

PART II

Finite Difference Methods for Differential Equations

BOUNDARY VALUE PROBLEMS (II)

- Solving a **TWO-POINT BOUNDARY VALUE PROBLEM** with **NEUMANN BOUNDARY CONDITIONS** :

$$\frac{d^2y}{dx^2} = g \quad \text{for } x \in (0, 2\pi)$$

$$\frac{dy}{dx}(0) = \frac{dy}{dx}(2\pi) = 0$$

- Finite-difference approximation:

- **Second-order center difference formula for the interior nodes:**

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{h^2} = g_j \quad \text{for } j = 1, \dots, N$$

- **First-order Forward/Backward Difference formulae to re-express endpoint values:**

$$\frac{y_1 - y_0}{h} = 0 \implies y_0 = y_1$$

$$\frac{y_{N+1} - y_N}{h} = 0 \implies y_{N+1} = y_N$$

First-order only — **DEGRADED ACCURACY!**

- Tridiagonal algebraic system — Is there any problem? Where?

BOUNDARY VALUE PROBLEMS (I)

- Solving a **TWO-POINT BOUNDARY VALUE PROBLEM** with **DIRICHLET BOUNDARY CONDITIONS** :

$$\frac{d^2y}{dx^2} = g \quad \text{for } x \in (0, 2\pi)$$

$$y(0) = y(2\pi) = 0$$

- Finite-difference approximation:

- **Second-order center difference formula for the interior nodes:**

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{h^2} = g_j \quad \text{for } j = 1, \dots, N$$

where $h = \frac{2\pi}{N+1}$ and $x_j = jh$

- **Endpoint nodes:**

$$y_0 = 0 \implies y_2 - 2y_1 = h^2 g_1$$

$$y_{N+1} = 0 \implies -2y_N + y_{N-1} = h^2 g_N$$

- Tridiagonal algebraic system — solved very efficiently with the **THOMAS ALGORITHM** (a version of the Gaussian elimination)

BOUNDARY VALUE PROBLEMS (III)

- In order to retain the **SECOND-ORDER ACCURACY** in the approximation of the Neumann problem need to use higher-order formulae at endpoints, e.g.

$$y'_0 = \frac{-y_2 + 4y_1 - 3y_0}{2h} = 0 \implies y_0 = \frac{1}{3}(-y_2 + 4y_1)$$

- The first row thus becomes

$$\frac{2}{3}y_2 - \frac{2}{3}y_1 = h^2 g_1$$

SECOND-ORDER ACCURACY RECOVERED!

BOUNDARY VALUE PROBLEMS (IV)

- **COMPACT STENCILS** — stencils based on **three** grid points (in every direction) only: $\{x_{j+1}, x_j, x_{j-1}\}$ at the j -th node
- Is it possible to obtain higher (then second) order of accuracy on compact stencils? — **YES!**
- Consider the central difference approximation to the equation $\frac{d^2y}{dx^2} = g$

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{h^2} - \frac{h^2}{12} y_j^{(iv)} + O(h^4) = g_j$$

- Re-express the error term $\frac{h^2}{12} y_j^{(iv)}$ using the equation in question:

$$\frac{h^2}{12} y_j^{(iv)} = \frac{h^2}{12} g_j'' = \frac{h^2}{12} \left[\frac{g_{j+1} - 2g_j + g_{j-1}}{h^2} - \frac{h^2}{12} g_j^{(iv)} + O(h^4) \right]$$

- Inserting into the original finite-difference equation:

$$\frac{y_{j+1} - 2y_j + y_{j-1}}{h^2} = g_j + \frac{g_{j+1} - 2g_j + g_{j-1}}{12} + O(h^4)$$

- Slight modification of the RHS \Rightarrow **FOURTH-ORDER ACCURACY!!!**

BOUNDARY VALUE PROBLEMS (V)

- **COMPACT FINITE DIFFERENCE SCHEMES** —
 - **ADVANTAGES:**
 - * Increased accuracy on compact grids
 - **DRAWBACKS:**
 - * need to be tailored to the specific equation solved
 - * can get fairly complicated for more complex equations

INITIAL VALUE PROBLEMS — GENERAL REMARKS

- Consider the following **CAUCHY PROBLEM** :

$$\frac{dy}{dt} = f(y, t) \text{ with } y(t_0) = y_0$$

The independent variable t is usually referred to as **TIME**.

- Equations with higher-order derivatives can be reduced to systems of first-order equations
- Generalizations to systems of ODEs straightforward
- When the RHS function does not depend on y , i.e., $f(y, t) = f(t)$, solution obtained via a **QUADRATURE**
- Assume uniform time-steps (**h is constant**)

INITIAL VALUE PROBLEMS — CHARACTERIZATION OF INTEGRATION METHODS

- **ACCURACY** — unlike in the Boundary Value Problems, there is no **terminal condition** and approximation errors may accumulate in time; consequently, a relevant characterization of accuracy is provided by the **GLOBAL ERROR**

$$(\text{global error}) = (\text{local error}) \times (\# \text{ of time steps}),$$

rather than the **LOCAL ERROR**.
- **STABILITY** — unlike in the Boundary Value Problems, where boundedness of the solution at final time is enforced via a suitable **terminal condition**, in Initial Value Problems there is a priori no guarantee that the solution will remain bounded.

INITIAL VALUE PROBLEMS — MODEL PROBLEM

- **STABILITY** of various numerical schemes is usually analyzed by applying these schemes to the following **LINEAR MODEL** :

$$\frac{dy}{dt} = \lambda y = (\lambda_r + i\lambda_i)y \text{ with } y(t_0) = y_0,$$

which is stable when $\lambda_r \leq 0$.

- **EXACT SOLUTION** $y = y_0 e^{\lambda t} = \left(1 + \lambda h + \frac{\lambda^2 h^2}{2} + \frac{\lambda^3 h^3}{6} + \dots\right) y_0$

- **MOTIVATION** — consider the following **ADVECTION–DIFFUSION PDE** :

$$\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} - a \frac{\partial^2 u}{\partial x^2} = 0$$

Taking Fourier transform yields (k is the wavenumber):

$$\frac{d\hat{u}_k}{dt} + cik\hat{u}_k + ak^2\hat{u}_k = 0$$

where

- the real term $ak^2\hat{u}_k$ represents **DIFFUSION**
- the imaginary term $cik\hat{u}_k$ represents **ADVECTION**

INITIAL VALUE PROBLEMS — EXPLICIT EULER SCHEME (I)

- Consider a Taylor series expansion

$$y(t_{n+1}) = y(t_n) + hy'(t_n) + \frac{h^2}{2}y''(t_n) + \dots$$

Using the ODE we obtain

$$\begin{aligned} y' &= \frac{dy}{dt} = f \\ y'' &= \frac{dy'}{dt} = \frac{df}{dt} = f_t + ff_y \end{aligned}$$

- Neglecting terms proportional to second and higher powers of h yields the **EXPLICIT EULER METHOD**

$$y_{n+1} = y_n + hf(y_n, t_n)$$

- Retaining higher-order terms is inconvenient, as it requires differentiation of f and does not lead to schemes with desirable stability properties.

INITIAL VALUE PROBLEMS — EXPLICIT EULER SCHEME (II)

- **LOCAL ERROR** analysis:

$$y_{n+1} = (1 + \lambda h)y_n + \mathcal{O}(h^2)$$

- **GLOBAL ERROR** analysis:

$$(\text{global error}) = Ch^2 \cdot N = Ch^2 \cdot \frac{T}{h} = C'h$$

Thus, the scheme is

- locally **second-order** accurate
- globally (over the interval $[t_0, t_0 + Nh]$) **first-order** accurate

INITIAL VALUE PROBLEMS — EXPLICIT EULER SCHEME (III)

- Stability (for the model problem)

$$y_{n+1} = y_n + \lambda h y_n = (1 + \lambda h)y_n$$

Thus, the solution after n time steps

$$y_n = (1 + \lambda h)^n y_0 \triangleq \sigma^n y_0 \implies \sigma = 1 + \lambda h$$

For large n , the numerical solution remains stable iff

$$|\sigma| \leq 1 \implies (1 + \lambda_r h)^2 + (\lambda_i h)^2 \leq 1$$

- **CONDITIONALLY STABLE** for real λ
- **UNSTABLE** for imaginary λ

INITIAL VALUE PROBLEMS — IMPLICIT EULER SCHEME (I)

- **IMPLICIT SCHEMES** — based on approximation of the RHS that involve $f(y_{n+1}, t)$, where y_{n+1} is the unknown to be determined
- **IMPLICIT EULER SCHEME** — obtained by neglecting second and higher-order terms in the expansion:

$$y(t_n) = y(t_{n+1}) - hy'(t_{n+1}) + \frac{h^2}{2}y''(t_{n+1}) - \dots$$

Upon substitution $\frac{dy}{dt} \Big|_{t_{n+1}} = f(y_{n+1}, t_{n+1})$ we obtain

$$y_{n+1} = y_n + hf(y_{n+1}, t_{n+1})$$

The scheme is

- locally **SECOND-ORDER** accurate
- globally (over the interval $[t_0, t_0 + Nh]$) **FIRST-ORDER** accurate

INITIAL VALUE PROBLEMS — IMPLICIT EULER SCHEME (II)

- Stability (for the model problem):

$$\begin{aligned} y_{n+1} &= y_n + \lambda hy_{n+1} \implies y_{n+1} = (1 - \lambda h)^{-1} y_n \\ y_{n+1} &= \left(\frac{1}{1 - \lambda h} \right)^n y_0 \triangleq \sigma^n y_0 \implies \sigma = \frac{1}{1 - \lambda h} \\ |\sigma| &\leq 1 \implies (1 - \lambda h)^2 + (\lambda h)^2 \geq 1 \end{aligned}$$

Implicit Euler scheme is thus stable for

- all stable model problems
- most unstable model problems

- **REMARK:** When solving **systems of ODEs** of the form $\mathbf{y} = \mathcal{A}(t)\mathbf{y}$, each implicit step requires solution of an algebraic system: $\mathbf{y}_{n+1} = (I - h\mathcal{A})^{-1}\mathbf{y}_n$
- Implicit schemes are generally hard to implement for **nonlinear problems**

INITIAL VALUE PROBLEMS — CRANK–NICHOLSON SCHEME (I)

- Obtained by approximating the formal solution of the ODE $y_{n+1} = y_n + \int_{t_n}^{t_{n+1}} f(y, t) dt$ using the **TRAPEZOIDAL QUADRATURE**:

$$y_{n+1} = y_n + \frac{h}{2} [f(y_n, t_n) + f(y_{n+1}, t_{n+1})]$$

The scheme is

- locally **THIRD-ORDER** accurate
- globally (over the interval $[t_0, t_0 + Nh]$) **SECOND-ORDER** accurate

- Stability (for the model problem):

$$\begin{aligned} y_{n+1} &= y_n + \frac{\lambda h}{2} (y_{n+1} + y_n) \implies y_{n+1} = \left(\frac{1 + \frac{\lambda h}{2}}{1 - \frac{\lambda h}{2}} \right) y_n \\ y_{n+1} &= \left(\frac{1 + \frac{\lambda h}{2}}{1 - \frac{\lambda h}{2}} \right)^n y_0 \triangleq \sigma^n y_0 \implies \sigma = \frac{1 + \frac{\lambda h}{2}}{1 - \frac{\lambda h}{2}} \\ |\sigma| &\leq 1 \implies \Re(\lambda h) \leq 0 \end{aligned}$$

STABLE for all model ODEs with stable solutions

INITIAL VALUE PROBLEMS — LEAPFROG SCHEME (I)

- **LEAPFROG** as an example of a **TWO-STEP METHOD**:

$$y_{n+1} = y_{n-1} + 2h\lambda y_n$$

- **CHARACTERISTIC EQUATION** for the **AMPLIFICATION FACTOR** ($y_n = \sigma^n y_0$)

$$\sigma^2 - 2h\lambda\sigma - 1 = 0$$

where roots give the amplification factors:

$$\begin{aligned} \sigma_1 &= \lambda h + \sqrt{1 + \lambda^2 h^2} \simeq 1 + \lambda h + \frac{\lambda^2 h^2}{2} + \dots = e^{\lambda h} + O(h^3) \\ \sigma_2 &= \lambda h - \sqrt{1 + \lambda^2 h^2} \simeq -(1 - \lambda h + \frac{\lambda^2 h^2}{2} - \dots) = -e^{-\lambda h} + O(h^3) \end{aligned}$$

Thus, the scheme is

- locally **THIRD-ORDER** accurate
- globally (over the interval $[t_0, t_0 + Nh]$) **SECOND-ORDER** accurate

INITIAL VALUE PROBLEMS — LEAPFROG SCHEME (II)

- Stability for diffusion problems ($\lambda = \lambda_r$):

$$\sigma_1 = \lambda h + \sqrt{1 + \lambda_r^2 h^2} > 1 \text{ for all } h > 0$$

Thus the scheme is **UNCONDITIONALLY UNSTABLE** for diffusion problems!

- Stability for advection problems ($\lambda = i\lambda_i$):

$$\sigma_{1/2}^2 = 1 \text{ (!!!) for } h < \frac{1}{|\lambda_i|}$$

Thus, the scheme is **CONDITIONALLY UNSTABLE** and **NON-DIFFUSIVE** for advection problems!

- QUESTION** — analyze dispersive (i.e., related to $\arg(\sigma)$) errors of the leapfrog scheme.

INITIAL VALUE PROBLEMS — MULTISTEP PROCEDURES

- General form of a **MULTISTEP PROCEDURE**:

$$\sum_{j=1}^p \alpha_j y_{n+j} = h \sum_{j=1}^q \beta_j f(y_{n+j}, t_{n+j})$$

with characteristic polynomials

$$\xi_p(z) = \alpha_p z^p + \alpha_{p-1} z^{p-1} + \cdots + \alpha_0$$

$$\zeta_q(z) = \beta_q z^q + \beta_{q-1} z^{q-1} + \cdots + \beta_0$$

– if $p > q$ — **EXPLICIT SCHEME**

– if $p \leq q$ — **IMPLICIT SCHEME**

- A (ξ, ζ) —procedure converges uniformly in $[a, b]$, i.e.,

$$\lim_{h \rightarrow 0} \max_{t_n \in [a, b]} |y_n - y(t_n)| = 0 \text{ if:}$$

– the following consistency conditions are verified: $\xi(1) = 0$ and

$$\xi'(1) = \zeta(1) \text{ (CONSISTENCY CONDITION)}$$

– all roots of the polynomial $\xi(z)$ are such that $|z_i| \leq 1$ and the roots with $|z_k| = 1$ are simple (STABILITY CONDITION)

INITIAL VALUE PROBLEMS — RUNGE-KUTTA METHODS (I)

- General form of a **FRACTIONAL STEP METHOD**:

$$y_{n+1} = y_n + \gamma_1 h k_1 + \gamma_2 h k_2 + \gamma_3 h k_3 + \dots$$

where

$$k_1 = f(y_n, t_n)$$

$$k_2 = f(y_n + \beta_1 h k_1, t_n + \alpha_1 h)$$

$$k_3 = f(y_n + \beta_2 h k_1 + \beta_3 h k_2, t_n + \alpha_2 h)$$

⋮

- Choose γ_i , β_i and α_i to match as many expansion coefficients as possible in

$$y(t_{n+1}) = y(t_n) + hy'(t_n) + \frac{h^2}{2}y''(t_n) + \frac{h^3}{6}y'''(t_n) \dots$$

$$y' = f$$

$$y'' = f_t + ff_y$$

$$y''' = f_{tt} + f_t f_y 2 f f_{yt} + f^2 f_{yy} + f^2 f_{ty}$$

- Runge—Kutta methods are **SELF-STARTING** with fairly good stability and accuracy properties.

INITIAL VALUE PROBLEMS — RUNGE-KUTTA METHODS (II)

- RK4** — an ODE “workhorse”:

$$y_{n+1} = y_n + \frac{h}{6} k_1 + \frac{h}{3} (k_2 + k_3) + \frac{h}{6} k_4$$

$$k_1 = f(y_n, t_n) \quad k_2 = f(y_n + \frac{h}{2} k_1, t_{n+1/2})$$

$$k_3 = f(y_n + \frac{h}{2} k_2, t_{n+1/2}) \quad k_4 = f(y_n + h k_3, t_{n+1})$$

- The amplification factor:

$$\sigma = 1 + \lambda h + \frac{\lambda^2 h^2}{2} + \frac{\lambda^3 h^3}{6} + \frac{\lambda^4 h^4}{24}$$

Thus, stability iff $|\sigma| \leq 1$

- ACCURACY:**

$$e^{\lambda h} = \sigma + O(h^5)$$

Thus, the scheme is

– locally **FIFTH-ORDER** accurate

– globally (over the interval $[t_0, t_0 + Nh]$) **FOURTH-ORDER** accurate

INITIAL VALUE PROBLEMS — RUNGE'S PRINCIPLE

- Let $(k+1)$ be the order of the local truncation error; denote $Y(t, h)$ an approximation of the exact solution $y(t)$ computed with the step size h ; then at $t = t_0 + 2nh$:

$$y(t) - Y(t, h) \simeq C2nh^{k+1} = C(t - t_0)h^k$$

$$y(t) - Y(t, 2h) \simeq Cn(2h)^{k+1} = C(t - t_0)2^k h^k$$

Subtracting:

$$Y(t, 2h) - Y(t, h) \simeq C(t - t_0)(1 - 2^k)h^k$$

Thus, we can obtain an estimate of the **ABSOLUTE ERROR** based on solution with two step-sizes only:

$$y(t) - Y(t, h) \simeq \frac{Y(t, h) - Y(t, 2h)}{2^k - 1}$$

- Runge's principle is very useful for **ADAPTIVE STEP SIZE REFINEMENT**

INITIAL VALUE PROBLEMS — CONSERVATION PROPERTIES (I)

- Is **ACCURACY** and **STABILITY** all that matters?
- CONSERVATION PROPERTIES** — conservation by the numerical method (i.e., in the discrete sense) of various invariants the original equation may possess
 - REMARK** — conservation properties are particularly relevant for solution of Hamiltonian / hyperbolic systems
- Example — conservation of the solution norm:
 - In the continuous setting (assume $u = |u|e^{i\varphi}$)

$$\frac{du}{dt} = i\lambda_i u \iff \begin{cases} \frac{d|u|}{dt} = 0 \implies |u(t)| = |u_0|, \\ \frac{d\varphi}{dt} = \lambda_i, \end{cases}$$
 - In the discrete setting: $|u_h(nh)| = |u_h((n-1)h)| = \dots = |u_h(0)|$

Necessary and sufficient condition for discrete conservation: $\exists h, |\sigma(h)| = 1$

INITIAL VALUE PROBLEMS — LAX EQUIVALENCE THEOREM^a

- Consider an **INITIAL VALUE PROBLEM**

$$\frac{du}{dt} = \mathcal{L}u \text{ with } u(t_0) = u_0$$

and assume that it is well-posed, i.e., it admits solutions which are unique and stable

- Consider a numerical method defined by a finite-difference operator $\mathcal{C}(h)$ such that the **approximate** solution is given by

$$u_h(nh) = \mathcal{C}(h)^n u_0, \quad n = 1, 2, \dots$$

- The above method is **CONSISTENT** iff $\frac{\mathcal{C}(h) - I}{h}$ is a convergent approximation of the operator \mathcal{L}

- LAX THEOREM** — For a **CONSISTENT** difference method **STABILITY** is equivalent to **CONVERGENCE**

^aFor a more technical discussion, see § 5.2 in Atkinson & Han (2001)

INITIAL VALUE PROBLEMS — CONSERVATION PROPERTIES (II)

- Implicit Euler —

$$|\sigma| = \left| \frac{1}{1 - i\lambda_i h} \right| = \frac{1}{\sqrt{1 + \lambda_i^2 h^2}} = 1 - \frac{1}{2} \lambda_i^2 h^2 + \dots < 1 \text{ for all } h$$

The scheme is thus **DISSIPATIVE** (i.e., not conservative)

- Fourth-Order Runge-Kutta —

$$|\sigma| = \left| 1 + i\lambda_i h - \frac{\lambda_i^2 h^2}{2} - i \frac{\lambda_i^3 h^3}{6} + \frac{\lambda_i^4 h^4}{24} \right| = \frac{1}{24} \sqrt{576 - 8\lambda_i^6 h^6 + \lambda_i^8 h^8} \\ = 1 - \frac{1}{144} \lambda_i^6 h^6 + \dots < 1 \text{ for small } h$$

The scheme is thus **DISSIPATIVE** (i.e., not conservative)

- Leapfrog — $|\sigma_{1/2}| \equiv 1$ for all $h < \frac{1}{|\lambda_i|}$

The scheme is thus **CONSERVATIVE** for all time-steps for which it is stable!!! Leapfrog is an example of a **SYMPLECTIC INTEGRATOR** which are designed to have good conservation properties.

FINITE DIFFERENCES FOR PDES REVIEW

- Classification of linear PDEs in 2D: consider $u : \Omega^2 \rightarrow \mathbb{R}$ and $A, B, C \in \mathbb{R}$ such that

$$A \frac{\partial^2 u}{\partial x^2} + B \frac{\partial^2 u}{\partial x \partial y} + C \frac{\partial^2 u}{\partial y^2} + f(x, y, u) = 0$$

- ELLIPTIC PROBLEMS** : $B^2 - 4AC < 0$

- Poisson equation:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = g(x, y)$$

- PARABOLIC PROBLEMS** : $B^2 - 4AC = 0$

- Heat equation:

$$\frac{\partial u}{\partial t} = a \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + g(x, y)$$

- HYPERBOLIC PROBLEMS** : $B^2 - 4AC > 0$

- Wave equation:

$$\frac{\partial^2 u}{\partial t^2} = a \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) + g(x, y)$$

FINITE DIFFERENCES FOR PDES ELLIPTIC PROBLEMS

- See Homework Assignment # 1 ...

FINITE DIFFERENCES FOR PDES PARABOLIC PROBLEMS $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (I)

- CRANK–NICHOLSON METHOD** ($x_j = j\Delta x, j = 1, \dots, M, t = n\Delta t, n = 1, \dots, N$):

- spatial derivative: $\left(\frac{\partial^2 u}{\partial x^2} \right)_j^n = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{(\Delta x)^2} + O((\Delta x)^2)$

- time derivative:

$$\left(\frac{\partial u}{\partial t} \right)_j^{n+1} = \frac{u_j^{n+1} - u_j^n}{\Delta t} + O(\Delta t) = \frac{1}{2} \left[\left(\frac{\partial^2 u}{\partial x^2} \right)_j^{n+1} + \left(\frac{\partial^2 u}{\partial x^2} \right)_j^n \right] + O((\Delta t)^2)$$

$$u_j^{n+1} - u_j^n = \frac{\Delta t}{2(\Delta x)^2} \left(u_{j+1}^{n+1} - 2u_j^{n+1} + u_{j-1}^{n+1} + u_{j+1}^n - 2u_j^n + u_{j-1}^n \right) + O((\Delta x)^2 + (\Delta t)^2)$$

- thus, defining $r = \frac{\Delta t}{(\Delta x)^2}$, we have at every time step n

$$-ru_{j+1}^{n+1} + 2(1+r)u_j^{n+1} - ru_{j-1}^{n+1} = ru_{j+1}^n + 2(1-r)u_j^n + ru_{j-1}^n$$

which for $U^n = [u_1^n, \dots, u_M^n]^T$ can be written as an algebraic system
 $(2\mathbb{I} - \mathbb{A})U^{n+1} = (2\mathbb{I} + \mathbb{A})U^n$, where \mathbb{A} is a **tridiagonal matrix**

FINITE DIFFERENCES FOR PDES PARABOLIC PROBLEMS $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$ (II)

- θ METHOD**

- allow for a more general approximation in time of the RHS ($\theta \in [0, 1]$)

$$\left(\frac{\partial u}{\partial t} \right)_j^{n+1} = \frac{u_j^{n+1} - u_j^n}{\Delta t} + O(\Delta t) = \frac{1}{2} \left[\theta \left(\frac{\partial^2 u}{\partial x^2} \right)_j^{n+1} + (1-\theta) \left(\frac{\partial^2 u}{\partial x^2} \right)_j^n \right] + O(\Delta t)$$

- special cases

- * $\theta = 0 \implies$ **EXPLICIT METHOD**: $U^{n+1} = \mathbb{A}_0 U^n$
- * $\theta = \frac{1}{2} \implies$ **CRANK–NICHOLSON METHOD** (see previous slide)
- * $\theta = 1 \implies$ **IMPLICIT METHOD**: $\mathbb{A}_1 U^{n+1} = U^n$

- Stability:

- The **EXPLICIT SCHEME** is **STABLE** for $r = \frac{\Delta t}{2(\Delta x)^2} < \frac{1}{2}$
- The **CRANK–NICHOLSON** and **IMPLICIT SCHEME** are **STABLE** for all r

FINITE DIFFERENCES FOR PDES

HYPERBOLIC PROBLEMS $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ (I)

- Spatial derivative: $\left(\frac{\partial^2 u}{\partial x^2}\right)_j^n = \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{(\Delta x)^2} + O((\Delta x)^2)$

- Time derivative:

$$\left(\frac{\partial^2 u}{\partial t^2}\right)_j^n = \frac{u_j^{n+1} - 2u_j^n + u_j^{n-1}}{(\Delta t)^2} + O((\Delta t)^2) = \left(\frac{\partial^2 u}{\partial x^2}\right)_j^n + O((\Delta t)^3)$$

$$u_j^{n+1} = \frac{(\Delta t)^2}{(\Delta x)^2} (u_{j+1}^n + u_{j-1}^n) - u_j^{n-1} + 2 \left(1 - \frac{(\Delta t)^2}{(\Delta x)^2}\right) u_j^n + O((\Delta x)^2 + (\Delta t)^4)$$

- Stability for $\frac{(\Delta t)^2}{(\Delta x)^2} \leq 1$

- **REMARK:** need two initial conditions!