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PART II

Finite Difference Methods for Differential

Equations
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BOUNDARY VALUE PROBLEMS (I)
• Solving aTWO–POINT BOUNDARY VALUE PROBLEM with DIRICHLET

BOUNDARY CONDITIONS :

d2y
dx2 = g for x ∈ (0,2π)

y(0) = y(2π) = 0

• Finite–difference approximation:

– Second–order center difference formula for the interior nodes:

y j+1−2y j + y j−1

h2 = g j for j = 1, . . . ,N

whereh = 2π
N+1 andx j = jh

– Endpoint nodes:
y0 = 0 =⇒ y2−2y1 = h2g1

yN+1 = 0 =⇒−2yN + yN−1 = h2gN

– Tridiagonal algebraic system — solved very efficiently withthe

THOMAS ALGORITHM (a version of the Gaussian elimination)
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BOUNDARY VALUE PROBLEMS (II)
• Solving aTWO–POINT BOUNDARY VALUE PROBLEM with NEUMANN

BOUNDARY CONDITIONS :

d2y
dx2 = g for x ∈ (0,2π)

dy
dx

(0) =
dy
dx

(2π) = 0

• Finite–difference approximation:

– Second–order center difference formula for the interior nodes:
y j+1−2y j + y j−1

h2 = g j for j = 1, . . . ,N

– First–order Forward/Backward Difference formulae to re–express
endpoint values: y1− y0

h
= 0 =⇒ y0 = y1

yN+1− yN

h
= 0 =⇒ yN+1 = yN

First–order only —DEGRADED ACCURACY!

– Tridiagonal algebraic system —Is there any problem? Where?
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BOUNDARY VALUE PROBLEMS (III)

• In order to retain theSECOND–ORDER ACCURACY in the approximation of
the Neumann problem need to use higher-order formulae at endpoints, e.g.

y′0 =
−y2 +4y1−3y0

2h
= 0 =⇒ y0 =

1
3
(−y2 +4y1)

• The first row thus becomes

2
3

y2−
2
3

y1 = h2g1

SECOND–ORDER ACCURACY RECOVERED!
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BOUNDARY VALUE PROBLEMS (IV)
• COMPACT STENCILS — stencils based onthreegrid points (in every

direction) only:{x j+1,x j,x j−1} at the j− th node

• Is is possible to obtain higher (then second) order of accuracy on compact

stencils? —YES!

• Consider the central difference approximation to the equation d2y
dy2 = g

y j+1−2y j + y j−1

h2 −
h2

12
y(iv)

j +O(h4) = g j

• Re-express the error termh
2

12y(iv)
j using the equation in question:

h2

12
y(iv)

j =
h2

12
g′′j =

h2

12

[

g j+1−2g j +g j−1

h2 −
h2

12
g(iv)

j +O(h4)

]

• Inserting into the original finite–difference equation:

y j+1−2y j + y j−1

h2 = g j +
g j+1−2g j +g j−1

12
+O(h4)

• Slight modification of the RHS=⇒ FOURTH—ORDER ACCURACY!!!
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BOUNDARY VALUE PROBLEMS (V)

• COMPACT FINITE DIFFERENCESCHEMES —

– ADVANTAGES:

∗ Increased accuracy on compact grids

– DRAWBACKS:

∗ need to be tailored to the specific equation solved

∗ can get fairly complicated for more complex equations
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INITIAL VALUE PROBLEMS —
GENERAL REMARKS

• Consider the followingCAUCHY PROBLEM :

dy
dt

= f (y, t) with y(t0) = y0

The independent variablet is usually referred to asTIME .

• Equations with higher–order derivatives can be reduced to systems of

first–order equations

• Generalizations to systems of ODEs straightforward

• When the RHS function does not depend ony, i.e., f (y,t) = f (t),

solution obtained via aQUADRATURE

• Assume uniform time–steps (h is constant)
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INITIAL VALUE PROBLEMS —
CHARACTERIZATION OF INTEGRATION

METHODS

• ACCURACY — unlike in the Boundary Value Problems, there is noterminal
conditionand approximation errors may accumulate in time; consequently, a
relevant characterization of accuracy is provided by theGLOBAL ERROR

(global error) = (local error)× (# of time steps),

rather than theLOCAL ERROR.

• STABILITY — unlike in the Boundary Value Problems, where boundedness

of the solution at final time is enforced via a suitableterminal condition, in

Initial Value Problems there is a priori no guarantee that the solution will

remain bounded.
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INITIAL VALUE PROBLEMS —
MODEL PROBLEM

• STABILITY of various numerical schemes is usually analyzed by applying
these schemes to the followingLINEAR MODEL :

dy
dt

= λy = (λr + iλi)y with y(t0) = y0,

which is stable whenλr <= 0 .

• EXACT SOLUTION:y(t) = y0eλt =

(

1+λh+
λ2h2

2
+

λ3h3

6
+ . . .

)

y0

• MOTIVATION — consider the followingADVECTION–DIFFUSIONPDE:

∂u
∂t

+ c
∂u
∂x

−a
∂2u
∂x2 = 0

Taking Fourier transform yields (k is the wavenumber):

dûk

dt
+ cik ûk +ak2 ûk = 0

where
– the real termak2 ûk representsDIFFUSION

– the imaginary termc ik ûk representsADVECTION
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I)

• Consider a Taylor series expansion

y(tn+1) = y(tn)+hy′(tn)+
h2

2
y′′(tn)+ . . .

Using the ODE we obtain

y′ =
dy
dt

= f

y′′ =
dy′

dt
=

d f
dt

= ft + f fy

• Neglecting terms proportional to second and higher powers of h yields the
EXPLICIT EULER METHOD

yn+1 = yn +h f (yn, tn)

• Retaining higher–order terms is inconvenient, as it requires differentiation of

f and does not lead to schemes with desirable stability properties.
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (II)

• LOCAL ERRORanalysis:

yn+1 = (1+λh)yn +[O(h2)]

• GLOBAL ERRORanalysis:

(global error) = Ch2 ·N = Ch2 ·
T
h

= C′h

Thus, the scheme is

– locally second–orderaccurate

– globally (over the interval[t0,t0 +Nh]) first–orderaccurate
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (III)

• Stability (for the model problem)

yn+1 = yn +λhyn = (1+λh)yn

Thus, the solution aftern time steps

yn = (1+λh)ny0 , σny0 =⇒ σ = 1+λh

For largen, the numerical solution remains stable iff

|σ| ≤ 1 =⇒ (1+λrh)2 +(λih)2 ≤ 1

– CONDITIONALLY STABLE for realλ

– UNSTABLE for imaginaryλ



Finite Differences for Differential Equations 40

INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (I)

• IMPLICIT SCHEMES — based on approximation of the RHS that involve

f (yn+1,t), whereyn+1 is the unknown to be determined

• IMPLICIT EULER SCHEME — obtained by neglecting second and
higher–order terms in the expansion:

y(tn) = y(tn+1)−hy′(tn+1)+
h2

2
y′′(tn+1)− . . .

Upon substitutiondy
dt

∣

∣

∣

tn+1

= f (yn+1,tn+1) we obtain

yn+1 = yn +h f (yn+1, tn+1)

The scheme is

– locally SECOND–ORDERaccurate

– globally (over the interval[t0,t0 +Nh]) FIRST–ORDERaccurate
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INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (II)

• Stability (for the model problem):

yn+1 = yn +λhyn+1 =⇒ yn+1 = (1−λh)−1yn

yn+1 =

(

1
1−λh

)n

y0 , σny0 =⇒ σ =
1

1−λh

|σ| ≤ 1 =⇒ (1−λrh)2 +(λih)2 ≥ 1

Implicit Euler scheme is thus stable for

– all stable model problems

– most unstable model problems

• REMARK : When solvingsystems of ODEsof the formy = A(t)y, each

implicit step requires solution of an algebraic system:yn+1 = (I −hA)−1yn

• Implicit schemes are generally hard to implement fornonlinear problems
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INITIAL VALUE PROBLEMS —
CRANK–NICHOLSON SCHEME (I)

• Obtained by approximating the formal solution of the ODE
yn+1 = yn +

R tn+1
tn f (y,t)dt using the TRAPEZOIDAL QUADRATURE:

yn+1 = yn +
h
2

[ f (yn, tn)+ f (yn+1, tn+1)]

The scheme is

– locally THIRD–ORDERaccurate

– globally (over the interval[t0,t0 +Nh]) SECOND–ORDER accurate

• Stability (for the model problem):

yn+1 = yn +
λh
2

(yn+1 + yn) =⇒ yn+1 =

(

1+ λh
2

1− λh
2

)

yn

yn+1 =

(

1+ λh
2

1− λh
2

)n

y0 , σny0 =⇒ σ =
1+ λh

2

1− λh
2

|σ| ≤ 1 =⇒ ℜ(λh) ≤ 0

STABLE for all model ODEs with stable solutions
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INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (I)

• LEAPFROGas an example of aTWO–STEP METHOD:

yn+1 = yn−1 +2hλyn

• CHARACTERISTIC EQUATIONfor theAMPLIFICATION FACTOR (yn = σny0)

σ2−2hλσ−1 = 0

where roots give the amplification factors:

σ1 = λh+
√

1+λ2h2 ≃ 1+λh+
λ2h2

2
+ . . . = eλh +O(h3)

σ2 = λh−
√

1+λ2h2 ≃−(1−λh+
λ2h2

2
− . . .) = −e−λh +O(h3)

Thus, the scheme is

– locally THIRD–ORDERaccurate

– globally (over the interval[t0,t0 +Nh]) SECOND–ORDERaccurate
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INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (II)

• Stability for diffusion problems (λ = λr ):

σ1 = λh+
√

1+λ2
r h2 > 1 for all h > 0

Thus the scheme isUNCONDITIONALLY UNSTABLE for diffusion problems!

• Stability for advection problems (λ = iλi ):

σ2
1/2 = 1 (!!!) for h <

1
|λi|

Thus, the scheme isCONDITIONALLY UNSTABLE andNON–DIFFUSIVE for

advection problems!

• QUESTION — analyze dispersive (i.e., related to arg(σ)) errors of the

leapfrog scheme.
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INITIAL VALUE PROBLEMS —
MULTISTEP PROCEDURES

• General form of aMULTISTEP PROCEDURE:
p

∑
j=1

α jyn+ j = h
q

∑
j=1

β j f (yn+ j, tn+ j)

with characteristic polynomials
ξp(z) = αpzp +αp−1zp−1 + · · ·+α0

ζq(z) = βqzq +βq−1zq−1 + · · ·+β0

– if p > q — EXPLICIT SCHEME

– if p ≤ q — IMPLICIT SCHEME

• A (ξ,ζ) –procedure converges uniformly in[a,b], i.e.,

limh→0 maxtn∈[a,b] |yn − y(tn)| = 0 if:

– the following consistency conditions are verified:ξ(1) = 0 and

ξ′(1) = ζ(1) ( CONSISTENCY CONDITION)

– all roots of the polynomialξ(z) are such that|zi| ≤ 1 and the roots with

|zk| = 1 are simple (STABILITY CONDITION )
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INITIAL VALUE PROBLEMS —
RUNGE–KUTTA METHODS (I)

• General form of aFRACTIONAL STEP METHOD:
yn+1 = yn + γ1 hk1 + γ2 hk2 + γ3 hk3 + . . .

where

k1 = f (yn,tn)

k2 = f (yn +β1hk1,tn +α1h)

k3 = f (yn +β2hk1 +β3hk2,tn +α2h)

.

.

.

• Chooseγi, βi andαi to match as many expansion coefficients as possible in

y(tn+1) = y(tn)+hy′(tn)+
h2

2
y′′(tn)+

h3

6
y′′′(tn) . . .

y′ = f

y′′ = ft + f fy

y′′′ = ftt + ft fy2 f fyt + f 2 fyt + f 2 fyy

• Runge—Kutta methods areSELF–STARTING with fairly good stability and

accuracy properties.
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INITIAL VALUE PROBLEMS —
RUNGE–KUTTA METHODS (II)

• RK4 — an ODE “workhorse”:

yn+1 = yn +
h
6

k1 +
h
3
(k2 + k3)+

h
6

k4

k1 = f (yn,tn) k2 = f (yn +
h
2

k1,tn+1/2)

k3 = f (yn +
h
2

k2,tn+1/2) k4 = f (yn +hk3,tn+1)

• The amplification factor:

σ = 1+λh+
λ2h2

2
+

λ3h3

6
+

λ4h4

24

Thus, stability iff|σ| ≤ 1

• ACCURACY:
eλh = σ+O(h5)

Thus, the scheme is

– locally FIFTH–ORDERaccurate

– globally (over the interval[t0,t0 +Nh]) FOURTH–ORDERaccurate
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INITIAL VALUE PROBLEMS —
RUNGE’ S PRINCIPLE

• Let (k +1) be the order of the local truncation error; denoteY (t,h) an
approximation of the exact solutiony(t) computed with the step sizeh; then
at t = t0 +2nh:

y(t)−Y (t,h) ≃C 2nhk+1 = C(t − t0)h
k

y(t)−Y (t,2h) ≃C n(2h)k+1 = C(t − t0)2
k hk

Subtracting:
Y (t,2h)−Y (t,h) ≃C(t − t0)(1−2k)hk

Thus, we can obtain an estimate of theABSOLUTE ERRORbased on solution

with two step–sizes only:

y(t)−Y (t,h) ≃
Y (t,h)−Y (t,2h)

2k −1

• Runge’s principle is very useful forADAPTIVE STEP SIZE REFINEMENT
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INITIAL VALUE PROBLEMS —
LAX EQUIVALENCE THEOREMa

• Consider anINITIAL VALUE PROBLEM

du
dt

= Lu with u(t0) = u0

and assume that it is well–posed, i.e., it admits solutions which are unique

and stable

• Consider a numerical method defined by a finite–difference operatorC(h)

such that theapproximatesolution is given by

uh(nh) = C (h)nu0, n = 1,2, . . .

• The above method isCONSISTENTiff C (h)−I
h is a convergent approximation

of the operatorL

• LAX THEOREM — For aCONSISTENT difference methodSTABILITY is

equivalent toCONVERGENCE

aFor a more technical discussion, see $ 5.2 in Atkinson & Han (2001)
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(I)

• Is ACCURACY andSTABILITY all that matters?

• CONSERVATIONPROPERTIES— conservation by the numerical method

(i.e., in the discrete sense) of various invariants the original equation may

possess

– REMARK — conservation properties are particularly relevant for solution

of Hamiltonian / hyperbolic systems

• Example — conservation of the solution norm:

– In the continuous setting (assumeu = |u|eiϕ)

du
dt

= iλiu ⇐⇒















d|u|
dt

= 0 =⇒ |u(t)| = |u0|,

dϕ
dt

= λi,

– In the discrete setting:|uh(nh)| = |uh((n−1)h)| = · · · = |uh(0)|

Necessary and sufficient condition for discrete conservation: ∃h, |σ(h)| = 1
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(II)

• Implicit Euler —

|σ| =
∣

∣

∣

1
1− iλih

∣

∣

∣
=

1
√

1+λ2
i h2

= 1−
1
2

λ2
i h2 + · · · < 1 for all h

The scheme is thusDISSIPATIVE (i.e., not conservative)

• Fourth–Order Runge–Kutta —

|σ| =

∣

∣

∣

∣

∣

1+ iλih−
λ2

i h2

2
− i

λ3
i h3

6
+

λ4
i h4

24

∣

∣

∣

∣

∣

=
1
24

√

576−8λ6
i h6 +λ8

i h8

= 1−
1

144
λ6

i h6 + · · · < 1 for smallh

The scheme is thusDISSIPATIVE (i.e., not conservative)

• Leapfrog — |σ1/2| ≡ 1 for all h < 1
|λi|

The scheme is thusCONSERVATIVE for all time–steps for which it is

stable!!! Leapfrog is an example of aSYMPLECTIC INTEGRATORwhich are

designed to have good conservation properties.
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FINITE DIFFERENCES FORPDES
REVIEW

• Classification of linear PDEs in 2D: consideru : Ω2 → R andA,B,C ∈ R

such that

A
∂2u
∂x2 +B

∂2u
∂x∂y

+C
∂2u
∂y2 + f (x,y,u) = 0

• ELLIPTIC PROBLEMS : B2−4AC < 0

– Poisson equation:
∂2u
∂x2 +

∂2u
∂y2 = g(x,y)

• PARABOLIC PROBLEMS : B2−4AC = 0

– Heat equation:
∂u
∂t

= a

(

∂2u
∂x2 +

∂2u
∂y2

)

+g(x,y)

• HYPERBOLICPROBLEMS : B2−4AC > 0

– Wave equation:
∂2u
∂t2 = a

(

∂2u
∂x2 +

∂2u
∂y2

)

+g(x,y)
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FINITE DIFFERENCES FORPDES
ELLIPTIC PROBLEMS

• See Homework Assignment # 1 ...
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FINITE DIFFERENCES FORPDES

PARABOLIC PROBLEMS ∂u
∂t = ∂2u

∂x2 (I)
• CRANK–NICHOLSONMETHOD (x j = j∆x, j = 1, . . . ,M, t = n∆t,

n = 1, . . . ,N):

– spatial derivative:
(

∂2u
∂x2

)n

j
=

un
j+1−2un

j+un
j−1

(∆x)2 +O((∆x)2)

– time derivative:
(

∂u
∂t

)n+1

j
=

un+1
j −un

j

∆t
+O(∆t) =

1
2

[

(

∂2u
∂x2

)n+1

j
+

(

∂2u
∂x2

)n

j

]

+O((∆t)2)

un+1
j −un

j =
∆t

2(∆x)2

(

un+1
j+1 −2un+1

j +un+1
j−1 +un

j+1−2un
j +un

j−1

)

+O
(

(∆x)2 +(∆t)2)

– thus, definingr = ∆t
(∆x)2 ,we have at every time stepn

−run+1
j+1 +2(1+ r)un+1

j − run+1
j−1 = run

j+1 +2(1− r)un
j + run

j−1

which forUn = [un
1, . . . ,u

n
M ]T can be written as an algebraic system

(2I−A)Un+1 = (2I+A)Un , whereA is atridiagonal matrix
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FINITE DIFFERENCES FORPDES

PARABOLIC PROBLEMS ∂u
∂t = ∂2u

∂x2 (II)
• θ METHOD

– allow for a more general approximation in time of the RHS(θ ∈ [0,1])

(

∂u
∂t

)n+1

j
=

un+1
j −un

j

∆t
+O(∆t) =

1
2

[

θ
(

∂2u
∂x2

)n+1

j
+(1−θ)

(

∂2u
∂x2

)n

j

]

+O(∆t)

– special cases

∗ θ = 0 =⇒ EXPLICIT METHOD: Un+1 = A0Un

∗ θ = 1
2 =⇒ CRANK–NICHOLSON METHOD (see previous slide)

∗ θ = 1 =⇒ IMPLICIT METHOD: A1Un+1 = Un

• Stability:

– TheEXPLICIT SCHEME is STABLE for r = ∆t
2(∆x)2 < 1

2

– TheCRANK–NICHOLSONandIMPLICIT SCHEME areSTABLE for all r
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FINITE DIFFERENCES FORPDES

HYPERBOLIC PROBLEMS ∂2u
∂t2 = ∂2u

∂x2 (I)

• Spatial derivative:
(

∂2u
∂x2

)n

j
=

un
j+1−2un

j+un
j−1

(∆x)2 +O((∆x)2)

• Time derivative:
(

∂2u
∂t2

)n

j
=

un+1
j −2un

j +un−1
j

(∆t)2 +O((∆t)2) =

(

∂2u
∂x2

)n

j
+O((∆t)3)

un+1
j =

(∆t)2

(∆x)2

(

un
j+1 +un

j−1

)

−un−1
j +2

(

1−
(∆t)2

(∆x)2

)

un
j +O

(

(∆x)2 +(∆t)4)

• Stability for (∆t)2

(∆x)2 ≤ 1

• REMARK : need two initial conditions!


