Finite Differences for Differential Equations Finite Differences for Differential Equations

BOUNDARY VALUE PROBLEMS (I)

e Solving aTWO—POINT BOUNDARY VALUE PROBLEM with DIRICHLET
BOUNDARY CONDITIONS:
d?y
o =9 for x € (0,2m)
y(0) =y(2m =0
PART I

e Finite—difference approximation:
— Second-order center difference formula for the intericdem

Finite Difference Methods for Differential y,-+1—2hy21+y;fl o

Equations whereh = &% andxj = jh

= N+1
— Endpoint nodes:

Yo=0 =>yo—2y1=hg

VN1 =0=>—2yN +Yn-1 = hPON

— Tridiagonal algebraic system — solved very efficiently wiitie
THOMAS ALGORITHM (a version of the Gaussian elimination)
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BOUNDARY VALUE PROBLEMS (Il)

e Solving aTWO—POINT BOUNDARY VALUE PROBLEM with NEUMANN
BOUNDARY CONDITIONS::
2
j_xg:g for x € (0,2m) BOUNDARY VALUE PROBLEMS (l11)
Y= Pem-o
e |n order to retain theSECOND-ORDER ACCURACY in the approximation of
e Finite—difference approximation: the Neumann problem need to use higher-order formulae gioénts, e.g.

— Second-order center difference formula for the intericie v VoA -0 _ v }(7y ray)
Yi+1 =2y +Yj-1 0 2h 0 2Tt

3
h?
— First—order Forward/Backward Difference formulae to rgpress

endpoint values: Vi—Yo

h
YN+1— YN
h

First—order only —DEGRADED ACCURACY
— Tridiagonal algebraic system —s there any problem? Where?

=gjforj=1,...,N
e The first row thus becomes

2 2 5
§y —§Y1fh O1

=0=Yyo=wn
SECOND-ORDER ACCURACY RECOVERED
=0 = YNt1=WN
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BOUNDARY VALUE PROBLEMS (V)

COMPACT STENCILS — stencils based otireegrid points (in every
direction) only: {Xj;1,X;j,Xj_1} at thej —th node

Is is possible to obtain higher (then second) order of acyusa compact
stencils? —YES!

BOUNDARY VALUE PROBLEMS (V)

Consider the central difference approximation to the dquﬁ%’ =g
e COMPACT FINITE DIFFERENCESCHEMES —

. Vi Vi h2 S
)/'Hh# - l—zy;'v) +0(h*) =g — ADVANTAGES:

> (v . o ) * Increased accuracy on compact grids
Re-express the error te@yj using the equation in question:
— DRAWBACKS:

2 . 2 2 . . . 2 . . .
i 0 920401 MY oav o) + need to be tailored to the specific equation solved
2 TRYT D h2 129 . . .
+ can get fairly complicated for more complex equations
Inserting into the original finite—difference equation:
Yi+1 =2y +Yj-1 gj+1—20j +0j-1
J+ hzJ J —gj+ j+ 121 j +O(h4)

Slight modification of the RHS— FOURTH—ORDER ACCURACY!!
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INITIAL VALUE PROBLEMS —

INITIAL VALUE PROBLEMS —
GENERAL REMARKS

CHARACTERIZATION OF INTEGRATION
METHODS

Consider the followingCAUCHY PROBLEM:

dy _ f(y,t) with y(to) =y e ACCURACY — unlike in the Boundary Value Problems, there istaominal

_ _ d_t conditionand approximation errors may accumulate in time; consetyyen
The independent variabtes usually referred to asiME . relevant characterization of accuracy is provided bydheBsAL ERROR

Equations with higher—order derivatives can be reducegstess of (global erroj = (local errop x (# of time step,

first—order equations
rather than th& OCAL ERROR.

Generalizations to systems of ODEs straightforward o
STABILITY — unlike in the Boundary Value Problems, where boundednegd

When the RHS function does not dependyphe., f(y,t) = f(t), of the solution at final time is enforced via a suitattégminal condition, in
solution obtained via @UADRATURE Initial Value Problems there is a priori no guarantee thatgblution will

Assume uniform time—stepsh(is constan) remain bounded.
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INITIAL VALUE PROBLEMS —
MODEL PROBLEM

e STABILITY of various numerical schemes is usually analyzed by apglyin
these schemes to the followingNEAR MODEL :
dy _
dt
which is stable whena, <=0.

Ay = (Ar +iAi)y with y(to) = Yo,

)\th )\3h3
EXACT SOLUTIQMN] = yoeM = <1+)\h+ >t ) Yo

MOTIVATION — consider the followingADVECTION-DIFFUSIONPDE:
@ _;,_C@ _ a@ =0
ot Tox ox2

Taking Fourier transform yields(s the wavenumber):

%+cik0k+ak20k:0

where
— the real termak? (i represent®|FFUSION

— the imaginary termci kly represent2 DVECTION

INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (1)

e Consider a Taylor series expansion

h?
Y(tn1) = Y(tn) +hy (t0) + ¥ (tn) + .
Using the ODE we obtain
_dy _
y-g =f
,_dy df
V=% " a

e Neglecting terms proportional to second and higher powkhsyeelds the
ExPLICIT EULER METHOD

=i+ ffy

Ynt1 = Yn+hf(yn,tn)

e Retaining higher—order terms is inconvenient, as it rexpidifferentiation of
f and does not lead to schemes with desirable stability ptieger
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INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (II)

e LOCAL ERRORanalysis:
Yni1 = (L+Ah)yn+[O(h?)]
e GLOBAL ERRORanalysis:

(global erroj = Ch?.N = Ch?. % =Ch

Thus, the scheme is
— locally second—ordeaccurate

— globally (over the intervalto, to + Nh]) first—orderaccurate

INITIAL VALUE PROBLEMS —
EXPLICIT EULER SCHEME (I11)

e Stability (for the model problem)
Yn+1 = Yn+Ahyn = (L+Ah)y,
Thus, the solution aftar time steps
Vo= (1+M)Yo20"y = o=1+Ah
For largen, the numerical solution remains stable iff
lo]<1 = (A+Ah2+(\h?2<1
— CONDITIONALLY STABLE for realA

— UNSTABLE for imaginaryA
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INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (1)

e |MPLICIT SCHEMES — based on approximation of the RHS that involve

f(Ynt1,t), whereyn, 1 is the unknown to be determined

e IMPLICIT EULER SCHEME — obtained by neglecting second and
higher—order terms in the expansion:

2
Yit) =Yt 2) =Y (1:2) + Y (i)~

Upon substitutior%" = f(Yn+1,th+1) We obtain

thi1

Vi1 = Yn+hf(Ynit,thra)

The scheme is
— locally SECcOND-ORDERaccurate
— globally (over the intervaltp,to + Nh]) FIRS—ORDERaccurate

INITIAL VALUE PROBLEMS —
IMPLICIT EULER SCHEME (II)

e Stability (for the model problem):
Yni1 =Yn+Ayni1 = yne1 = (1-Ah) "y,
(e oo = o= —_
Y1 =\ 755 ) Y0=0Y0 =1
lo|] <1 = (1—-Mh24+(Ah)?2>1
Implicit Euler scheme is thus stable for

— all stable model problems

— most unstable model problems

e REMARK: When solvingsystems of ODEsf the formy = 4(t)y, each
implicit step requires solution of an algebraic system;; = (I —ha) 1y,

e Implicit schemes are generally hard to implementrfonlinear problems
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INITIAL VALUE PROBLEMS —

CRANK—NICHOLSON SCHEME (1)

Obtained by approximating the formal solution of the ODE
Yn+1=Yn+ fttn”“ f(y,t)dt using the TRAPEZOIDAL QUADRATURE:

h
Y1 =Yn+t 5 [f(Yn,tn) + f(Yni1:thia)]

The scheme is
— locally THIRD—ORDERaccurate
— globally (over the intervalto, to + Nh]) SECOND-ORDER accurate
Stability (for the model problem):
1+

Ah
Ynt1=Yn+ ?(Ynﬂ +¥n) = Ynr1= Ah ) Yo
1-7

A\ "
1+
yn+1_<_—)\_2h> Yo=a = G:l__x_zh
2 2
lo| <1 = 0O(\h)<0

STABLE for all model ODEs with stable solutions

INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (I)

e LEAPFROGas an example of aWO—STEP METHOD:
Yn+1 = Yn-1+2hAyn

e CHARACTERISTIC EQUATIONfOr the AMPLIFICATION FACTOR (Yn = G"yp)

0?—2hAc—1=0

where roots give the amplification factors:

212
01 =Ah+V1+A2h2 ~ l+)\h+%+... = "o’

212
02 = Ah— V1 +A2h2 ~ —(1—Ah+%—...) =—e Mo

Thus, the scheme is
— locally THIRD—ORDERaccurate
— globally (over the intervaltg,to + Nh]) SECOND-ORDERaccurate
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INITIAL VALUE PROBLEMS —
LEAPFROGSCHEME (II)

e Stability for diffusion problems A = A, ):

01=Ah+4/1+A2h2>1 forall h>0

Thus the scheme iSNCONDITIONALLY UNSTABLE for diffusion problems!

e Stability for advection problemsX = iA; ):
0%/2 =1() for h< ﬁ
1
Thus, the scheme [SONDITIONALLY UNSTABLE andNON-DIFFUSIVE for
advection problems!

e QUESTION — analyze dispersive (i.e., related to @Q) errors of the
leapfrog scheme.
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INITIAL VALUE PROBLEMS —
MULTISTEP PROCEDURES

e General form of a\/IULTIpSTEP PROC%DURE
> aiynrj =h% Bif(ynijstarj)
j=1 =1
with characteristic polynomials
Ep(2) =0p’ +ap 12”7+ 0o
4q(2) =BaZ+Bq 12 T+ +Bo

— if p>qg— EXPLICIT SCHEME
— if p<g— IMPLICIT SCHEME

e A (&,() —procedure converges uniformly [a, b, i.e.,
limp_.o max, c(ab [yn—Y(tn)| = O if:
— the following consistency conditions are verifigd1) = 0 and
&(1) = (1) (CONSISTENCY CONDITION)

— all roots of the polynomiaf(z) are such thalzj| < 1 and the roots with
|zx| = 1 are simple GTABILITY CONDITION )
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS(I)
o General form of #RACTIONAL STEP METHOD:
Yni1=Yn+Yihki +y2hke +yzhks+ ...
where

ki = f(yn,tn)

ko = f(yn+ Bihky,th +agh)

ks = f(yn+ B2hky + Bshka, ty + azh)

e Choosey;, Bi anda; to match as many expansion coefficients as possible i

h? h3
Y(tnr1) = Y(ta) +hy (tn) + Ey/(tn> + Ey”(tn) e
y=f
y' =i+,
y' = fy+ f fy2f fye + fzfyl + fsz

e Runge—Kutta methods asE=L —STARTING with fairly good stability and
accuracy properties.
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INITIAL VALUE PROBLEMS —
RUNGE-KUTTA METHODS(II)

¢ RK4 — an ODE “workhorse”:
h h h
Ynt1 =Yn+ €k1+ §(k2+K§) + 5"4
h
ki = f(yn,t) ko= f(yn+ §k1~tn+1/2)

h
ks = f(yn+ §k2=tn+1/2) ks = f(yn+hks,thi1)

e The amplification factor:
A%h? ASh®  A%ht

0:1+}\h+T+T+W

Thus, stability iffjo| <1
e ACCURACY.
M=o+ 0(h°)
Thus, the scheme is
— locally FIFTH-ORDERaccurate
— globally (over the intervalto, to + Nh]) FOURTH-ORDERaccurate
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INITIAL VALUE PROBLEMS —
RUNGE’' S PRINCIPLE

e Let(k+1) be the order of the local truncation error; dengig, h) an
approximation of the exact solutigift) computed with the step sizg then
att =tg+ 2nh:

y(t) = Y(t,h) ~C2nh1  =C(t —to)hK
y(t) =Y (t,2h) ~ Cn(2h)* = C(t —tg)2¢h*
Subtracting:
Y(t,2h) = Y(t,h) ~ C(t —t) (1 — 24)h¥
Thus, we can obtain an estimate of thsOLUTE ERRORbased on solution

with two step-sizes only:

Y(t,h) —Y(t,2h)

YO - Y(th) = =

e Runge’s principle is very useful foxDAPTIVE STEP SIZE REFINEMENT
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INITIAL VALUE PROBLEMS —
LAX EQUIVALENCE THEOREM

e Consider ariNITIAL VALUE PROBLEM

d .
d—ltj = Lu with u(tg) = up

and assume that it is well-posed, i.e., it admits solutiohiglvare unique
and stable

e Consider a numerical method defined by a finite—differenegatprC(h)
such that thepproximatesolution is given by

Un(nh) = C(h)"up, N=1,2,...
e The above method iSONSISTENTIff ﬂm);' is a convergent approximation
of the operator.

e LAX THEOREM — For acONSISTENT difference methodsTABILITY is
equivalent tocONVERGENCE

8For a more technical discussion, see $ 5.2 in Atkinson & H&O12
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(I)

e ISACCURACYandSTABILITY all that matters?

e CONSERVATION PROPERTIES— conservation by the numerical method
(i.e., in the discrete sense) of various invariants theimaigequation may
possess

— REMARK — conservation properties are particularly relevant fdugson
of Hamiltonian / hyperbolic systems

e Example — conservation of the solution norm:
— In the continuous setting (assume- |u|é?)

du .
a:l)\iu —

— Inthe discrete settingju,(nh)| = |up((n—1)h)| = --- = |up(0)|
Necessary and sufficient condition for discrete conseswatth, |o(h)| =1
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INITIAL VALUE PROBLEMS —
CONSERVATION PROPERTIES(II)

Implicit Euler —
1

‘“‘:‘1-1mih): \/m

The scheme is thusISSIPATIVE (i.e., not conservative)

:1,%Ai2h2+...<1 for allh

Fourth—Order Runge—Kutta —

. Nh? o ABRS ARt 1
o] = |1+iAih— == —i= =+ = :2—41/576—8)\?h5+)\i8h8

1
—1- m)\?hﬁ-i-n- <1 for smallh

The scheme is thusISSIPATIVE (i.€., not conservative)

Leapfrog — o172/ =1 forall h< ﬁ

The scheme is thusoNSERVATIVE for all time—steps for which it is
stable!!! Leapfrog is an example ofsyMPLECTIC INTEGRATORWhich are
designed to have good conservation properties.
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FINITE DIFFERENCES FORPDES
REVIEW
Classification of linear PDEs in 2D: consider Q2 — R andA,B,C € R
such that , 5 ,
o0<u o0°u o0<u
07-&- —axay+cay2+f(xy’ u) =
ELLIPTIC PROBLEMS: B2—4AC < 0
— Poisson equation:
Tu LT gixy)
a2 T ayz 9
PARABOLIC PROBLEMS: B2 —4AC =0
— Heat equation:
u_ (du oty xy)
at a2 Tayr ) T
HYPERBOLICPROBLEMS: BZ —4AC > 0
— Wave equation:

Pu_,(Fu )
- aXZ ayz g 7y
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FINITE DIFFERENCES FORPDES
ELLIPTIC PROBLEMS

e See Homework Assignment # 1 ...
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FINITE DIFFERENCES FORPDES
PARABOLIC PROBLEMSau ax2 A0)

o CRANK—NICHOLSONMETHOD (X = jAX,j =1,...,M,t = nAt,
n=1...,N):
n N oy
— spatial derivative: (%)‘ — %&4-0((&)2)
i

— time derivative:

<<’U>:H_ “Jmlm U4 ol - {(‘322) 1+(§22) ]+O((At)2)

— thus, defining = (T ) ,we have at every time step
—rdl T+ 20U = rd = e 21+ rd)

which forU" = [uf,...,uly]T can be written as an algebraic system
(21— A)U™L = (21 + A)U™, whereA is atridiagonal matrix

= 2(ax)2 3 (U - 20 T -2l ) + 0 (%07 + (80?)
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FINITE DIFFERENCES FORPDES

2
ParABOLIC PROBLEMS & = 2 (11)

e O METHOD

— allow for a more general approximation in time of the R(#S= [0, 1])

() 4 ) (3o

— special cases
x =0 = EXPLICIT METHOD: U™1=AqU"

x = % = CRANK—NICHOLSON METHOD (see previous slide)
* B=1 = [MPLICIT METHOD: A{U"™1=U"
e Stability:
— The EXPLICIT SCHEMEis STABLE forr = 2@—;)2 <3
— The CRANK—NICHOLSONandIMPLICIT SCHEME areSTABLE for all r
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FINITE DIFFERENCES FORPDES

2 2
HYPERBOLIC PROBLEMS 4 = 34 (1)

N _owgd?
Spatial derivative: ("2“)]_ = % +0((8%)?)

B
Time derivative:
n n+1 n—1
@ _y —2u +uj
otz / (At)2
P
] (AX)Z

(Ar)? <1

Stability for a2 =

REMARK: need two initial conditions!




