
Appendix DFast Multipole MethodsA whole range of important problems enountered in mathematialphysis are desribed by linear PDE's that an be ast in the following op-erator formL	 =W ; (D.1)where L is the given linear di�erential operator, 	 is the solution and W thesoure term. In many ases the solution of this problem an be found byonvolving the soure term W with the suitable Green's funtion G (x; x0)	(x) = Z
W (x0)G(x; x0)dx0 ; (D.2)where 
 denotes the omputational domain. When the support of the soureterm is a olletion of points, then the integral in (D.2) redues to a sum	(x) = NXi=1 W (x0)G(x; x0) ; (D.3)with N standing for the number of points (i.e. the omputational elements).This is the origin of the N-Body Problem, widely enountered in variousareas of astrophysis, eletrostatis, heat transfer, hydrodynamis, et. Inthe ontext of our study the general relation (D.1) orresponds to the Poissonequation (4.4), whereas the solution (D.2) is equivalent to formula (4.6). TheGreen's funtion for this problem is given by (4.5).In the literature there are many varieties of Fast Multipole Methods (seethe review paper by Strikland and Baty [131℄), in our study however we willonsider the Greengard-Rokhlin algorithm proposed in [52℄1 All FMM's rely1Appliation of the Greengard-Rokhlin algorithm to solution of boundary integral equa-tions is desribed by Rokhlin in [115℄. Problems posed in spatially periodi settings areaddressed by Berman and Greengard in [14℄ and by Hamilton and Majda in [58℄.207

208 Fast Multipole Methodson the observation that indution of all the partiles at a given point an besplit into that oming from neighbors and that due to all remaining objets.The former must be evaluated exatly, whereas for the latter approximateformulas an be derived. In these relations multipolar expansions are usedto aount for the indution of partile lusters. In the derivation we willuse omplex notation with z = x+ iy (i is the imaginary unit), in whih thepotential (4.5) is given by�(z) = �2�i ln(z � z0) ; (D.4)where � is the partile harge (i.e. irulation). Using the well-known ex-pansion formula ln(1� �) = �P1k=1 �kk ; (j�j < 1) we obtain for (D.4)�(z) = �2�i "ln(z)� 1Xk=1 1k �z0z �k# ; jzj > jz0j : (D.5)In the algorithm the following four lemmas are essential:Lemma D.1 For a set of partiles zi; i = 1; : : : m, with irulations �iloated inside a irle with radius r, the indued potential at point z belongingto the exterior of the irle (see Fig.D.1a) is given by�(z) = Q ln(z) + 1Xk=1 akzk ; (D.6)Q = mXi=1 qi; qi = �i2�i; ak = � mXi=1 qizkik :This is equivalent to �nding an expansion entered at the origin.Lemma D.2 If the omplex potential valid in the exterior of a irle enteredat z0 and with radius r is given by �(z) = a0 ln(z � z0) +P1k=1 ak(z�z0)k forevery z suh that jzj > jz0j+ r (see Fig.D.1b), then it an be re-evaluated as�(z) = a0 ln(z) + 1Xl=1 blzl ; (D.7)bl = � lXk=1 �akzl�k0 � l � 1k � 1 ��� a0zl0l :This is equivalent to shifting the expansion enter from z0 to the origin.



Fast Multipole Methods 209Lemma D.3 If the omplex potential valid in the exterior of the irle K1(see Fig.D.1) with radius r and entered at z0 (jz0j > (+1)r) is again givenby �(z) = a0 ln(z � z0) +P1k=1 ak(z�z0)k , then inside the irle K2 (Fig.D.1)entered at the origin and with radius r the omplex potential an be reom-puted as�(z) = 1Xl=1 blzl; b0 = 1Xk=1 (�1)k akzk0 + a0 ln(�z0); (D.8)bl = 1zl0 " 1Xk=1 �(�1)k � l + k � 1k � 1 � akak0 �� a0l # ; l � 1 :This is equivalent to hanging from Laurent to Taylor series expansions withdi�erent, though overlapping, ranges of validity.Lemma D.4 If �(z) =Pnk=1 ak (z � z0)k represents omplex potential validinside the irle K1 (see Fig.D.1d) entered at z0 and with radius jz0j + r,then in the interior of a irle K2 with radius r and entered at the originthis potential an be reomputed as�(z) = 1Xl=1 blzl; bl = nXk=1 al� kl � (�z0)k�1 : (D.9)This transformation represents the shift of the expansion enter from z0 tothe origin.In all of the above lemmas in�nite series were used, hene the expan-sions are exat. Nevertheless, in numerial omputations only �nite numbersof terms an be used whih unavoidably introdues errors. In [52℄ suitableerror bounds were derived whih are used to determine the number of termsrequired to ahieve desired auray.In the algorithm it is assumed that all the partiles are loated withina unit square in whih an (H + 1)-level hierarhy of meshes is introdued.Every ell at level i onsists of four ells at level (i + 1) (Fig.D.2a). Atthe enter of every ell we introdue a loal oordinate system in whih theorresponding expansions will be omputed. Below we will make use of thefollowing de�nitions:� every ell loated at the level i = f0; : : : ; Hg will be regarded as theparent of the four hildren ells at the level i + 1 and ontained in it(Fig.D.2a),
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() (d)Figure D.1: Figures illustrating the four expansion lemmas (D.6)-(D.9) .
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(a) (b)Figure D.2: Figures illustrating the de�nitions used in the desription of thealgorithm.� the nearest neighborhood will denote the given ell with the eight adja-ent ells loated at the same level (see Fig.D.2b),� the interation list will be the set of hildren whose parents belong tothe nearest neighborhood of the parent of the given ell and whih arenot adjoining to it (see Fig.D.2b),� lose indution will refer to the potential due to the partiles in thenearest neighborhood, whereas far indution to those outside of it; atevery point the omplex potential is the sum of the lose and far in-dution.We now desribe a method for fast evaluation of the far indution. Theobjetive is to onstrut Taylor series expansions in every ell at the level H,so that they ould be used to alulate the potential. Basially, the algorithmonsists of the three following phases:1. for every ell loated at the level H the Laurent series expansions (D.6)are determined for partiles belonging to the given ell; the expansionsare omputed in the loal oordinate system oiniding with the ell'senter (Fig.D.3a),2. expansions analogous to obtained in the previous step are omputedfor ells at the levels from (H � 1) to 1; this is aomplished by usingformula (D.7) to shift the expansions omputed in the hildren ells tothe enter of the parent ells where they are all summed up (Fig.D.3b);as a result, in every ell we will have multipolar expansions due to all
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() (d)Figure D.3: Figures desribing the onseutive phases of the algorithm.



Fast Multipole Methods 213the partiles present in it; every expansion remains valid in the exteriorof the nearest neighborhood of the given ell; this phase is alled theupward move,3. in this phase we ompute loal Taylor series expansions for indutiondue to partiles loated outside the nearest neighborhood of a given ell;at the levels 0 and 1 they vanish identially, and at the levels 2; : : : ; Hthe following two sub-steps are required:(a) the Taylor series expansions of the parents are shifted (using (D.9))to the enters of the hildren ells (Fig.D.3); this phase is thusalled the downward move,(b) indution of the partiles in the ells belonging to the interationlist is aounted for by hanging from Laurent to Taylor series ex-pansions (D.8) whih are then added to the expansion oeÆientsobtained in the given ell during the previous substep (Fig.D.3d).The overall ost of the algorithm depends on N and the number ofthe expansion terms p, and sales as N log(N). In the original paper [52℄it was shown that if the required auray is �, then p � j log2(�)j. Thenumber of levels H does not inuene auray and is adjusted so as tomaximize performane. In the present study we normally use p = 20 and Hvarying from 7 to 9. When the number of partiles is around 104 � 105, theomputational ost of our algorithm is smaller by approximately two ordersof magnitude than that required for diret evaluation of interations.The present Fast Multipole Method is also used to ompute indution ofthe boundary vortex sheet. Here indution is usually evaluated suÆiently farfrom the obstale, where Laurent-type expansions an be used. Consequently,only the upward move is needed. When indution must be determined in thelose proximity of the boundary, then the inuene of the nearby panelsis omputed using exat formulas (4.75) and (4.76), whereas the remainingpanels are aounted for by using Laurent-type expansions at intermediatelevels.
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