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A variational fracture model coupled to an external reservoir simulator through variable exchange is
presented. While convergence is not optimal without Jacobian matrices with which fully coupling can
provide, the presented coupling scheme is versatile enough that the reservoir simulator could be easily
replaced with any other simulator. A variational approach to fracture is introduced first by comparison to
the classic Griffith criteria, and is then expanded to include poro-elasticity and in-situ stresses that are
required in hydraulic applications. The coupled code has been tested against existing analytical solutions
of fluid-driven fracture propagation. Finally, illustrative examples are shown to demonstrate that the
methodology's ability to simulate multi fracture interaction with the unified approach for turning and
merging fractures.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In predicting fracture propagation during well stimulation or
water/waste injection, it is crucial to properly understand the
behavior of the fractures induced. For example, the assumption of
a single planar fracture propagation often leads to an estimation of
an unrealistically long fracture given the volume of injection in
water injection operation, which then leads to an over-specifica-
tion of water treatment programwith higher capital and operating
expenditure,1,2 or not accounting for interaction with existing
fractures (either man-made or pre-existing) may result in un-
favorable well spacing for tight rock development, which can lead
to increased number of wells or hydraulic stimulation stages.3,4,5

Thus the urgency to develop predictive capabilities for complex
hydraulic fracture propagation (turning, merging, and branching)
is increasing in the industry as well as the requirement for com-
plex flow behaviors such as fluid phase change or particle de-
position in porous media.

To date, most hydraulic fracturing simulations have focused
upon the problem of a single mode-I fracture on a vertical plane
driven by a pressurized fluid applying Linear Elastic Fracture Me-
chanics (LEFM) as propagation criteria coupled with Poiseuille's
equation of fluid flow in the fracture and Carter's equation for
leak-off to the formation. A thorough historical background and
review of the LEFM based approach on 2D, pseudo 3D, and full 3D
.

fracture modeling has been conducted by Adachi.6 Additionally
models that consider flow in both reservoir and fracture flow in-
stead of treating fluid leak off with Carter's equation have been
proposed.7,8,9,10 Lujun et al.7 applied hydraulic force as boundary
force on the fracture placed in the boundary. A cohesive element
approach on a planar fracture8 and a turning mix-mode fracture,
and sub-grid enrichment of finite element method10 have been
also studied.

For hydraulic fracture models in the presence of natural pre-
existing fractures, Kresse et al.11 utilized pseudo 3D approach for
the propagating main fracture and semi-analytical crossing criteria
for interaction with pre-existing natural fractures. Natural frac-
tures were treated as closed weak planes and its mechanical in-
teraction with hydraulic fractures was computed with a 2D
Boundary Element Method (BEM) by incorporating empirically
derived 3D effects. McClure et al.12 applied the LEFM approach for
the criteria for hydraulic fracture initiation and propagation on the
prescribed plane using fixed grid for growth of fracture and uti-
lized BEM for stress disturbance by natural fracture opening and
shearing. Similarly to Kresse et al. 11, semi-analytical crossing cri-
teria proposed by Gu and Weng13 were used for interaction be-
tween hydraulic fractures and natural fractures. A Discrete Ele-
ment Method (DEM) has been also applied to hydraulic fracturing
with natural fractures.14 In the DEM framework, hydraulic frac-
tures propagate along prescribed element boundaries when a
stress intensity factor meets the criteria, and the natural fracture
opening is estimated using a Coulomb friction model. While the
stress shadow effects of opening fractures were accounted in these
studies, poroelastic impacts induced by leak-off were not included.
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Recently, simulation approaches to complex fracture(s) along
unknown path(s) have been developed using different techniques
such as a BEM or an extended finite element method (XFEM). Wu
and Olson15 modeled 2D fractures that propagate in both mode-I
and II using 3D correction in the BEM formulation. Complex single
fracture propagation in 3D has been developed by Rungamornrat
and Mear.16 Their model has been extended to multiple fracture
propagation and interaction by Castonguay et al.17 An XFEM has
been first applied to hydraulic fracture by incorporating pressure
forces along a line fracture in 2D impermeable media by
Lecampion18 for stationary fracture. Dahi-Taleghani and Olson19

implemented the XFEM for propagating fracture in 2D and Gor-
deliy and Peirce20 extended the methodology to include solid-fluid
interaction at the fracture tip. While these methods are appealing
for not requiring a priori knowledge of the crack path, the BEM
imposes restrictions on heterogeneity in material properties and
handling of merging fractures remains as a perplexing challenge.

The variational approach to fracture was originally proposed by
Francfort and Marigo21 and was numerically implemented by
Bourdin et al.22,23 using a “phase-field” approach. This approach is
capable of tracking arbitrary number of fractures in any geometry,
regardless of the propagation mode. It was extended to hydraulic
fracturing in impermeable media by accounting for the work of
the pressure forces applied along the fracture in Bourdin et al., 24

where it was shown that explicit properties such as fracture
aperture or critical propagation pressure could be retrieved from
the phase field. Phase-field's implicit representation of the fracture
system has proved useful in hydraulic fracturing simulations and
its initial application has been followed by many
others.25,26,27,28,29,30 Wheeler et al.25 extended the phase-field
model to porous media by including poroelastic terms in the total
energy. Its implementation has been enhanced with adaptive fi-
nite element in 2D27 and 3D.29 Wick et al.30 coupled the metho-
dology to a reservoir simulator using an indicator function for
fractures. Miehe et al.28 coupled porous media flow with the
phase-field hydraulic fracture using permeability decomposition
and the unilateral contact condition.31 Mikelic et al.26 fully coupled
the three-field problems and modified the total energy functional
from their previous studies.

In this article, we show how a phase-field fracture model of
fracture and an existing reservoir simulator can be coupled with
minimal modifications. The main motivation for this approach,
over that seeking to leverage the phase-field description of the
fracture in the flow model,32,33 is that it allows reusing a feature-
rich, validated reservoir simulator. The proposed coupling is
iterative, and does not allow sharing information on the Jacobians.
However, it uses the same computational grid for the mechanics
and flow solvers, so that constructing an explicit mesh of the
fracture geometry is not required, and is reasonably efficient. In
the sequel, we describe the construction of the phase field model,
the implementation of the coupled simulator, and illustrate the
ability of the this approach to handle critical features such as crack
propagation along unknown path in two and three dimension,
ability to handle interactions between stimulated and pre-existing
fractures, and nucleation of new add-cracks.
2. Mathematical model

2.1. Variational approach to fracture

Consider a domain Ω in 2 or 3D, occupied by a brittle linearly
elastic material with stiffness tensor C, and a fracture set Γ and
critical energy release rate (fracture toughness) Gc (Fig. 1a). Let
( )t xf , denote a time-dependent body force applied to Ω, ( )τ t x, a
surface force applied to a part Ω∂N of its boundary whose normal
vector is Ωn , and ( )t xg , a prescribed boundary displacement on
the remaining part Ω∂D .

The stress-strain relationship is given as

σ = ( ) ( )eC u 1

where σ is the stress field, and ( ) = (∇ + ∇ )e u u u1
2

T is the strain
field, and the equilibrium equations in strong form are:

Ω Γσ−∇⋅ = ( )f in / , 2

Ωσ τ⋅ = ∂ ( )Ωn on , 3N

Ω= ∂ ( )u g on . 4D

No stress and positive or zero displacement discontinuity on
the fracture surface are assumed:

Γσ⋅ = ( )n 0 on , 5

Γ( − )⋅ ≥ ( )+ −u u n 0 on . 6

where +u and −u are the displacement on each surface of the
fracture. The total external work Wconsists of the work by the
body force and the external load and is defined for any kinema-
tically admissible displacement u as

∫ ∫Ω τ( ) = ⋅ + ⋅
( )Ω Ω∂

W d dsu f u u: .
7N

The potential energy E is given by the elastic energy of the
system subtracting the external work as:

∫Γ Ω( ) = ( ) ( ) − ( )
( )Ω Γ

E e e d Wu u C u u, : : .
8/

The variational approach to fracture proposed by Francfort and
Marigo21 defines the total energy as the sum of the potential en-
ergy and the surface energy required to create a fracture set Γ:

Γ Γ Γ( ) = ( ) + ( ) ( )−F E G Hu u, , , 9c
N 1

where H is the Hausdorff measure of Γ providing the fracture
length in 2D ( =N 2) and the surface area in 3D ( =N 3).

In the Griffith theory, a single fracture in 2D with the length l is
considered and the elastic energy release rate G can be calculated
along an a priori known fracture path as:

= ( )G
dE
dl

. 10

The criteria state that the fracture will propagate when =G Gc
and not when <G Gc , which is nothing but the criticality of the
total energy of the system:

Γ( ) = ( ) + ( )F l E G lu u, , . 11c

In the variational setting, the Griffith criteria are recast as the
minimum of the total energy (Eq. (9)) with respect to any ad-
missible displacement field u and any fracture set subject to an
irreversibility condition. Namely, at any time step ti, ( Γu ,i i) is
sought as the solution of the minimization problem:

Γ

Γ Γ

( )

⊂ < ( )
⎪

⎪⎧⎨
⎩

F

j i

u

u

inf ,

kinematically admissible

forall 12j

It should be emphasized that in Eq. (12) no assumption on the
geometry of the fracture is made a priori. Therefore, fractures are
allowed to take an arbitrary path (turning or bifurcating), and the
number of fracture does not need to remain constant, which



Fig. 1. Schematic of the problem setting for fracturing in: (a) elastic medium and (b) porous medium.
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allows nucleation and merging of fractures. The numerical im-
plementation of Eq. (12) is challenging as it involves dis-
continuities (fracture set) and the discontinuities are not known a
priori. Bourdin et al.22 proposed an approach based on the varia-
tional approximation by elliptic functional.34,35 A regularization
parameter ε is introduced and the fracture is represented a smooth
phase field function v approaching values 0 close to the fracture
and 1 far from them. The total energy can be expressed using ε and
v as:

∫ ∫ ∫

∫

Ω Ω

ε
ε Ω

τ

( )

= ( ) ( ) − ⋅ + ⋅

+ ( − ) + ∇ ( )

ε

Ω Ω Ω

Ω

∂

F v

v e e d d ds

G v
v d

u

u C u f u u

,

: :

3
8

1
. 13

c

2

2

N

It can be shown that the regularized total energy εF approaches
to F as ε approaches to 0 in the sense of Γ-convergence, meaning
that the minimizers of εF converge to those of F . From a numerical
standpoint, the main feature of the regularized energy re-
presentation is that the fracture set does not require explicit
treatment as discontinuous field, and computations can be carried
out on a fixed mesh to represent complex fracture path using the
phase field function.

2.2. Extension to hydraulic fracture in porous media

In hydraulic fracturing, propagation is induced by the increase
of fluid pressure in the fractures or through the perforations
(Fig. 1b). Bourdin et al. 24 adapted the variational approach to
hydraulic fracturing by accounting for fluid pressure forces along
the fracture surfaces. The previous model can be further extended
to porous media. The stress-strain relationship is given as:

α

α

σ

σ

= ( ) −

= − ( )

e p

p

C u I

I

.

. 14e

where σe is the effective stress, and α and p are the Biot's coeffi-
cient and the pore-pressure respectively. The equilibrium equation
is similarly:

Ω Γσ−∇⋅ = ( )f in \ . 15

On the fracture surface, force balance and positive or zero
displacement discontinuity on the fracture surface (no inter-
penetration) are assumed

Γσ⋅ = − ( )pn n on , 16

( ) Γ− ⋅ ≥ ( )
+ −u u n 0 on . 17

In order to derive the elastic energy for porous media, consider
a virtual displacement ( )Ω Γ˜ ∈ Hu /1 such that ˜ =u 0 on Ω∂D .
Multiplying both sides of the equilibrium equation, over Ω Γ/ yields,

∫ ∫Ω Ωσ− ∇⋅ ⋅ ˜ = ⋅ ˜
( )Ω Γ Ω Γ

d du f u .
18/ /

Integrating by parts and applying divergence theorem give

∫ ∫ ∫ ∫( ) Ω Ωσ σ σ˜ − ⋅ ⋅ ˜ − ⋅ ⋅ ˜ = ⋅ ˜
( )Ω Γ Ω Γ Ω Γ∂

⎡⎣ ⎤⎦e d dS dS du n u n u f u: .
19/ /N

Substituting Eqs. (16) and (17) into Eq. (19) yields,

∫ ∫ ∫ ∫( ) Ω Ωσ τ˜ − ⋅ ˜ + ⋅ ˜ = ⋅ ˜
( )Ω Γ Ω Γ Ω Γ∂

⎡⎣ ⎤⎦e d dS p dS du u n u f u:
20/ /N

Substituting the stress-strain relationship (Eq. (14)) into Eq.
(20) yields,

( )∫ ∫ ∫
∫

∫ ∫ ∫
∫ ∫

( ) ( )

( ) ( ) ( )

α Ω

Ω

Ω α Ω

Ω

τ

τ

− ˜ − ⋅ ˜ + ⋅ ˜

− ⋅ ˜

= ˜ − ˜ − ⋅ ˜

+ ⋅ ˜ − ⋅ ˜ =
( )

Ω Γ Ω Γ

Ω Γ

Ω Γ Ω Γ Ω

Γ Ω Γ

∂

∂

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

e p e d dS p dS

d

e e d p e d dS

p dS d

C u I u u n u

f u

C u u I u u

n u f u

:

.

: :

0
21

/

/

/ /

/

N

N

In order for Eq. (21) to be the first order optimality, the elastic
energy functional needs to be

∫ ∫ ∫

∫

( )

( ) ( )

Ω

α
κ

α
κ

Ω

τ= − ⋅ + ⋅ − ⋅

+ − − ⋅
( )

Ω Γ Ω Γ

Ω Γ

∂

⎜ ⎟ ⎜ ⎟

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

E dS p dS d

e p e p d

u u n u f u

C u I u I

.

1
2 3

:
3 22

/

/

N

Following Bourdin et al.24, the fracture volume can be re-
covered using the gradient of the phase field damage as:

∫ ∫ ∫ ∫( ) Ω− ⋅ = ⋅ − ⋅ ≈ − ⋅∇ ⋅ ( )Γ Γ Γ Ω

+ − + −
+ −

dS dS dS vdu u n n u n u u 23

The regularized total energy for a poroelastic medium can be
defined as:

∫

∫ ∫
∫ ∫

( ) ( ) ( )α
κ

α
κ

Ω

ε
ε Ω

Ω Ω

τ

= − −

+ − + ∇ − ⋅

− ⋅∇ − ⋅ ⋅ ( )

ε
Ω

Ω Ω

Ω Ω

∂

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠F v ve p ve p d

G v
v d dS

p vd d

u C u I u I

u

u f u

,
1
2 3

:
3

3
8

1

24

c 2

N

2.3. Unilateral contact condition

The total energy given in Eq. (24) is symmetric in tension and
compression, which means compressive fracture with negative
fracture volume is as admissible as tensile fracture with positive
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fracture volume given a displacement field depending on the di-
rection of the load. This becomes clearer when fracture(s) pre-
exist under in-situ stresses, which is discussed in one of the ex-
amples later. Amongst all the methods that have been proposed to
deal with this unilateral contact along fractures,31,36,37 we chose
that of Amore et al.38 in parts for the simplicity and efficiency of its
implementation, and because it is theoretically better
understood.37 In this approach, the elastic strain ( )e u is decom-
posed in its spherical and deviatoric components as:

( ) = ( ) + ( ) ( )e e eu u u , 25S D

where

( )( ) = ( ) ( )e
N

eu u I
1

tr , 26S

( )( ) = ( ) − ( ) ( )e e
N

eu u u I
1

tr . 27D

and N is space the dimension ( =N 2 for 2D and =N 3 for 3D).
Using this decomposition, the elastic energy density ( ) ( )e eC u u: :
can be written as

( )
κ μ( ) ( ) =

( )
+ ( )⋅ ( ) ( )e e

e
e eC u u

u
u u:

tr
2

, 28D D0

2

where κ0 and μ are the bulk and shear modulus respectively. In order to
prevent material interpenetration along cracks, the elastic energy den-
sity is modified to distinguish contributions from the compressive (the
negative volume change) and the tensile regions (the positive volume
change). The elastic energy density can be decomposed into:

( ) ( )
κ κ μ( ) ( ) =

( )
+

( )
+ ( )⋅ ( ) ( )

+ −

e e
e e

e eC u u
u u

u u:
tr

2
tr

2
, 29D D0

2

0

2

where ( ) ( )( ) = ( )+ ⎡⎣ ⎤⎦e eu utr max tr , 0 and ( )( ) =− e utr

( )− ( )⎡⎣ ⎤⎦e umax tr , 0 . Combining Eqs. (24) and (29), we obtain the total
mechanical energy:

∫

∫
∫ ∫ ∫

( ) ( ) ( )

( ) ( )

κ α
κ

κ α
κ

μ Ω
ε

ε Ω

Ω Ωτ

= − + −

+ ⋅ + − + ∇

− ⋅ − ⋅∇ − ⋅
( )

ε
Ω

Ω

Ω Ω Ω

+ −

∂

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠F v ve p e p

v e e d
G v

v d

dS p vd d

u u I u I

u u

u u f u

,
1
2

tr
3

tr
3

3
8

1

30

D D
c

0

2

0

2

2 2

N

and the energy minimization problem (Eq. (12)) becomes at any given
time step i

( )

≤ ≤ ≤ ( )

ε

−
⎪

⎧⎨
⎩

F v

v v

u

u

inf ,

kinematicallyadmissible
0 1 31i 1

2.4. Numerical implementation of variational hydraulic-fracture

Coupling with a reservoir simulator is achieved through variable
exchanges at each time step. From the reservoir simulator, a pore-
pressure field is provided to the variational hydraulic-fracture si-
mulator, which seeks the minimization of the total energy func-
tional (Eq. (30)). Given the pressure field, the variational hydraulic-
fracture simulator solves for u and v and then sends multipliers of
the permeability to the reservoir simulator. We follow the approach
of Bourdin et al.22,23 At any given time step i, alternate minimization
with respect to u given v and p, constrained minimization with
respect to v, given u and p, and computation of the pressure p are
performed. This process is repeated until p until the convergence
criteria δ‖ − ‖ <−v vl l
v

1 and δ‖ − ‖ <−p pl l
p

1 , where δv and δp are the
tolerance for v and p respectively are met.

In our implementation, u and v are discretized using bilinear
quadrilateral finite elements. The minimization of the total energy
with respect to u is achieved through a Newton algorithm and that
with respect to v is formulated as a variational inequality problem.
Both parallel solvers are provided by PETSc.39,40

Accounting for the fracture system in the reservoir simulator is
achieved through permeability multipliers. For the sake of simplicity,
consider a porous mediumwith porosity φ occupied by a single-phase
fluid with density ρ, a reservoir simulator solves a mass balance:

( )φρ ρ∂
∂

( ) = − ∇⋅ + ( )t
qU 32

where q is the source term and the fluid velocity U is given by

( )
μ

γ= − ⋅ ∇ − ∇
( )

k
p DU

K
,

33
mult

where kmult is the permeability multiplier, K is the permeability tensor,
μ is the viscosity, γ is the density gradient, and D is the depth. The
permeability multiplier is a scalar value and can be computed as a
function of both u and v. For this study, it is simply associated with v
using a step function,

=
<

( )
⎪

⎪⎧⎨
⎩k

k k v v/ , for

1, otherwise 34
mult

f m th

where kf and km are the permeability of fracture and matrix respec-
tively, and vth is a threshold value for v.

In the numerical simulations below, we used an in-house re-
servoir simulator, and the permeability multipliers are updated at
each iteration of the reservoir simulator's Newton algorithm. This
requires only minimal changes to the reservoir simulator: after
each iteration of the Newton solver, the pressure is sent to the
phase-field fracture code, and the permeability multipliers are
received. Additionally, the convergence criteria were altered in
order to communicate to the reservoir simulator that mechanical
equilibrium has been achieved. The algorithm used to solve the
three-field (u,v, and p) for is shown in Algorithm 1.

Algorithm 1. : Three-field problem.

= = = =Set p v t iu, 0, 1, 0, 00 0 0 0

Repeat

← + ← =−i i t t j1, , 0i i 1
← −p pi i 1
← −v vi i 1
← −u ui i 1

Repeat

← +j j 1

Compute u j
i by minimizing (Eq. (30)) with respect to u

given −pj
i

1 and −vj
i

1.

Compute vj
i by minimizing (Eq. (30)) with respect to v

given −pj
i

1 and u j
i .

Compute kmult j
i

, using (Eq. (34)).

Update pj
i from −pj

i
1 by running a single Newton iteration of

the reservoir simulator.
Until δ‖ − ‖ <−v vl l

v
1 and δ‖ − ‖ <−p pl l

p
1 in addition to other

reservoir simulator criteria.
Until =t Ti .



Fig. 2. (a) Example computation domain for 2D. A phase field function profile is shownwhere 0 (blue color) represents fracture and 1 (red color) for intact rock. The domain
is discretized with 100�100�1 elements. (b) Propagated fracture represented by the phase field function at injected volume of 5.6 bbl. (c) Fracture propagation after 46.4
bbl of injection.
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3. Numerical testing of the coupled model

Since the coupling between the fluid flow and fracture propa-
gation in this study is achieved through an approximated per-
meability function rather than cubic law, exact comparison of
fracture propagation behavior is not viable with existing closed
form solution where the fracture permeability is considered
infinite41 or a function of fracture width using Reynold's lubrica-
tion theory.42–46 Therefore, the coupled model is only “tested”
against the theoretical critical pressure at the onset of fracture
propagation. As the implementation is done in 3D, all 2D examples
in the followings are run with a single layer 3D domain.

For a 2D test in plane stress state, a single pre-exiting fracture
with length l2 o in the =x 0 plane in an infinite elastic media is
considered. For the internally pressurized fracture, the opening for
− ≤ ≤l y lo o is given by Sneddon and Lowengrub41 as

( ) =
′

−
( )

+
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟u y

pl
E

y
l

0,
2

1
35

o

o

2

2

1/2

where ′E is the plane strain Young's modulus and ( )ν′ = −E E/ 1 2 .

Since ( ) ( )=+ −u y u y0, 0, , the fracture volume is π= ′V pl E2 /o
2 and

the strain energy Eb is

π
= − = −

′ ( )E pV
l p
E

1
2 36b

o
2 2

Given the fracture toughnessGc , the propagation pressure pc can
be obtained from the Griffith's criteria (−∂ ∂ =E l G/ 2b o c). Therefore,
the critical pressure for fracture propagation is

π
=

′
( )

⎛
⎝⎜

⎞
⎠⎟p

E G
l 37c

c

o

1/2

In 3D, a penny-shape fracture with the radius ro embedded in
an infinite elastic media is considered. Similarly, the displacement
field for the internally pressurized fracture from41 is:

( )
π

=
′

−
( )

+
⎡

⎣
⎢
⎢

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦
⎥
⎥u r

pr
E

r
r

, 0
4

1
38

o

o

2 1/2

where = +r x y2 2 . Thus the fracture volume is

( )∫ π= − = ′
Ω

+ −V u u dr r p E16 /3o
3 and the strain energy is similarly

= −
′ ( )E

r p
E

8
3 39b
o

3 2
The criticality of the strain energy is again given at −∂ ∂ =E A G/b c

where A is the area of the fracture, π=A ro
2. Therefore, the pro-

pagation pressure for the penny-shape fracture is

π
=

′
( )

⎛
⎝⎜

⎞
⎠⎟p

E G
r4 40c
c

o

1/2

When in-situ stresses are considered, the propagation pressure
for a fracture orthogonal to the minimum stress is given as

σ= + ( )p p 41cpropagation min

In the following examples, various cases of in-situ stress (iso-
tropic) were tested. All the computations were performed with
single phase (water), and no thermal effects were included. In all
the computations, a rock formation with the fracture toughness of
40 psi-ft, the Young's modulus of 1e6 psi, the poisson's ratio of 0.0,
the Biot's coefficient of 1.0, the pore-pressure of 8000 psi, the
porosity of 0.1, and the matrix permeability of 0.01 md is con-
sidered. The permeability multiplier (Eq. (34)) is set at 1e4.

For 2D examples, we considered a domain of 800 ft by 800 ft
with a pre-existing fracture with length of 48 ft in the middle
(Fig. 2a). Injection is a line source along the pre-existing fracture
with the injection rate of 50 bpm. Fig. 2a shows the profile of the
phase field variable v, where =v 0 (red) represents fracture and

=v 1 (blue) for intact rock. As the fracture is pressurized and the
pressure reaches the critical propagation pressure, the fracture
propagation takes place. Fig. 2b shows a propagated fracture after
5.6 bbl of injection with the in-situ stresses of 8300 psi. As can be
seen in Fig. 2b, the propagation of the fracture is traced by the
phase field function. The pressure field at the same time step is
shown in Fig. 3. Despite the tight permeability of the formation
(0.01 md), leak-off of fluids to the formation still can be observed
and the pressure field depicts an elliptic profile as the more fluid
leaks off closer to the injection well.

For 3D examples, a domain of 800 ft�800 ft�800 ft and dis-
cretization of 50�50�50 with a horizontal penny-shape fracture
with radius of 20 ft in the center is considered. The initial profile of
fracture field (v) in the xy plane (z¼400 ft) is shown in Fig. 4a. An
injection source is placed in the center of the penny-shape fracture
at the rate of 50 bpm, and the in-situ stresses are isotropic at
8300 psi. As the size of element is 16 ft while the initial radius of
fracture is 20 ft, the element resolution may look too coarse to
capture fracture propagation. Our previous study in impermeable
rock formations24 shows that the fracture volume can be retrieved
from the phase field variable and that it approaches to the theo-
retical value as the element size decreases. The fracture



Fig. 3. Pressure profile at injected volume of 5.6 bbl.

Table 1
Fracture propagation pressure comparison.

2D

In-Situ stress [psi] Theory [psi] Simulation [psi]
8300 9192 9214
8500 9392 9594
8700 9592 9958
9000 9892 10,474

3D
In-Situ stress [psi] Theory [psi] Simulation [psi]
8300 9834 10,416
8500 10,034 11,138
8700 10,234 11,868
9000 10,534 12,842
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propagation after 7835 bbl of injection is shown in Fig. 4b. Despite
the coarse initial “penny-shape” due to the element resolution, the
fracture propagated symmetrically on the initial xy plane in 3D
space and maintained a clean penny shape.

In both the 2D and 3D examples, various in-situ stress cases
were imposed and the simulated fracture propagation pressures
are compared against the theoretical ones in Table 1. The higher
the in-situ stress, the higher pressure is required to propagate the
fracture which leads to more leak-off to the formation and a
greater pressure gradient within the fracture. However, the closed
form solution is based on the assumptions of no-leak off to the
formation and constant pressure inside the fracture. Therefore, the
deviation from the theoretical value becomes larger when in-situ
stresses are higher. Furthermore, leak-off fluids will pressurize the
formation and subsequently increase the total stresses in the for-
mation from the in-situ condition. Thus, a higher pressure is re-
quired to propagate the fracture than the solutions that do not
consider the poro-elastic effects. Nevertheless, despite the sim-
plistic approximation of permeability multiplier as a function of v,
Fig. 4. (a) Example computation domain for 3D. A phase field function profile for an initi
with 50�50�50 elements. (b) Fracture propagation in 3D test example after 7835 bbl
the test results are reasonably close to the closed form solutions.
Lastly from the test example case, a late stage of the 2D fracture

propagation case is shown in Fig. 2c to highlight one of the unique
capabilities of the methodology. It can be seen that the line frac-
ture reached to the domain boundaries, branched, and then con-
tinued to propagate along the domain boundaries. This propaga-
tion itself is affected by the domain boundary and the fracture was
not given a choice to grow straight. However, it demonstrates the
methodology's capability to simulate branching fracture and also
implies what might happen to a fracture at layer boundaries with
significant mechanical property difference (e.g. sand-shale). This
pattern of fracture propagation is also known as “T-shape fracture”.
4. Interaction with natural (pre-existing) fractures

In this section, we demonstrate the methodology's capabilities
of simulating hydraulic fracturing with the presence of natural
(pre-existing) fractures under in-situ stresses. We will show
computation of hydraulic fracturing interaction with pre-existing
natural fractures both in 2D and 3D settings.
al horizontal penny-shape fracture is shown on z¼400 ft. The domain is discretized
of injection.
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4.1. 2D example

Since hydraulic fracturing is conducted in a subsurface en-
vironment where in-situ stresses are imposed, almost all pre-ex-
isting fractures principally experience compressive stresses. Thus,
treatment of pre-existing fracture interpenetration plays a sig-
nificant role in the simulation of hydraulic fracturing. Before we
study hydraulic fracturing interaction with pre-existing fractures
in details, we will firstly show the impacts of the unilateral contact
condition using a 2D example. Fig. 5 shows a first example with a
line oblique fracture located 200 ft away from the injection source
in 2D. All the properties are the same as the 2D examples in the
previous section except that anisotropic in-situ stress condition is
considered (stresses in x- and y-direction are 8500 psi and
8700 psi respectively). Also, note that the same structured regular
quadratic mesh is used in these examples. With the phase field
methodology, fractures not aligned with the mesh can be easily
represented by assigning proper phase field values to each of the
node without a need of re-gridding. Similarly to the previous section,
water is injected at 50 bpm from the middle fracture as shown in Fig. 5.
In all the test examples with a single fracture, the mode of the fracture
propagation is mode-I (tensile) forced by elevated pore-pressure.
Therefore, the unilateral contact condition in the regularized energy
formation is not crucial. However, we will demonstrate its significance
with the presence of natural fractures.

Firstly, a simulation was conducted without the unilateral
contact condition. The initial displacement fields are shown in
Fig. 6. From the initial displacement field, interpenetration of the
pre-exiting fractures can be observed. Whereas this issue is miti-
gated immediately after the start of injection in the center fracture
as it is pressurized, this is not the case for the oblique pre-existing
fracture where the hydraulic support from the fluid, i.e. the pore-
pressure inside the fracture is smaller than the surrounding
compressive normal stresses. The evolution of the fracture pro-
pagation is shown in Fig. 7. It can be observed in Fig. 7 that the
hydraulic fracture first propagates away from the pre-existing
fracture (Fig. 7a) and turns to “avoid” the pre-existing fracture
(Fig. 7b). The reason for this avoidance is actually encouraged by
the initial displacement field imposed by the interpenetration at
the oblique fracture. Since the vicinity formation is sucked into the
oblique pre-existing fracture, part of the rock is “stretched” and
creates a preferred fracture path. In the beginning (Fig. 7a), how-
ever, mode-I fracture propagation away from the pre-existing
fracture (negative y-direction) is still less expensive than turning
mixed-mode fracture growth (also remember that the stress in
y-direction is higher than the x-direction). Thus, the hydraulic
Fig. 5. An example with a pre-existing fracture in 2D.
fracture propagates in mode-I in the negative y-direction until the
turning mix-mode fracture energy becomes less costly. The angle
of the turning fracture constantly changes as it seeks less ex-
pensive propagation paths in the competition between the stret-
ches imposed by the pre-exiting fracture and the mixed-mode
propagation (Fig. 7c). The angle becomes parallel to y-direction
again by the time the hydraulic fracture grows around the stret-
ched region and propagates further towards the upper boundary
(positive y-direction) as can be seen in Fig. 7d. Discerning eyes
may have caught a small kink in the almost straight hydraulic
fracture propagation in the lower y-direction. It is caused by the
compressed formation induced by the turning part of the fracture
above and is nudged away a little bit in negative x direction. It
should be emphasized that the fracture had to turn its propagating
direction continuously seeking for optimal paths throughout the
simulation.

The pressure profiles at each stage of fracture propagations in
Fig. 7 are shown in Fig. 8. The pore-pressure profiles show that the
fluid follows the fracture propagation path and more fluid leak-off
(higher pressure) closer to the injection source. Also, the pressure
is the highest at the injection source and gradually decreases to-
ward the fracture tips. Thus, the fracture propagation is not only
influenced by the geometric factors but also by the pressure gra-
dient within the fracture. This phenomenon is especially notice-
able in Fig. 8c as the pressure at the upper fracture tip (turning
part) is clearly lower than the pressure at the lower fracture tip.
This corresponds to the time the hydraulic fracture starts propa-
gating both upwards and downwards, which indicates different
fracture propagation pressures at each tip of the fracture.

The exact same simulation was carried out with the unilateral
contact condition. Fig. 9 shows the displacement fields at the in-
itial state. As the unilateral contact condition does not allow in-
terpenetration of fracture, the impact of the natural fracture onto
the initial displacement fields is nearly negligible. Only small
disturbances in the vicinity due to the shear slippage on the pre-
existing fracture can be observed. Fig. 10 and Fig. 11 show propa-
gation of fracture and evolution of the pore-pressures as the water
is injected. Unlike the previous example without the unilateral
contact condition, the propagation direction is not deviated by the
presence of the existing fracture since no interpenetration is al-
lowed. The fracture propagates along the initial geometry which is
aligned with the maximum stress direction (Fig. 10a). It grows
straight into the existing fracture (Fig. 10b) and merges (Fig. 10c).
The pressure profile evolution simply follows the fracture until the
merger with the pre-existing fracture. Since the permeability in
the pre-existing fracture is high, the hydraulic fracture experiences
sudden drop in the pressure when it hits the pre-existing fracture.
The pressure needs to recover to promote further propagation and
fracture propagation is stalled in the meantime. When the pres-
sure reaches to a propagation pressure, the fracture propagation
resumes towards the bottom of the domain (negative y-direction)
while the pressure in the existing fracture builds up (Fig. 11c).
Once the pressure in the existing fracture reaches to a critical point
(Fig. 11d), propagation from the existing fracture takes off, how-
ever, from a different point from the merging point or the fracture
tips (Fig. 10d). In this case, the optimal path was chosen to be
somewhere between the merging point and the fracture tip given
the geometry, the in-situ stresses, the pore-pressure, and the
boundary effect.c Comparing Fig. 7d to Fig. 10d, the impact of the
unilateral contact condition is obvious in the presence of pre-ex-
isting fracture(s).
c In order to investigate detailed hydraulic fracture crossing mechanisms,
specially designed studies in a more controlled setting (e.g. far boundaries) would
be necessary. Interested readers on this subject are referred to Gu et al. 8 for
example.



Fig. 6. The initial displacement fields with a pre-existing fracture without unilateral contact, (a) in x-direction and (b) y-direction.
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4.2. 3D example

2D simulation of hydraulic fracturing is often preferred because of its
ease of model/mesh preparation and less computational expense.
However, the main assumption for 2D fracture is plane strain (also
Fig. 7. Fracture propagation with the pre-existing fracture at injection
known as KGD fracture) and is a reasonable assumption only in special
circumstances in a flat layer system where a short and wide vertical
fracture propagates throughout the layer.47 In this example, we repeat a
similar experiment to the previous 2D examples and investigate the “3D
effects” on hydraulic fracture propagation with pre-existing fractures.
volume of: (a) 0.54 bbl, (b) 0.86 bbl, (c) 1.13 bbl, and (d) 3.54 bbl.



Fig. 8. Pore-pressure evolution with the pre-existing fracture at injection volume of: (a) 0.54 bbl, (b) 0.86 bbl, (c) 1.13 bbl, and (d) 3.54 bbl.
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All the properties considered in 3D examples are identical to
the examples in the code testing. For in-situ stresses, 8700 psi,
8500 psi, and 8700 psi are considered in x, y, and z direction re-
spectively, and the computation axis is aligned with principle
stress direction. Fig. 12 shows initial fractures in this 3D example.
Fig. 9. The initial displacement fields with a pre-existing fracture with th
An oblique penny-shaped fracture with 80 ft radius, and the strike
and dip is 90° and 60° from y-axis and z-axis respectively, is lo-
cated 160 ft above the hydraulic fracture with radius of 20 ft where
injection takes place. Again in this example, a regular structured
mesh is used and the oblique fracture, which does not conform the
e unilateral contact condition, (a) in x-direction and (b) y-direction.



Fig. 10. Fracture propagation with the pre-existing fracture with the unilateral contact condition at injection volume of: (a) 0.86 bbl, (b) 1.46 bbl, (c) 2.71 bbl, and (d) 4.19 bbl.
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mesh, is represented using the phase-field variable. Fig. 13 shows
evolution of the fractures with the injection.

The observed fracture behavior in 3D is very similar at least in
the beginning to the 2D case where a plane strain condition is
assumed. It grows and merges with the pre-existing fracture. The
hydraulic fracture growth does not exhibit exacerbated asymmetry
until it hits the pre-existing fracture (Fig. 13a). Once the fractures
merge, the hydraulic fracture growth is hampered in the direction
bypassing the pre-existing fracture, and the hydraulic fracture
grows in the other directions on x-z plane (negative z-direction),
orthogonal to the minimum stress (Fig. 13b). These observations
are very similar to the 2D example. However, instead of crossing
the pre-existing fracture, the hydraulic fracture grows further in
x-direction without crossing the pre-existing fracture (Fig. 13c).
We can see that the pre-existing fracture almost behaves as a
barrier for the hydraulic fracture further growth. Despite the
blockage by the pre-existing fracture, two growing fracture fronts
eventually merge and create a connected fracture plane with a
small curvature right above the pre-existing fracture (Fig. 13d). If
we were to look at only the final fracture geometry, it would seem
as if the hydraulic fracture crossed the pre-existing fracture, but
the actual process to arrive at this result depicts a very different
story. This result indicates the need to monitor real-time fracture
growth in experiments to study fracture interaction. Note that the
volume of injection to achieve this fracture propagation resulted in
unrealistic amount for hydraulic fracturing process. This is partly
due to the large leak off volume and the low viscosity of water in
order to achieve the required pressures for fracture propagation.

As a last example, we will demonstrate the model's capability
of handling multiple fractures without the need to implement
further fracture propagation criteria or special computational
elements. Fig. 14 shows an initial setting of the computation. Si-
milarly to the last 3D example, water is injected through a small
initial fracture in the middle. In addition to the fracture above the
injection point, three more fractures are considered with the strike
and dip of 120° and 70° (below), 110° and 20° (near x), and 150°
and 40° (far x) respectively, and all are distanced by 160 ft from
the injection point (measured from the center of the disk to the
center). All other properties including the in-situ stresses are the
same as the previous example. Evolution of the fractures painted
with pressure is shown in Fig. 15. The hydraulic fracture firstly
merges with a fracture located far x-direction (Fig. 15a) as the tip
of this far x-direction fracture is the closest. Until it merges with
the pre-existing fracture, the hydraulic fracture is “attracted” to
grow towards it. However, once they merge, fracture growth in
that direction is curbed and is preferred in other directions. In this
case, the hydraulic fracture decides to grow downward next until
it finds another pre-existing fracture (Fig. 15b). Following another
merger with the pre-existing fracture in low z-direction, it starts
to propagate towards the one in near x-direction (Fig. 15c). Lastly,
after coalescing with the near x fracture, the hydraulic fracture
propagates in the direction away from all the merged fractures,



Fig. 11. Pore-pressure evolution with the pre-existing fracture with the unilateral contact condition at injection volume of: (a) 0.86 bbl, (b) 1.46 bbl, (c) 2.71 bbl, and (d) 4.19
bbl.

Fig. 12. An example with a pre-existing fracture in 3D.

d
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which is upward. Once all the fractures are merged, its dominant
propagation direction becomes the near x fracture on the same
plane (Fig. 15d). The choice for this direction is favored because the
near x fracture has the least dip from the plane orthogonal to the
least stress and requires the least energy to propagate.
5. Conclusion

We have extended the phase field fracture model, which was
originally developed for dry fracture, to hydraulic fracturing by
including: 1) hydraulic force applied on the fracture lips, 2) por-
oelasticity in the regularized total energy formulation, and 3) in-
situ stresses in the rock formation. The developed fracture model
is iteratively coupled to an external reservoir simulator, which
takes permeability multipliers from the fracture model and pro-
vides pressure field in return. We have demonstrated that a cou-
pled model with capabilities of predicting complex fracture be-
haviors including turning, merging, and initiation in 3D can be
built with minimum changes to an existing reservoir simulator. As
commercial scale reservoir simulators keep evolving to satisfy
critical requirement for specific problems (e.g. produced water,
polymer or steam injection, etc.), a capability to couple to an ex-
isting reservoir simulator provides practical flexibility. However, it
is not difficult to imagine that this direct iteration scheme without
Jacobian matrices apparently pauses a convergence challenge.
Even though some timestep will require thousands of nonlinear
iterations and a small time increment for convergence, all the
computations shown in the examples were carried out within a
practical timed with moderate parallelization (up to 100 CPUs).
The solution depends on not only the size of the problem but also the type.



Fig. 13. Fracture propagation with the pre-existing fracture at injection volume of: (a) 1,047,308 bbl, (b) 2,766,104 bbl, (c) 3,106,301 bbl, and (d) 3,113,426 bbl.

Fig. 14. An example with pre-existing fractures in 3D.
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Also, our coupling is achieved through only permeability
(footnote continued)
For example, if a minimization problem is simply to solve a line crack in mode-I
opening, it takes much less time than more complex minimization problem with
multiple mix-mode fractures merging each other. As a general run , 2D examples
were computed within hours using up to 50 CPUs and 3D examples within days
(not weeks) using up to 100 CPUs.
multiplier as a function of the phase field variable that is passed to
a reservoir simulator, which makes coupling with any other si-
mulators trivial.

The proposed solution to the three-field problem was tested
against the closed form solutions in 2D and 3D. Since fracture flow
is not modeled using the lubrication theory, fracture behavior after
the onset of fracture propagation is not compared. Despite its
simplicity, fracture propagation pressures are compared reason-
ably with the ones obtained from a closed form solution. As for
phase field fracture modeling application in hydraulic fracturing,
all the published studies to date compared only static fracture
opening profile,25–30 and no attempts have been made to predict
the critical propagation pressure or the fracture growth behavior
after its onset except for the study by Bourdin et al.24 done in an
impermeable formation.

Furthermore, through the examples, it has been demonstrated
that the variational fracture's capabilities to simulate multiple
number of fractures in arbitrary paths and fracture merging, in
which other approaches such as XFEM or cohesive element need
yet to overcome the difficulties. For future studies in the phase
field hydraulic fracture modeling, the methodology still requires a
robust coupling with fluid flow through the phase field variable,
an efficient and accurate formulation to estimate fracture width to
be more specific. Then, the approach needs to be validated against
available closed form solutions in different fracture propagation
regimes (e.g. toughness, viscosity, or storage dominated)43–46



Fig. 15. Fracture propagation with the pre-existing fracture at injection volume of: (a) 94,308 bbl, (b) 3,624,679 bbl, (c) 4,522,504 bbl, and (d) 5,057,051 bbl.
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especially a fluid lag (negative pressure) at the fracture tip.43
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