Finite Differences for Differential Equations

PART ||

Finite Difference Methods for Differential
Equations
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Finite Differences for Differential Equations

BOUNDARY VALUE PROBLEMS (I)

e Solving aTWO—POINT BOUNDARY VALUE PROBLEM with DIRICHLET
BOUNDARY CONDITIONS:

d?y
a2 9
y(0) =y(2m) =0

for x € (0,2m)

e Finite—difference approximation:
— Second—-order center difference formula for the intericie®

Yi+1—2Yj +VYj-1
h2

=gjforj=1,...,N

whereh = N+1 andxj = Jh
— Endpoint nodes:

Yo=0 = y>—2y; =hg
YN+l = 0= —2yn +Yn_1 = h%ON

— Tridiagonal algebraic system — solved very efficiently wtitie
THOMAS ALGORITHM (a version of the Gaussian elimination)
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Finite Differences for Differential Equations

BOUNDARY VALUE PROBLEMS (II)

e Solving aTWO—POINT BOUNDARY VALUE PROBLEM with NEUMANN
BOUNDARY CONDITIONS :

d?y _
dx2

dy . dy B
&(0)_&(211)_0

g for x € (0,2m)

e Finite—difference approximation:
— Second-order center difference formula for the intericiem
Yj+1—2Yj +VYj-1

h2
— First—order Forward/Backward Difference formulae to ngsress
endpoint values: Vi —Yo

h

YN+1 — YN
h

First—order only —DEGRADED ACCURACY

=gjforj=1,...,N

=0 = Yo=W1

— Tridiagonal algebraic system —s there any problem? Where?
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Finite Differences for Differential Equations 31

BOUNDARY VALUE PROBLEMS (I11)

e In order to retain theSECOND-ORDER ACCURACY in the approximation of
the Neumann problem need to use higher-order formulae gtoamd, e.g.

—Y2+4y1 — 3Yo
yIOZ Yy Y1 Yl

1
:O _ —
N — Yo

—yo+ 4
3( Yo +4y1)

e The first row thus becomes
2 2

3773

SECOND-ORDER ACCURACY RECOVERED

y1 = h?g;
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BOUNDARY VALUE PROBLEMS (1V)

COMPACT STENCILS — stencils based otreegrid points (in every
direction) only: {Xj+1,Xj,Xj—1} atthej —thnode
Is is possible to obtain higher (then second) order of aayuna compact

stencils? —YES!

Consider the central difference approximation to the eiquag%’ =g

Vitr =2 +Yi-1  h® iy N

Re-express the error te@ygiwusing the equation in question:

—wWY — __q =
21 T T h2 12

W oy _ b, b [91+1—291 +gi-1 Py

—g + O(h4)]

Inserting into the original finite—difference equation:

Yi+1 —2Yj +Yj-1 _ gi+ gj+1—20j +gj-1
h2 : 12

Slight modification of the RHS— FOURTH—ORDER ACCURACM!!

+o(h%)




Finite Differences for Differential Equations

BOUNDARY VALUE PROBLEMS (V)

e COMPACTFINITE DIFFERENCESCHEMES —
— ADVANTAGES:
x Increased accuracy on compact grids
— DRAWBACKS:

« need to be tailored to the specific equation solved
x can get fairly complicated for more complex equations
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Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
GENERAL REMARKS

Consider the followingCAUCHY PROBLEM::

d .
d—i/ = f(y,t) with y(to) =y

The independent variabtas usually referred to asIME .

Equations with higher—order derivatives can be reducegstems of
first—order equations

Generalizations to systems of ODEs straightforward

When the RHS function does not dependypne., f(y,t) = f(t),
solution obtained via QUADRATURE

Assume uniform time—steps(is constan)
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Finite Differences for Differential Equations 35

INITIAL VALUE PROBLEMS —
CHARACTERIZATION OF INTEGRATION
METHODS

e ACCURACY — unlike in the Boundary Value Problems, there istaominal
conditionand approximation errors may accumulate in time; consdtyen
relevant characterization of accuracy is provided bydheBAL ERROR

(global erroj = (local erron x (# of time step§
rather than the OCAL ERROR.

STABILITY — unlike in the Boundary Value Problems, where boundednes
of the solution at final time is enforced via a suitald&grminal condition in
Initial Value Problems there is a priori no guarantee thatgblution will
remain bounded.




Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
MODEL PROBLEM

e STABILITY of various numerical schemes is usually analyzed by applyin
these schemes to the followingNEAR MODEL :

d . .
d_i’ = Ay = (Ar +iNi)y with y(to) = Yo,

which is stable when, <=0.

A2h? A3hd
o EXACTSOLUTI@N}—yOeN—(1+)\h+ >+ 5 +...)yo

e MOTIVATION — consider the followingrDVECTION—DIFFUSIONPDE:

@4_0@ _a@ =0
ot ox  0x%2

Taking Fourier transform yieldk(s the wavenumber):

~

%Jrcikawrakzﬁkzo

where
— the real termak? (i represent®IFFUSION

— the imaginary termci kU representaDVECTION
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Finite Differences for Differential Equations 37

INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I)

e Consider a Taylor series expansion

2
Yitni1) = Yt) +Y (1) + 2 t0) ..

Using the ODE we obtain

_dy
y=" =t

Cdy  df

/ —
V= ~a it

e Neglecting terms proportional to second and higher powkhsytelds the
EXPLICIT EULER METHOD

Y1 = Yn -+ hf(Yn,tn)

e Retaining higher—order terms is inconvenient, as it rexgidifferentiation of
f and does not lead to schemes with desirable stability ptieger




Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (1)

e LOCAL ERRORanalysis:
Yni1 = (14+Ah)yn +[O(h?)]
e GLOBAL ERRORanalysis:

T
(global erroj = Ch?-N = Ch?. == Ch

Thus, the scheme is
— locally second—-ordeaccurate

— globally (over the intervaltg, to + Nh)) first—orderaccurate
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Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (III)

e Stability (for the model problem)
Yn+1 = Yn +Ahyn = (1+Ah)y,
Thus, the solution aftar time steps
Yn=(1+A)"Yo 20" — o=1+Ah
For largen, the numerical solution remains stable iff
o<1 = (1+Ah)?2+(Ah?<1
— CONDITIONALLY STABLE for realA

— UNSTABLE for imaginaryA
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Finite Differences for Differential Equations 40

INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (1)

e |IMPLICIT SCHEMES — based on approximation of the RHS that involve
f(Yno1,t), wherey,. 1 is the unknown to be determined

e |IMPLICIT EULER SCHEME — obtained by neglecting second and
higher—order terms in the expansion:

2
Yitn) = Yltnet) Y (tne1) + 5 Y (tni1) .

Upon substitution%%’ L= f(Yna1,the1) We obtain
n+1

Yn+1 = Yn+hf(Yni1,thea)

The scheme is
— locally SECOND-ORDERaccurate

— globally (over the intervaltg,tg + Nh]) FIRST-ORDERaccurate




Finite Differences for Differential Equations 41

INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (1)

e Stability (for the model problem):

Yni1 =Yn+Ahyni1 = Yoo = (L—Ah) "y,

1
1-Ah

0] <1 = (1-Ah?+(Ah?%>1

1 n
Yn+1—( ) yoéonyo — 0=

1—Ah

Implicit Euler scheme is thus stable for
— all stable model problems

— most unstable model problems

e REMARK: When solvingsystems of ODEsf the formy = 4(t)y, each
implicit step requires solution of an algebraic system;:1 = (I —ha) "y,

e Implicit schemes are generally hard to implementrfonlinear problems
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INITIAL VALUE PROBLEMS —

CRANK—NICHOLSON SCHEME (1)

e Obtained by approximating the formal solution of the ODE
Yn+1=Yn+ ftf]”“ f(y,t)dt using the TRAPEZOIDAL QUADRATURE:

h
Ynt1=Y¥Yn+ 3 [f (Yn,tn) + f()’n+1,tn+1)]

2
The scheme is

— locally THIRD—ORDERaccurate

— globally (over the intervaltg,tg + Nh]) SECOND-ORDER accurate

e Stability (for the model problem):

Ah 1+ 40
Vil =Yn+ = (Yns1+Yn) = Yni1= Yn

2 1-Ah

> Yo=2ao = 0=
0/|<1 = [(Ah) <0

STABLE for all model ODESs with stable solutions




Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (1)

e LEAPFROGas an example of awoO—STEP METHOD:
Y1 = Yn—1+2hAyn

e CHARACTERISTIC EQUATIONfOr the AMPLIFICATION FACTOR (Yn = 0"Yp)
0°—2hAc—1=0

where roots give the amplification factors:

A%h?

01 = Ah+v/14+A2h2 ~ 1+Ah+——+... = '+ o(h®)

A2h2
ozzxn—v1+A4ﬁg-41—An+—§——.“y:—eAh+om%

Thus, the scheme is
— locally THIRD—ORDERaccurate
— globally (over the intervaltg, to + Nh]) SECOND-ORDERaccurate
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Finite Differences for Differential Equations 44

INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (II)

e Stability for diffusion problems p = A, ):

o1 =Ah+/1+A2h?>1 forall h>0

Thus the scheme iISNCONDITIONALLY UNSTABLE for diffusion problems!

e Stability for advection problemsX = iA; ):

1
2

01/2 =1 (”') for h < W
Thus, the scheme SONDITIONALLY UNSTABLE andNON-DIFFUSIVE for

advection problems!

e QUESTION — analyze dispersive (i.e., related to @Q) errors of the
leapfrog scheme.




Finite Differences for Differential Equations

INITIAL VALUE PROBLEMS —
MULTISTEP PROCEDURES

e General form of a\/IULTIpSTEP PROC%DURE
> Uiy =h> Bif(Ynsj,tnsj)
=1 j=1

with characteristic polynomials
Ep(z) = szp + ap—lzp_l +---+0p

(q(2) = By + Bq—lzq_1 + -+ Bo

— if p> g— EXPLICIT SCHEME

— if p<g— IMPLICIT SCHEME

e A (&, () —procedure converges uniformly ja,bl, i.e.,
limp_.o Max cjap) [Yn —Y(ta)| = O if:
— the following consistency conditions are verifigdl) = 0 and
&(1) = (1) (CONSISTENCY CONDITION)

— all roots of the polynomiaf(z) are such thalz | <1 and the roots with
1z«| = 1 are simple ETABILITY CONDITION )
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS(I)

e General form of #RACTIONAL STEP METHOD:
Ynr1 = Yn+Yihki +yohko +yshks + ...
where
ki = f(yn,tn)
ko = f(Yn+ Bihks,th +azh)
ks = f (yn+ B2hks + Bshko, t, + azh)

e Choosey;, Bi anda; to match as many expansion coefficients as possible |

Y(thi1) = Y(ta) +hy (tn) + h—zz)//(tn) + h—;y//(tn) =
y = f
y' = fi+ffy
y" = fu + fi f,2f fyp + 26y + F2 1,y

e Runge—Kutta methods aBEL—STARTING with fairly good stability and
accuracy properties.
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS(II)

e RK4 — an ODE “workhorse™;

h h h
Yn+1:}’n+6k1+ I_3<k2+k3)+6k4

h
ki = f(yn,tn) ko = f(yn+ Eklatn—i-l/Z)

h
ks = f(yn+ §k27tn+1/2) ks = f(yn+hks,thi1)

e The amplification factor:
Ah?2 A3hd A4nt

0=1+Ah+ > T T

Thus, stability iffjo| <1

e ACCURACY.
=g+ 0(h°)

Thus, the scheme is
— locally FIFTH—ORDERaccurate
— globally (over the intervaltg, to + Nh]) FOURTH-ORDERaccurate




Finite Differences for Differential Equations 48

INITIAL VALUE PROBLEMS —
RUNGE' S PRINCIPLE

e Let (k+ 1) be the order of the local truncation error; denwig, h) an
approximation of the exact solutigiit) computed with the step size then
att =tp+ 2nh:

y(t) = Y(t,h) ~ C2nh**1 =C(t —tg)h
y(t) = Y(t,2h) ~ Cn(2h)*1 = C(t —tg)2¢h*

Subtracting:
Y(t,2h) = Y(t,h) ~ C(t —to) (1 — 24)hK

Thus, we can obtain an estimate of k®eSOLUTE ERRORbased on solution
with two step—sizes only:

t,h) — Y(t,2h)
k1

y(t) Yty =

e Runge’s principle is very useful fotDAPTIVE STEP SIZE REFINEMENT
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INITIAL VALUE PROBLEMS —
LAX EQUIVALENCE THEOREM?

Consider ariNITIAL VALUE PROBLEM
du .
— = Lu with u(tg) = ug
dt
and assume that it is well-posed, i.e., it admits solution€lvare unique

and stable

Consider a numerical method defined by a finite—differenegatprC(h)
such that the@pproximatesolution is given by

Un(nh) = C(h)nUO, n=12,...

The above method iISONSISTENTIff C(hr?_' IS a convergent approximation

of the operator’

LAX THEOREM — For acoONSISTENT difference methodsTABILITY IS
equivalent toaCcONVERGENCE

4For a more technical discussion, see $ 5.2 in Atkinson & H&0(2
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(I)

e ISACCURACYandSTABILITY all that matters?

e CONSERVATIONPROPERTIES— conservation by the numerical method
(i.e., in the discrete sense) of various invariants theiimaigequation may
possess

— REMARK — conservation properties are particularly relevant fduson
of Hamiltonian / hyperbolic systems

e Example — conservation of the solution norm:
— In the continuous setting (assume- |u|e’?)

(dul
du . ot
pr —IAjU <— [ dt

=0 = [u(t)| = [uol,

— In the discrete settingjun(nh)| = |uy((Nn—21)h)| =--- = |up(0)]
Necessary and sufficient condition for discrete conseswatdh, |o(h)| =1
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(II)

e Implicit Euler —
: 1

1

The scheme is thusiSSIPATIVE (i.e., hot conservative)

A?h? ... <1 forallh

e Fourth—Order Runge—Kutta —

A2R2 A3n3 A%h?

_ i\ _1 . 66 8h8
of = [1+inh— S0 —ifEL 4 B | = ) /576 8A%HS + AP

1
144
The scheme is thusiSSIPATIVE (i.e., hot conservative)

e Leapfrog — 012/ =1 forall h< P\_l.!

The scheme is thusoNSERVATIVE for all time—steps for which it is
stable!!! Leapfrog is an example ofsYyMPLECTIC INTEGRATORWhich are
designed to have good conservation properties.

—1— —N°h°+... <1 forsmallh
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FINITE DIFFERENCES FORPDES
REVIEW

Classification of linear PDEs in 2D: consider Q2 — R andA,B,C € R

such that , , ,
0<u 0<u 0<u
WJerJrCa—szrf(x,y,u)_O

A
ELLIPTIC PROBLEMS: B2—4AC <0

— Poisson equation:
Pu Pu
PARABOLIC PROBLEMS: B4 —4AC =0

— Heat equation:
@—a @4_@ + (X )
ot~ o Ty ) T
HYPERBOLICPROBLEMS: BZ—4AC >0
— Wave equation:

0u (62u 02u
—a

W_ W‘l—a—}/z)"‘g(xay)

52



Finite Differences for Differential Equations

FINITE DIFFERENCES FORPD
ELLIPTIC PROBLEMS

e See Homework Assignment# 1 ...
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FINITE DIFFERENCES FOFPD‘

PARABOLIC PROBLEMS ax2 0 ()

o CRANK—NICHOLSONMETHOD (Xj = JAX,] = 1,...,|\/|,t: nAt,
n=1...,N):

. L noow,, 200l
— spatial derivative: (%)J_ = (Aij):u“l + 0((Ax)?)

— time derivative:

ou\"t Ut -l o2u\" /92" ,
(E>J :T+O(At) (0X2>J —|—(W>J —|—O((At))

(uTﬂ —2uM Ut Ul —2u] + u'j‘_l) + 0 ((Ax)% + (At)?)

~ 2(AX)2
— thus, defining = A )2 ,we have at every time step

1 1 1
UMy + 2(14+n)uf —rul Ty = ruf g+ 2(1 - U ruf_y

which forU™ = [uf,...,ul,]T can be written as an algebraic system
(21 — AU = (21 + A)U" , whereA is atridiagonal matrix




Finite Differences for Differential Equations

FINITE DIFFERENCES FOFPD‘
PARABOLIC PROBLEI\/IS (II)

e O METHOD

— allow for a more general approximation in time of the RHS: |0, 1))

(%)?H:WJrO(At) [e(‘gzz) e e)(322> o)

— special cases
+ 8=0 = EXPLICIT METHOD: UM1—=AqU"
x 0= % —> CRANK—NICHOLSON METHOD (see previous slide)
+ =1 = |MPLICIT METHOD: A;U"1=yn
e Stability:

— The EXPLICIT SCHEMEIS STABLE for r = A2 < 2

— TheCrRANK—NICHOLSONandIMPLICIT SCHEME aresSTABLE forall r
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FINITE DIFFERENCES FORPD —

HYPERBOLIC PROBLEMS %tz ax2 U (1)

_ o n no_oynyn
Spatial derivative: (%)J_ == (AL)J(J):UJ_l + 0((Ax)?)

Time derivative:

e _
ot2 (At)?

(aZU "ooutt 20+t

( ]+1+uj 1) uj

Stability for (5; < 1

REMARK: need two initial conditions!
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