material’s strength. Let us denote by 

� ch = 

G c E 
′ 

σ 2 
c 

= 

K 

2 
Ic 

σ 2 
c 

(5) 

the classical material’s characteristic length (see Rice, 1980; Falk et al., 2001 , for instance), where E ′ = E in three dimen-

sions and in plane stress, or E ′ = 

E 
1 −ν2 in plane strain, and K Ic = 

√ 

G c E ′ is the mode-I critical stress intensity factor. The

identification above gives 

� 1 := 

3 

8 

� ch ; � 2 := 

27 

256 

� ch , (6) 

for the AT 1 and AT 2 models, respectively. 

Table 1 summarizes the specific properties of the AT 1 and AT 2 models. The AT 1 model has some key conceptual and

practical advantages over the AT 2 model used in previous works, which were leveraged in Bourdin et al. (2014) for instance:

it has a non-zero elastic limit, preventing diffuse damage at small loading. The length localization band D is finite so that

equivalence with Griffith energy is obtained even for a finite value of � , and not only in the limit of � → 0, as predicted by

�–convergence ( Sicsic and Marigo, 2013 ). By remaining quadratic in the α and u variables, its numerical implementation

using alternate minimizations originally introduced in Bourdin et al. (20 0 0) is very efficient. 

In all the numerical simulations presented below, the energy (2) is discretized using linear Lagrange finite elements,

and minimization performed by alternating minimization with respect to u and α. Minimization with respect to u is

a simple linear problem solved using preconditioned gradient conjugated while constrained minimization with respect 

to α is reformulated as a variational inequality and implemented using the variational inequality solvers provided by

PETSc ( Balay et al., 1997; 2016; 2017 ). All computations were performed using the open source implementations mef90 1 

and gradient-damage . 2 

3. Effect of stress concentrations 

The discussion above suggests that variational phase-field models, as presented in Section 2.2 , can account for strength

and toughness criteria simultaneously, on an idealized geometry. We propose to investigate this claim further by focusing on

more general geometries, a V-shaped notch to illustrate nucleation near stress singularities and a U-shaped notch for stress

concentrations. There is a wealth of experimental literature on crack initiation in such geometries using three-point bending

(TPB), four-point bending (FPB), single or double edge notch tension (SENT and DENT) allowing us to provide qualitative

validation and verification simulations of the critical load at nucleation. 

3.1. Initiation near a weak stress singularity: the V-notch 

Consider a V-shaped notch in a linear elastic isotropic homogeneous material. Let ( r, θ ) be the polar coordinate system

emanating from the notch tip with θ = 0 corresponding to the notch symmetry axis, shown on Fig. 2 (left). Assuming that

the notch lips �+ ∪ �− are stress-free, the mode-I component of the singular part of the stress field in plane strain is given
1 Available at https://www.bitbucket.org/bourdin/mef90-sieve . 
2 Available at https://bitbucket.org/cmaurini/gradient-damage . 

https://www.bitbucket.org/bourdin/mef90-sieve
https://bitbucket.org/cmaurini/gradient-damage
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Fig. 2. Pac-man geometry for the study of the crack nucleation at a notch. Left: sketch of the domain and notation. Right: relation between the exponent 

of the singularity λ and the notch opening angle ω̄ determined by the solution of Eq. (10) . For any opening angle ω̄ we apply on ∂ D � the displacement 

boundary condition obtained by evaluating on ∂ D � the asymptotic displacement (12) with λ = λ(ω) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

in Leguillon and Sanchez-Palencia (1987) : 

σθθ = kr λ−1 F (θ ) , 

σrr = kr λ−1 F 
′′ (θ ) + (λ + 1) F (θ ) 

λ(λ + 1) 
, 

σrθ = −kr λ−1 F ′ (θ ) 

(λ + 1) 
, (7)

where 

F (θ ) = (2 π) λ−1 cos ((1 + λ) θ ) − f (λ, ω̄ ) cos ((1 − λ) θ ) 

1 − f (λ, ω̄ ) 
, (8)

and 

f (λ, ω̄ ) = 

(1 + λ) sin ((1 + λ)(π − ω̄ )) 

( 1 − λ) sin ((1 − λ)(π − ω̄ )) 
, (9)

and the exponent of the singularity λ∈ [1/2, 1], see Fig. 2 (right), solves 

sin ( 2 λ( π − ω̄ ) ) + λ sin ( 2 ( π − ω̄ ) ) = 0 . (10)

From (7) , it is natural to define a generalized stress intensity factor 

k = 

σθθ

(2 π r) λ−1 

∣∣∣∣
θ=0 

. (11)

Note that this definition differs from the one often encountered in the literature by a factor (2 π) λ−1 , so that when ω = 0

( i.e. when the notch degenerates into a crack), k corresponds to the mode-I stress intensity factor whereas when ω = π/ 2 , k

is the tangential stress, and that the physical dimension of [ k ] ≡ N / m 

−λ−1 is not a constant but depends on the singularity

power λ. 

If ω̄ < π/ 2 ( i.e. ω > π /2), the stress field is singular at the notch tip so that a nucleation criterion based on maximum

pointwise stress will predict crack nucleation for any arbitrary small loading. Yet, as long as ω̄ > 0 ( ω < π ), the exponent of

the singularity is sub-critical in the sense of Griffith, so that LEFM forbids crack nucleation, regardless of the magnitude of

the loading. 

3.1.1. The mode-I Pac-Man test 

Consider a Pac-Man–shaped 

3 domain with radius L � � and notch angle ω̄ as in Fig. 2 (left). In linear elasticity, a displace-

ment field associated with the stress field (7) is 

ū r = 

r λ

E 

(1 − ν2 ) F ′′ (θ ) + (λ + 1)[1 − νλ − ν2 (λ + 1)] F (θ ) 

λ2 (λ + 1) 

ū θ = 

r λ

E 

(1 − ν2 ) F ′′′ (θ ) + [2(1 + ν) λ2 + (λ + 1)(1 − νλ − ν2 (λ + 1)] F ′ (θ ) 

λ2 (1 − λ2 ) 
. (12)
3 https://en.wikipedia.org/wiki/Pac-Man . 

https://en.wikipedia.org/wiki/Pac-Man
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Fig. 3. Pac-Man test with the AT 1 model, L = 1 , � = 0 . 015 , ω = 0 . 7 π, and ν = 0 . 3 . From left to right: typical mesh (with element size ten times larger than 

that in typical simulation for illustration purpose), damage field immediately before and after the nucleation of a crack, and plot of the energies versus the 

loading parameter t . Note the small damaged zone ahead of the notch tip before crack nucleation, and the energetic signature of a nucleation event. 

Fig. 4. Identification of the generalized stress intensity factor: σθθ (r, 0) 

(2 π r) λ−1 along the domain symmetry axis for the AT 1 (left) and AT 2 (right) models with un- 

damaged notch conditions, and sub-critical loadings. The notch aperture is ω̄ = π/ 10 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the mode-I Pac-Man test, we apply a boundary displacement on the outer edge of the domain ∂ D � of the form t ̄u on

both components of u, t being a monotonically increasing loading parameter. 

We performed series of numerical simulations varying the notch angle ω̄ and regularization parameter � for the AT 1 and

AT 2 models. Up to a rescaling and without loss of generality, it is always possible to assume that E = 1 and G c = 1 . The

Poisson ratio was set to ν = 0 . 3 . We either prescribed the value of the damage field on �+ ∪ �− to 1 (we refer this to as

“damaged notch conditions”) or let it free (“undamaged notch conditions”). The mesh size was kept at a fixed ratio of the

internal length h = �/ 5 . 

For “small” enough loadings, we observe an elastic or nearly elastic phase during which the damage field remains 0 or

near 0 away from an area of radius o ( � ) near the notch tip. Then, for some loading t = t c , we observed the initiation of a

“large” add-crack associated with a sudden jump of the elastic and surface energy. Fig. 3 shows a typical mesh, the damage

field immediately before and after nucleation of a macroscopic crack and the energetic signature of the nucleation event. 

Fig. 4 shows that up to the critical loading, the generalized stress intensity factor can be accurately recovered by averag-

ing σθθ (r, 0) / (2 π r) λ−1 along the symmetry axis of the domain, provided that the region r ≤ 2 � be excluded. 

Fig. 5 (left) shows the influence of the internal length on the critical generalized stress intensity factor for a sharp notch

( ̄ω = 0 . 18 ◦) for the AT 1 and AT 2 models, using damaged and undamaged notch boundary conditions on the damage field.

In this case, with the normalization (11) , the generalized stress intensity factor coincides with the standard mode-I stress

intensity factor K Ic . As suggested by the surfing experiment in the introduction, the internal length � also has a very minor

influence on the critical load t := k AT 
c � K Ic = 

√ 

G c E ′ . As reported previously in Klinsmann et al. (2015) for instance, undam-

aged notch conditions lead to overestimating the critical load. We speculate that this is because with undamaged notch

condition, the energy barrier associated with bifurcation from an undamaged (or partially damaged) state to a fully local-

ized state needs to be overcome. As expected, this energy barrier is larger for the AT 1 model than for the AT 2 model for

which large damaged areas ahead of the notch tip are observed. 

For flat notches ( 2 ̄ω = 179 . 64 ◦) as shown in Fig. 5 (right), the generalized stress intensity factor k takes the dimension of a

stress, and crack nucleation is observed when k c reaches the � –dependent value σ c given in Table 1 , i.e. when σθθ | θ=0 = σc ,

as in the uniaxial tension problem. In this case the type of damage boundary condition on the notch seems to have little

influence. 

For intermediate values of ω̄ , we observe in Fig. 6 that the critical generalized stress intensity factor varies smoothly and

monotonically between its extreme values and remains very close to K Ic for opening angles as high as 30 °, which justifies

the common numerical practice of replacing initial cracks with slightly open sharp notches and damaged notch boundary

conditions. See Table A.3 for numerical data. 
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Table 2 

Material properties used in the numerical simulations as given in the literature. 

Material E [MPa] ν K Ic [ MPa 
√ 

m ] σ c [MPa] Source 

Al 2 O 3 –7%ZrO 2 350,0 0 0 0.24 4.1 290 Yosibash et al. (2004) 

PMMA 2300 0.36 1.03 124 Dunn et al. (1997) ; Yosibash et al. (2004) 

Plexiglass 30 0 0 0.36 1.86 104.9 Seweryn (1994) 

PVC H80 85 0.32 0.32 2.51 Gómez and Elices (2003) ; Grenestedt et al. (1996) 

PVC H100 125 0.32 0.26 4.02 Gómez and Elices (2003) ; Grenestedt et al. (1996) 

PVC H130 175 0.32 0.34 5.70 Gómez and Elices (2003) ; Grenestedt et al. (1996) 

PVC H200 310 0.32 0.57 9.38 Gómez and Elices (2003) ; Grenestedt et al. (1996) 

Steel 205,0 0 0 0.3 52 1170 Gómez and Elices (2003) ; Strandberg (2002) 

Duraluminium 70,0 0 0 0.3 50.6 705 Seweryn (1994) 

Fig. 5. Critical generalized critical stress intensity factor at crack nucleation as a function of the internal length for ω̄ � 0 (left) and ω � π /2 (right). AT 1 -U , 
AT 1 -D , AT 2 -U , and AT 2 -D refer respectively to computations using the AT 1 model with damaged notch and undamaged notch boundary conditions, and the 

AT 2 model with damaged notch and undamaged notch boundary conditions. ( K Ic ) eff := 

√ 

G eff E 
1 −ν2 denotes the critical mode-I stress intensity factor modified 

to account for the effective toughness G eff . 

Fig. 6. Critical generalized stress intensity factor k for crack nucleation at a notch as a function of the notch opening angle ω̄ . Results for the AT 1 and AT 2 
models with damaged -D and undamaged -U notch lips conditions. The results are obtained with numerical simulations on the Pac-Man geometry with 

(K Ic ) eff = 1 and � = 0 . 01 so that σc = 10 under plane-strain conditions with a unit Young’s modulus and a Poisson ratio ν = 0 . 3 . 

 

 

 

 

 

 

3.1.2. Validation 

For intermediate values 0 < 2 ̄ω < π, we focus on validation against experiments from the literature based on measure-

ments of the generalized stress intensity factor at a V-shaped notch. 

Data from single edge notch tension (SENT) test of soft annealed tool steel, (AISI O1 at –50 °C ( Strandberg, 2002 ), four

point bending (FPB) experiments of Divinycell ® H80, H100, H130, and H200 PVC foams) ( Grenestedt et al., 1996 ), and dou-

ble edge notch tension (DENT) experiments of poly methyl methacrylate (PMMA) and Duraluminium ( Seweryn, 1994 ), were

compiled in Gómez and Elices (2003) . We performed a series of numerical simulations of Pac-Man tests using the mate-

rial properties reported in Gómez and Elices (2003) and listed in Table 2 . In all cases, the internal length � was computed

using (6) . 
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Fig. 7. Critical generalized stress intensity factor k c vs notch angle. Comparison between numerical simulations with the AT 1 and AT 2 models and damaged 

and undamaged boundary conditions on the notch edges with experiments in steel from Strandberg (2002) (left), and Duraluminium (middle) and PMMA 

(right) from Seweryn (1994) . 

Fig. 8. Critical generalized stress intensity factor k c vs notch angle and depth in PVC foam samples from Grenestedt et al. (1996) . Numerical simulations 

with the AT 1 model with damaged and undamaged notch conditions (left), and AT 2 model with damaged and undamaged notch conditions (right). 

Fig. 9. Schematic of the geometry and loading in the four point bending experiments of Yosibash et al. (2004) (left) and three point bending experiments 

of Dunn et al. (1997) (right). The geometry of the three point bending experiment of Yosibash et al. (2004) is identical to that of their four point bending, 

up to the location of the loading devices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figs. 7 and 8 compare the critical generalized stress intensity factor from our numerical simulations with experimental

values reported in the literature for V-notch with varying aperture. The definition (11) for k is used. For the AT 1 model,

we observe a good agreement for the entire range of notch openings, as long as damaged notch conditions are used for

small notch angles and undamaged notch conditions for large notch angles. For the AT 2 model, the same is true, but the

agreement is not as good for large notch angles, due to the presence of large areas of distributed damage prior to crack

nucleation. 

The numerical values of the critical generalized stress intensity factors for the AT 1 models and the experiments from the

literature are included in Tables A .4 , A .5 , A .6 , and A .7 using the convention of (11) for k . As suggested by Fig. 5 and reported

in the literature (see Klinsmann et al., 2015 ), nucleation is best captured if damaged notch boundary conditions are used for

sharp notches and undamaged notch conditions for flat ones. 

These examples strongly suggest that variational phase-field models of fracture are capable of predicting mode-I nucle-

ation in stress and toughness dominated situations, as seen above, but also in the intermediate cases. Conceptually, tough-

ness and strength (or equivalently internal length) could be measured by matching generalized stress intensity factors in ex-

periments and simulations. When doing so, however, extreme care has to be exerted in order to ensure that the structural

geometry has no impact on the measured generalized stress. Similar experiments were performed in Dunn et al. (1997) ;

Yosibash et al. (2004) for three and four point bending experiments on PMMA and aluminum oxide–zirconia ceramics sam-

ples. While the authors kept the notch angle fixed, they performed three and four point bending experiments or varied the

relative depth of the notch as a fraction of the sample height (see Fig. 9 ). 
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Fig. 10. Critical generalized stress intensity factor k c vs notch angle for Al 2 O 3 −7% ZrO 2 (left) and PMMA (right). The black markers represents all experi- 

mental results. The numerical results are obtained through the Pac-Man test using the AT 1 model. See Tables A .8 and A .9 in the Appendix for the raw 

data. 

Fig. 11. Critical load in the three- and four-point bending experiments of a Al 2 O 3 –7%ZrO 2 sample (left) and four-point bending of a PMMA sample (right) 

from Yosibash et al. (2004) compared with numerical simulations using the AT 1 model and undamaged notch boundary conditions. Due to significant 

variations in measurements in the first set of experiments, each data point reported in Yosibash et al. (2004) is plotted. For the PMMA experiments, 

average values are plotted. See Table A.10 and A.11 in the Appendix for raw data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 compares numerical values of the generalized stress intensity factor using the AT 1 model with experimental mea-

surements, and the actual numerical values are included in Table A.8 and A.9 . 

For the aluminum oxide–zirconia ceramic, we observe that the absolute error between measurement and numerical

prediction is typically well within the standard deviation of the experimental measurement. As expected, damaged notch

boundary conditions lead to better approximation of k c for small angles, and undamaged notches are better for larger values

of ω̄ . 

For the three point bending experiments in PMMA of Dunn et al. (1997) later reported in Yosibash et al. (2004) , the

experimental results suggest that the relative depth a / h of the notch has a significant impact on k c . We therefore performed

full-domain numerical simulation using the geometry and loading from the literature, and compared the critical force upon

which a crack nucleates in experiments and simulations. All computations were performed using the AT 1 model in plane

strain with undamaged notch boundary conditions. Fig. 11 compares the experimental and simulated value of the critical

load at failure, listed in Table A.10 and A.11 . 

These simulations show that a robust quantitative prediction of the failure load in geometries involving a broad range

of stress singularity power can be achieved numerically with the AT 1 model, provided that the internal length be computed

using (6) , which involves only material properties . In other words, our approach is capable of predicting crack nucleation

near a weak stress singularity using only elastic properties, fracture toughness G c , the tensile strength σ c , and the local

energy minimization principle (3) . 

In light of Fig. 11 , we suggest that both toughness and tensile strength (or equivalently toughness and internal length)

can be measured by matching full domain or Pac-Man computations and experiments involving weak elastic singularity of

various power (TPB, FPB, SENT, DENT with varying notch depth or angle) instead of measuring σ c directly. We expect that

this approach will be much less sensitive to imperfections than the direct measurement of tensile strength, which is virtually

impossible. Furthermore, since our criterion is not based on crack tip asymptotics, using full domain computations do not

require that the experiments be specially designed to isolated the notch tip singularity from structural scale deformations. 

3.2. Initiation near a stress concentration: the U-notch 

Crack nucleation in a U-shaped notch is another classical problem that has attracted a wealth of experimental and the-

oretical work. Consider a U-shaped notch of width ρ and length a �ρ subject to a mode-I local loading (see Fig. 12 for a

description of notch geometry in the context of a double edge notch tension sample). Assuming “smooth” loadings and ap-

plied boundary displacements, elliptic regularity mandates that the stress field be non-singular near the notch tip, provided
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Fig. 12. DENT geometry. 

Fig. 13. Crack nucleation at U-notches. Comparison between experimental data of Gómez et al. (2006) and numerical simulations using the AT 1 (left) and 

AT 2 (right) models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

that ρ > 0. Within the realm of Griffith fracture, this of course makes crack nucleation impossible. As it is the case for the

V-notch, introducing a nucleation principle based on a critical stress is also not satisfying as it will lead to a nucleation load

going to 0 as ρ → 0, instead of converging to that of an infinitely thin crack given by Griffith’s criterion. There is a significant

body of literature on “notch mechanics”, seeking to address this problem introducing stress based criteria, generalized stress

intensity factors, or intrinsic material length and cohesive zones. A survey of such models, compared with experiments on

a wide range of brittle materials is given ( Gómez et al., 2006 ). 

In what follows, we study crack nucleation near stress concentrations in the AT 1 and AT 2 models and compare with the

experiments gathered in Gómez et al. (2006) . The core of their analysis consist in defining a generalized stress intensity

factor 

K U = K t σ
∞ 

c 

√ 

πρ

4 

, (13) 

where K t , the notch stress concentration factor , is a parameter depending on the local ( a and ρ), as well as global sample

geometry and loading. Through a dimensional analysis, they studied the dependence of the critical generalized stress in-

tensity factor at the onset of fracture and the notch radius. We performed series of numerical simulations of double edge

tension (DENT) experiments on a sample of length h = 40 for multiple values of the notch depth a = 10 , spacing b = 20 ,

radius ρ = 2 . 5 , 1 . 25 , and 0.5 for which the value K t , computed in Lazzarin and Filippi (2006) is respectively 5.33, 7.26, and

11.12. In each case, we leveraged the symmetries of the problem by performing computations with the AT 1 and AT 2 models

on a quarter of the domain for a number of values of the internal length � corresponding to ρ/ � ch between 0.05 and 20. In

all cases, undamaged notch boundary conditions were used. 

In Fig. 13 , we overlay the outcome of our simulations over the experimental results gathered in Gómez et al. (2006) . As

for the V-notch, we observe that the AT 2 model performs poorly for weak stress concentrations (large values of ρ/ � ch ), as

the lack of an elastic phase leads to the creation of large partially damaged areas. For sharp notches ( ρ � 0), our simulations

concur with the experiments in predicting crack nucleation when K U = K Ic . As seen earlier, the AT 1 slightly overestimates

the critical load in this regime when undamaged notch boundary conditions are used. In light of Fig. 13 , we claim that

numerical simulations based on the variational phase-field model AT 1 provides a simple way to predict crack nucleation

that does not require the computation of a notch stress concentration factors K t or the introduction of an ad-hoc criterion. 
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Fig. 14. Crack nucleation in an infinite domain containing an elliptical hole. (left) domain geometry (center) computational domain (right) typical mesh. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Size effects in variational phase-field models 

Variational phase-field models are characterized by the intrinsic length � , or � ch . In this section, we show that this length-

scale introduces physically pertinent scale effects, corroborating its interpretation as a material length. To this end, we study

the nucleation of a crack in the uniaxial traction of a plate (−W, W ) × (−L, L ) with a centered elliptical hole with semi-axes

a and ρa (0 ≤ρ ≤ 1) along the x - and y -axes respectively, see Fig. 14 . In Section 4.1 , we study the effect of the size and

shape of the cavity, assumed to be small with respect to the dimension of the plate ( a � W, L ). In Section 4.2 , we investigate

material and structural size effects for a plate of finite width in the limit case of a perfect crack ( ρ = 0 ). 

4.1. Effect of an elliptical cavity: size and shape effects 

For a small hole ( a � W, L ), up to a change of scale, the problem can be fully characterized by two dimensionless pa-

rameters: a / � , and ρ . For a linear elastic and isotropic material occupying an infinite domain, a close form expression of

the stress field as a function of the hole size and aspect ratio is given in Inglis (1913) . The stress is maximum at the points

A = (a, 0) and A 

′ = (−a, 0) , where the radial stress is zero and the hoop stress is given by: 

σmax = t 

(
1 + 

2 

ρ

)
, (14)

t denoting the applied tensile stress along the upper and lower edges of the domain, i.e. the applied macroscopic stress at

infinity. We denote by ū the corresponding displacement field for t = 1 , which is given in Gao (1996) . 

As for the case of a perfect bar, (14) exposes a fundamental issue: if ρ > 0, the stress remains finite, so that Griffith–

based theories will only predict crack nucleation if ρ = 0 . In that case the limit load given by the Griffith’s criterion for

crack nucleation is 

t = σG := 

√ 

G c E ′ 
aπ

. (15)

However, as ρ → 0, the stress becomes singular so that the critical tensile stress σ c is exceeded for an infinitesimally small

macroscopic stress t . 

Following the findings of the previous sections, we focus our attention on the AT 1 model only, and present numerical

simulations assuming a Poisson ratio ν = 0 . 3 and plane-stress conditions. We perform our simulations in domain of finite

size, here a disk of radius R centered around the defect. Along the outer perimeter of the domain, we apply a boundary

displacement u = t ̄u , where ū is as in Inglis (1913) , and we use the macroscopic stress t a loading parameter. Assuming

a symmetric solution, we perform our computations on a quarter of the domain. For the circular case ρ = 1 , we use a

reference mesh size h = � min / 10 , where � min is the smallest value of the internal length of the set of simulations. For ρ < 1,

we selectively refine the element size near the expected nucleation site (see Fig. 14 , right). In order to minimize the effect

of the finite size of the domain, we set R = 100 a . 

We performed numerical simulations varying the aspect ratio a / � from 0.1 to 50 and the ellipticity ρ from 0.1 to 1.0. In

each case, we started from an undamaged state an monotonically increased the loading. In all numerical simulations, we

observe two critical loading t e and t c , the elastic limit and structural strength , respectively. For 0 ≤ t < t e the solution is purely

elastic, i.e. the damage field α remains identically 0 (see Fig. 15 , left). For t e ≤ t < t c , partial distributed damage is observed.

The damage field takes its maximum value αmax < 1 near point A (see Fig. 15 , center). At t = t c , a fully developed crack

nucleates, then propagates for t > t c (see Fig. 15 , right). As for the Pac-Man problem, we identify the crack nucleation with

a jump in surface energy, and focus on loading at the onset of damage. 

From the one-dimensional problem of Section 2.2 and Pham et al. (2011a ); 2011b ), we expect damage nucleation to take

place when the maximum stress σ max reaches the nominal material strength σc = 

√ 

3 G c E ′ / 8 � (see Table 1 ), i.e. for a critical
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Fig. 15. Damage field at the boundary of the hole in the elastic phase 0 < t < t e (left), the phase with partial damage t e < t < t c (center), and after the 

nucleation of a crack t > t c (right). Blue: α = 0 , red: α = 1 . The simulation is for ρ = 1 . 0 and a/� = 5 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

Fig. 16. Normalized applied macroscopic stress t e / σ c at damage initiation as a function of the aspect ratio ρ for a/� = 1 (left) and of the relative defect 

sizes a / � for ρ = 1 and ρ = 0 . 1 (right). 

Fig. 17. Normalized applied macroscopic stress t c / σ e at crack nucleation for an elliptic cavity in an infinite plate. Left: shape effect for cavities of size much 

larger than the internal length ( a/� = 48 ); the solid line is the macroscopic stress at the damage initiation t e (see also Fig. 16 ) and dots are the numerical 

results for the AT 1 model. Right: size effect for circular ( ρ = 1 . 0 ) and highly elongated (ρ = 0 . 1) cavities. 
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load 

t e = 

ρ

2 + ρ
σc = 

ρ

2 + ρ

√ 

3 G c E ′ 
8 � 

. (16) 

Fig. 16 (left) confirms this expectation by comparing the ratio t e / σ c to its expected value ρ/ (2 + ρ) for ρ ranging from

0.1 to 1. Fig. 16 (right) highlights the absence of size effect on the damage nucleation load, by comparing t e / σ c for multiple

values of a / � while keeping ρ fixed at 0.1 and 1. 

Fig. 17 focuses on the crack nucleation load t c , showing its dependence on the defect shape (left) and size (right).

Fig. 17 (right) shows the case of circular hole ( ρ = 1 ) and an elongated ellipse, which can be identified to a crack ( ρ = 0 . 1 ).

It clearly highlights a scale effect including three regimes: 

i. For “small” holes ( a � � ), crack nucleation takes place when t = σc , as in the uniaxial traction of a perfect bar without

the hole: the hole has virtually no effect on crack nucleation. In this regime the strength of a structure is completely

determined by that of the constitutive material. Defects of this size do not reduce the structural strength and can be

ignored at the macroscopic level. 

ii. Holes with length of the order of the internal length ( a = O(� ) ), have a strong impact on the structural strength. In this

regime the structural strength can be approximated by 

log (t c /σc ) = D log (a/� ) + c, (17) 

where D is an dimensionless coefficient depending on the defect shape. For a circular hole ρ = 1 , we have D ≈ −1 / 3 . 

ii. When a � � , the structural failure is completely determined by the stress distribution surrounding the defect. We observe

that for weak stress singularities ( ρ ≡ 1), nucleation takes place when the maximum stress reaches the elastic limit σ e ,√ 
whereas the behavior as ρ ≡ 0 is consistent with Griffith criterion, i.e. the nucleation load scales as 1 / a . 
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Fig. 18. Initiation of a crack of length 2 a in a plate of finite width 2 W . The numerical results (dots) are obtained with the AT 1 model for � = W/ 25 . The 

strength criterion and the Griffith’s criterion (18) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17 (right) shows that the shape of the cavity has a significant influence on the critical load only in the latter regime,

a � � . Indeed, for a / � of the order of the unity or smaller, the critical loads t c for circular and highly elongated cavities are

almost indistinguishable. This small sensitivity of the critical load on the shape is the result of the stress-smoothing effect

of the damage field, which is characterized by a cut-off length of the order of � . Fig. 17 (left) shows the critical stress t c
at nucleation when varying the aspect ratio ρ for a/� = 48 , for which σG /σc = 2 / 15 . As expected, the critical stress varies

smoothly from the value σ G (15) predicted by the Griffith theory for a highly elongated cavity identified to a perfect crack,

to t e (16) for circular cracks, where the crack nucleates as soon as the maximum stress σ max attains the elastic limit. 

This series of experiments is consistent with the results of Section 3.2 showing that variational phase-field models are

capable of simultaneously accounting for critical elastic energy release rate and critical stress. Furthermore, they illustrate

how the internal length � can be linked to critical defect size as the nucleation load for a vanishing defect of size less than

� approaches that of a flawless structure. 

4.2. Competition between material and structural size effects 

We can finally conclude the study of size effects in variational phase-field models by focusing on the competition be-

tween material and structural size effects. For that matter, we study the limit case ρ = 0 of a perfect crack of finite length

2 a in a plate of finite width 2 W (see Fig. 18 -left). Under the hypotheses of LEFM, the critical load upon which the crack

propagates is 

σG (a/� ch , a/W ) = 

√ 

G c E ′ cos ( aπ
2 W 

) 

aπ
= σc 

√ 

1 

π

� ch 

a 
cos 

(
aπ

2 W 

)
, (18)

which reduces to (15) for large plate ( W / a → ∞ ). As before, we note that σ G / σ c → ∞ as a / � ch → 0, so that for any given load,

the material’s tensile strength is exceeded for short enough initial crack. 

We performed series of numerical simulations using the AT 1 model on a quarter of the domain with W = 1 , L = 4 ,

ν = 0 . 3 , � = W/ 25 , h = �/ 20 , and the initial crack’s half-length a ranging from 0.025 � to 12.5 � (i.e. 0.001 W to 0.5 W ). The

pre-existing crack was modeled as a geometric feature and undamaged crack lip boundary conditions were prescribed. The

loading was applied by imposing a uniform normal stress of amplitude t to its upper and lower edge. 

Fig. 18 , displays the normalized macroscopic structural strength of the sample, t c / σ c , where σ c is given by (6) , and t c is

the applied load upon which the crack grows, identified as before. The results are in good agreement with classical theories

linking size-effect on the strength of the material ( Bažant, 2005 ). When a � � , i.e. when the defect is large compared to the

material’s length, crack initiation is governed by Griffith’s criterion (18) . As noted earlier, the choice of undamaged notch

boundary conditions on the damage fields leads to slightly overestimating the nucleation load. Our numerical simulations

reproduce the structural size effect predicted by LEFM when the crack length is comparable to the plate width W . 

When a � � , we observe that the macroscopic structural strength is very close to the material’s tensile strength. Again,

below the material’s internal length, defects have virtually no impact on the structural response. LEFM and Griffith-based

models cannot account for this material size-effect. These effects are introduced in variational phase-field model by the

additional material parameter � . 

In the intermediate regime a = O(� ) , we observe a smooth transition between strength and toughness criteria, where

the tensile strength is never exceeded. 

When a � � , our numerical simulations are consistent with predictions from LEFM shown as a dashed line in Fig. 18 ,

whereas when a � � , the structural effect of the small crack disappear, and nucleation takes place at or near the material’s

tensile strength, i.e. t c / σ c � 1. 
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5. Conclusion 

In contrast with most of the literature on phase-field models of fracture focusing validation and verification in the context

of propagation “macroscopic” cracks ( Mesgarnejad et al., 2015; Pham et al., 2017 ), we have studied crack nucleation and

initiation in multiple geometries. We confirmed observations reported elsewhere in the literature that although they are

mathematically equivalent in the limit of � → 0, damaged notch boundary conditions lead to a more accurate computation

near strong stress singularities whereas away from singularities, undamaged notch boundary conditions are to be used. Our

numerical simulations also highlight the superiority of phase-field models such as AT 1 which exhibit an elastic phase in

the one-dimensional tension problem over those who don’t (such as AT 2 ), when nucleation away from strong singularity is

involved. Our numerical simulations suggest that it is not possible to accurately account for crack nucleation near “weak”

singularities using the AT 2 model. We infer that a strictly positive elastic limit σ e is a required feature of a phase-field model

that properly account for crack nucleation. 

We have shown that as suggested by the one-dimensional tension problem, the regularization parameter � must be un-

derstood (up to a model-dependent multiplicative constant) as the material’s characteristic or internal length � ch = G c E / σ 2 
c ,

and linked to the material strength σ c . With this adjustment, we show that variational phase-field models are capable of

quantitative prediction of crack nucleation in a wide range of geometries including three- and four-point bending with var-

ious type of notches, single and double edge notch tests, and a range of brittle materials, including steel and Duraluminium

at low temperatures, PVC foams, PMMA, and several ceramics. 

We recognize that measuring a material’s tensile strength is difficult and sensitive to the presence of defect, so that

formulas (6) may not be a practical way of computing a material’s internal length. Instead, we propose to perform series of

experiments such as three point bending with varying notch depth, radius or angle, as we have demonstrated in Fig. 11 that

with a properly adjusted internal length, variational phase-field models are capable of predicting the nucleation load for

any notch depth or aperture. Furthermore, since variational phase-field models do not rely on any crack-tip asymptotic,

this identification can be made even in situation where generalized stress or notch intensity factors are not known, or are

affected by the sample’s structural geometry. 

We have also shown that variational phase-field models properly account for size effects that cannot be recovered from

Griffith-based theories. By introducing the material’s internal length, they can account for the vanishing effect of small

defects on the structural response of a material, or reconcile the existence of a critical material strength with the existence

of stress singularity. Most importantly, they do not require introducing ad-hoc criteria based on local geometry and loading.

On the contrary, we see that in most situation, criteria derived from the asymptotic analysis of a micro-geometry can be

recovered a posteriori . Furthermore, variational phase-field models are capable of quantitative prediction of crack path after

nucleation. Again, they do so without resolving to introducing additional ad-hoc criteria, but only relying on a general energy

minimization principle. 

In short, we have demonstrated that variational phase-field models address some of the most vexing issues associated

with brittle fracture: scale effects, nucleation, existence of a critical stress, and path prediction. 

Of course, there are still remaining issues that need to be addressed. Whereas the models are derived from irreversibility,

stability and energy balance, our numerical simulations do not enforce energy balance as indicated by a drop of the total

energy upon crack nucleation without string singularities. Note that to this day, devising an evolution principle combining

the strength of (3) while ensuring energy balance is still an open problem. Perhaps extensions into phase field models

dynamic fracture will address this issue. 

Fracture in compression remains an issue in variational phase-field models. Although several approaches have been pro-

posed that typically consist in splitting the strain energy into a damage inducing and non damage inducing terms, neither

of the proposed splits are fully satisfying (see Amor et al., 2009; Lancioni and Royer-Carfagni, 2009; Li, 2016 for instance). In

particular, it is not clear of either of this models is capable of simultaneously accounting for nucleation under compression

and self-contact. 

Finally, even though a significant amount of work has already been invested in extending the scope of phase-field models

of fracture beyond perfectly brittle materials, to our knowledge, none of the proposed extensions has demonstrated its

predictive power yet. 
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Appendix A. Tables of experimental an numerical data for V-notch experiments 
Table A.3 

Critical generalized stress intensity factor k for crack nucleation at a notch as a function of the notch opening angle ω̄ from Fig. 5 . Results for the AT 1 and 

AT 2 models with damaged -D and undamaged -U notch lips conditions. The results are obtained with numerical simulations on the Pac-Man geometry with 

(K Ic ) eff = 1 and � = 0 . 01 so that σc = 10 under plane-strain conditions with a unit Young’s modulus and a Poisson ratio ν = 0 . 3 . 

ω λ k c ( AT 1 - U ) k c ( AT 1 - D ) k c ( AT 2 - U ) k c ( AT 2 - D ) 

0.01 ° 0.500 1.292 1.084 1.349 1.284 

10.0 ° 0.500 1.308 1.091 1.328 1.273 

20.0 ° 0.503 1.281 1.121 1.376 1.275 

30.0 ° 0.512 1.359 1.186 1.397 1.284 

40.0 ° 0.530 1.432 1.306 1.506 1.402 

50.0 ° 0.563 1.636 1.540 1.720 1.635 

60.0 ° 0.616 2.088 1.956 2.177 2.123 

70.0 ° 0.697 2.955 2.704 3.287 3.194 

80.0 ° 0.819 4.878 4.391 5.629 5.531 

85.0 ° 0.900 6.789 5.890 7.643 7.761 

89.9 ° 0.998 9.853 8.501 9.936 9.934 

Table A.4 

Generalized critical stress intensity factors as a function of the notch aperture in soft annealed tool steel, (AISI O1 at -50 °C). Experimental measurements 

from Strandberg (2002) using SENT and TPB compared with Pac-Man simulations with the AT 1 model. 

2 ̄ω Type Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

0 ° TPB 51.77 3.06 67.09 22.84% 54.69 5.35 % 

30 ° SENT 60.97 1.97 66.91 8.88 % 56.99 6.98 % 

60 ° SENT 65.81 1.52 69.55 5.39 % 62.95 4.53 % 

90 ° TPB 88.62 3.58 85.16 4.06 % 78.15 13.40% 

120 ° SENT 142.74 2.25 130.81 9.12 % 121.68 17.30% 

140 ° SENT 243.73 31.86 211.06 15.48% 191.91 27.00% 

Table A.5 

Generalized critical stress intensity factors as a function of the notch aperture in Divinycell® PVC foam. Experimental measurements from 

Grenestedt et al. (1996) using four point bending compared with Pac-Man simulations with the AT 1 model. 

2 ̄ω Mat Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

0 ° H80 0.14 0.01 0.18 22.91% 0.15 5.81% 

H100 0.26 0.02 0.34 24.62% 0.28 7.61% 

H130 0.34 0.01 0.44 29.34% 0.36 5.09% 

H200 0.57 0.02 0.74 47.60% 0.61 6.53% 

90 ° H80 0.20 0.02 0.22 12.65% 0.21 4.73% 

H100 0.36 0.02 0.41 12.29% 0.38 4.10% 

H130 0.49 0.05 0.54 11.33% 0.50 0.50% 

H200 0.81 0.08 0.91 20.54% 0.83 2.21% 

140 ° H80 0.53 0.06 0.53 0.37% 0.48 9.26% 

H100 0.89 0.04 0.92 3.43% 0.84 5.91% 

H130 1.22 0.10 1.25 2.95% 1.13 7.48% 

H200 2.02 0.14 2.07 4.92% 1.89 6.80% 

155 ° H80 0.86 0.07 0.83 3.63% 0.75 14.36% 

H100 1.42 0.08 1.42 0.14% 1.29 10.63% 

H130 1.90 0.10 1.95 2.82% 1.76 8.06% 

H200 3.24 0.15 3.23 0.89% 2.92 11.02% 
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Table A.6 

Generalized critical stress intensity factors as a function of the notch aperture in Duraluminium. Experimental measurements from Seweryn (1994) using 

single edge notch tension compared with Pac-Man simulations with the AT 1 model. 

ω̄ Type Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

10 ° DENT 53.55 0.94 64.80 17.36% 56.40 5.05% 

20 ° DENT 57.10 0.26 65.11 12.30% 58.52 2.43% 

30 ° DENT 60.50 0.60 67.17 9.94% 62.11 2.59% 

40 ° DENT 66.34 0.50 74.07 10.44% 69.24 4.18% 

50 ° DENT 80.15 0.46 86.61 7.46% 82.25 2.55% 

60 ° DENT 102.00 1.17 114.20 10.69% 107.43 5.05% 

70 ° DENT 150.44 1.17 170.19 11.61% 158.91 5.33% 

80 ° DENT 291.75 1.94 305.03 4.35% 274.74 6.19% 

90 ° DENT 705.27 8.53 661.19 6.67% 592.59 19.01% 

Table A.7 

Generalized critical stress intensity factors as a function of the notch aperture in PMMA. Experimental measurements from Seweryn (1994) using single 

edge notch tension compared with Pac-Man simulations with the AT 1 model. 

ω̄ Type Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

10 ° DENT 1.87 0.03 2.50 25.29% 2.07 10.03% 

20 ° DENT 1.85 0.03 2.53 26.89% 2.13 12.97% 

30 ° DENT 2.17 0.03 2.65 18.17% 2.33 6.92% 

40 ° DENT 2.44 0.02 3.07 20.65% 2.73 10.70% 

50 ° DENT 3.06 0.05 3.94 22.31% 3.54 13.63% 

60 ° DENT 4.35 0.18 5.95 26.97% 5.41 19.69% 

70 ° DENT 8.86 0.18 11.18 20.74% 10.10 12.26% 

80 ° DENT 28.62 0.68 27.73 3.20% 24.55 16.56% 

90 ° DENT 104.85 10.82 96.99 8.11% 85.37 22.82% 

Table A.8 

Generalized critical stress intensity factors as a function of the notch aperture in Aluminium oxide ceramics. Experimental measurements from 

Yosibash et al. (2004) using three and four point bending compared with Pac-Man simulations. 

2 ̄ω type Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

30 ° TPB 4.49 0.57 4.97 9.6% 4.53 0.9% 

FPB 4.24 0.30 4.97 14.6% 4.53 6.4% 

60 ° TPB 6.02 n/a 5.35 12.6% 5.00 20.3% 

FPB 5.14 0.09 5.35 3.8% 5.00 2.8% 

90 ° TPB 6.66 0.50 6.99 4.8% 6.72 1.0% 

FPB 6.81 0.54 6.99 2.6% 6.72 1.3% 

120 ° TPB 13.21 0.87 13.12 0.7% 12.38 6.8% 

FPB 14.66 1.23 13.12 11.7% 12.38 18.4% 

Table A.9 

Generalized critical stress intensity factors as a function of the notch aperture in PMMA. Experimental measurements from Dunn et al. (1997) using three 

and four point bending compared with Pac-Man simulations. The value a / h refers to the ratio depth of the notch over sample thickness. See Fig. 9 for 

geometry and loading. 

2 ̄ω a / h Experiments Undamaged notch Damaged notch 

k (exp) 
c stdev k (num ) 

c Rel. error k (num ) 
c Rel. error 

60 ° 0.1 1.41 0.02 1.47 4.5% 1.29 9.3% 

0.2 1.47 0.04 1.47 0.4% 1.29 14.0% 

0.3 1.28 0.03 1.47 13.0% 1.29 0.4% 

0.4 1.39 0.04 1.47 5.8% 1.29 7.8% 

90 ° 0.1 2.04 0.02 1.98 3.0% 1.81 12.9% 

0.2 1.98 0.01 1.98 0.0% 1.81 9.6% 

0.3 2.08 0.03 1.98 5.1% 1.81 15.2% 

0.4 2.10 0.03 1.98 5.9% 1.81 16.1% 

120 ° 0.1 4.15 0.02 3.87 7.3% 3.63 14.3% 

0.2 4.03 0.06 3.87 4.2% 3.63 11.0% 

0.3 3.92 0.18 3.87 1.4% 3.63 8.0% 

0.4 3.36 0.09 3.87 13.0% 3.63 7.4% 
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Table A.10 

Critical load reported in Yosibash et al. (2004) using three- and four-point bending experiments of an Al 2 O 3 –7%ZrO 2 sample compared with numerical 

simulations using the AT 1 model and undamaged notch boundary conditions. TPB and FPB refer respectively to three point bending and four point bending. 

See Fig. 9 for geometry and loading. 

2 ̄ω Type P (exp) 
c [N] stdev P (num ) 

c [N] Rel. error 

30 ° TPB 1470.50 72.01 1517.59 3.1% 

FPB 1726.00 56.29 1976.59 12.7% 

60 ° TPB 1736.00 0.00 1517.59 14.4% 

FPB 1909.17 60.88 1986.62 3.9% 

90 ° TPB 1528.40 149.41 1608.04 5.0% 

FPB 2024.40 212.03 2127.09 4.8% 

120 ° TPB 1933.00 75.15 1949.75 0.9% 

FPB 2711.29 187.66 2618.73 3.5% 

Table A.11 

Load at failure reported in Yosibash et al. (2004) using three point bending experiments of a PMMA sample compared to full domain numerical simulations 

using the AT 1 model with undamaged notch boundary conditions. The value a / h refers to the ratio depth of the notch over sample thickness. See Fig. 9 for 

geometry and loading. 

2 ̄ω a / h P (exp) 
c [N] stdev P (num ) 

c [N] Rel. error 

60 ° 0.1 608.50 6.69 630.81 3.5% 

0.2 455.75 12.48 451.51 0.9% 

0.3 309.00 8.19 347.98 11.2% 

0.4 258.75 6.61 268.69 3.7% 

90 ° 0.1 687.33 5.19 668.69 2.8% 

0.2 491.00 2.94 491.41 0.1% 

0.3 404.33 5.44 383.33 5.5% 

0.4 316.00 4.24 297.48 6.2% 

120 ° 0.1 881.75 4.60 822.22 7.2% 

0.2 657.25 9.36 632.32 3.9% 

0.3 499.60 25.41 499.50 0.0% 

0.4 336.25 9.09 386.87 13.1% 
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