
Appendix DFast Multipole MethodsA whole range of important problems en
ountered in mathemati
alphysi
s are des
ribed by linear PDE's that 
an be 
ast in the following op-erator formL	 =W ; (D.1)where L is the given linear di�erential operator, 	 is the solution and W thesour
e term. In many 
ases the solution of this problem 
an be found by
onvolving the sour
e term W with the suitable Green's fun
tion G (x; x0)	(x) = Z
W (x0)G(x; x0)dx0 ; (D.2)where 
 denotes the 
omputational domain. When the support of the sour
eterm is a 
olle
tion of points, then the integral in (D.2) redu
es to a sum	(x) = NXi=1 W (x0)G(x; x0) ; (D.3)with N standing for the number of points (i.e. the 
omputational elements).This is the origin of the N-Body Problem, widely en
ountered in variousareas of astrophysi
s, ele
trostati
s, heat transfer, hydrodynami
s, et
. Inthe 
ontext of our study the general relation (D.1) 
orresponds to the Poissonequation (4.4), whereas the solution (D.2) is equivalent to formula (4.6). TheGreen's fun
tion for this problem is given by (4.5).In the literature there are many varieties of Fast Multipole Methods (seethe review paper by Stri
kland and Baty [131℄), in our study however we will
onsider the Greengard-Rokhlin algorithm proposed in [52℄1 All FMM's rely1Appli
ation of the Greengard-Rokhlin algorithm to solution of boundary integral equa-tions is des
ribed by Rokhlin in [115℄. Problems posed in spatially periodi
 settings areaddressed by Berman and Greengard in [14℄ and by Hamilton and Majda in [58℄.207

208 Fast Multipole Methodson the observation that indu
tion of all the parti
les at a given point 
an besplit into that 
oming from neighbors and that due to all remaining obje
ts.The former must be evaluated exa
tly, whereas for the latter approximateformulas 
an be derived. In these relations multipolar expansions are usedto a

ount for the indu
tion of parti
le 
lusters. In the derivation we willuse 
omplex notation with z = x+ iy (i is the imaginary unit), in whi
h thepotential (4.5) is given by�(z) = �2�i ln(z � z0) ; (D.4)where � is the parti
le 
harge (i.e. 
ir
ulation). Using the well-known ex-pansion formula ln(1� �) = �P1k=1 �kk ; (j�j < 1) we obtain for (D.4)�(z) = �2�i "ln(z)� 1Xk=1 1k �z0z �k# ; jzj > jz0j : (D.5)In the algorithm the following four lemmas are essential:Lemma D.1 For a set of parti
les zi; i = 1; : : : m, with 
ir
ulations �ilo
ated inside a 
ir
le with radius r, the indu
ed potential at point z belongingto the exterior of the 
ir
le (see Fig.D.1a) is given by�(z) = Q ln(z) + 1Xk=1 akzk ; (D.6)Q = mXi=1 qi; qi = �i2�i; ak = � mXi=1 qizkik :This is equivalent to �nding an expansion 
entered at the origin.Lemma D.2 If the 
omplex potential valid in the exterior of a 
ir
le 
enteredat z0 and with radius r is given by �(z) = a0 ln(z � z0) +P1k=1 ak(z�z0)k forevery z su
h that jzj > jz0j+ r (see Fig.D.1b), then it 
an be re-evaluated as�(z) = a0 ln(z) + 1Xl=1 blzl ; (D.7)bl = � lXk=1 �akzl�k0 � l � 1k � 1 ��� a0zl0l :This is equivalent to shifting the expansion 
enter from z0 to the origin.



Fast Multipole Methods 209Lemma D.3 If the 
omplex potential valid in the exterior of the 
ir
le K1(see Fig.D.1
) with radius 
r and 
entered at z0 (jz0j > (
+1)r) is again givenby �(z) = a0 ln(z � z0) +P1k=1 ak(z�z0)k , then inside the 
ir
le K2 (Fig.D.1
)
entered at the origin and with radius r the 
omplex potential 
an be re
om-puted as�(z) = 1Xl=1 blzl; b0 = 1Xk=1 (�1)k akzk0 + a0 ln(�z0); (D.8)bl = 1zl0 " 1Xk=1 �(�1)k � l + k � 1k � 1 � akak0 �� a0l # ; l � 1 :This is equivalent to 
hanging from Laurent to Taylor series expansions withdi�erent, though overlapping, ranges of validity.Lemma D.4 If �(z) =Pnk=1 ak (z � z0)k represents 
omplex potential validinside the 
ir
le K1 (see Fig.D.1d) 
entered at z0 and with radius jz0j + r,then in the interior of a 
ir
le K2 with radius r and 
entered at the originthis potential 
an be re
omputed as�(z) = 1Xl=1 blzl; bl = nXk=1 al� kl � (�z0)k�1 : (D.9)This transformation represents the shift of the expansion 
enter from z0 tothe origin.In all of the above lemmas in�nite series were used, hen
e the expan-sions are exa
t. Nevertheless, in numeri
al 
omputations only �nite numbersof terms 
an be used whi
h unavoidably introdu
es errors. In [52℄ suitableerror bounds were derived whi
h are used to determine the number of termsrequired to a
hieve desired a

ura
y.In the algorithm it is assumed that all the parti
les are lo
ated withina unit square in whi
h an (H + 1)-level hierar
hy of meshes is introdu
ed.Every 
ell at level i 
onsists of four 
ells at level (i + 1) (Fig.D.2a). Atthe 
enter of every 
ell we introdu
e a lo
al 
oordinate system in whi
h the
orresponding expansions will be 
omputed. Below we will make use of thefollowing de�nitions:� every 
ell lo
ated at the level i = f0; : : : ; Hg will be regarded as theparent of the four 
hildren 
ells at the level i + 1 and 
ontained in it(Fig.D.2a),
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(a) (b)

(
) (d)Figure D.1: Figures illustrating the four expansion lemmas (D.6)-(D.9) .
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(a) (b)Figure D.2: Figures illustrating the de�nitions used in the des
ription of thealgorithm.� the nearest neighborhood will denote the given 
ell with the eight adja-
ent 
ells lo
ated at the same level (see Fig.D.2b),� the intera
tion list will be the set of 
hildren whose parents belong tothe nearest neighborhood of the parent of the given 
ell and whi
h arenot adjoining to it (see Fig.D.2b),� 
lose indu
tion will refer to the potential due to the parti
les in thenearest neighborhood, whereas far indu
tion to those outside of it; atevery point the 
omplex potential is the sum of the 
lose and far in-du
tion.We now des
ribe a method for fast evaluation of the far indu
tion. Theobje
tive is to 
onstru
t Taylor series expansions in every 
ell at the level H,so that they 
ould be used to 
al
ulate the potential. Basi
ally, the algorithm
onsists of the three following phases:1. for every 
ell lo
ated at the level H the Laurent series expansions (D.6)are determined for parti
les belonging to the given 
ell; the expansionsare 
omputed in the lo
al 
oordinate system 
oin
iding with the 
ell's
enter (Fig.D.3a),2. expansions analogous to obtained in the previous step are 
omputedfor 
ells at the levels from (H � 1) to 1; this is a

omplished by usingformula (D.7) to shift the expansions 
omputed in the 
hildren 
ells tothe 
enter of the parent 
ells where they are all summed up (Fig.D.3b);as a result, in every 
ell we will have multipolar expansions due to all
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(a) (b)

(
) (d)Figure D.3: Figures des
ribing the 
onse
utive phases of the algorithm.
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les present in it; every expansion remains valid in the exteriorof the nearest neighborhood of the given 
ell; this phase is 
alled theupward move,3. in this phase we 
ompute lo
al Taylor series expansions for indu
tiondue to parti
les lo
ated outside the nearest neighborhood of a given 
ell;at the levels 0 and 1 they vanish identi
ally, and at the levels 2; : : : ; Hthe following two sub-steps are required:(a) the Taylor series expansions of the parents are shifted (using (D.9))to the 
enters of the 
hildren 
ells (Fig.D.3
); this phase is thus
alled the downward move,(b) indu
tion of the parti
les in the 
ells belonging to the intera
tionlist is a

ounted for by 
hanging from Laurent to Taylor series ex-pansions (D.8) whi
h are then added to the expansion 
oeÆ
ientsobtained in the given 
ell during the previous substep (Fig.D.3d).The overall 
ost of the algorithm depends on N and the number ofthe expansion terms p, and s
ales as N log(N). In the original paper [52℄it was shown that if the required a

ura
y is �, then p � j log2(�)j. Thenumber of levels H does not in
uen
e a

ura
y and is adjusted so as tomaximize performan
e. In the present study we normally use p = 20 and Hvarying from 7 to 9. When the number of parti
les is around 104 � 105, the
omputational 
ost of our algorithm is smaller by approximately two ordersof magnitude than that required for dire
t evaluation of intera
tions.The present Fast Multipole Method is also used to 
ompute indu
tion ofthe boundary vortex sheet. Here indu
tion is usually evaluated suÆ
iently farfrom the obsta
le, where Laurent-type expansions 
an be used. Consequently,only the upward move is needed. When indu
tion must be determined in the
lose proximity of the boundary, then the in
uen
e of the nearby panelsis 
omputed using exa
t formulas (4.75) and (4.76), whereas the remainingpanels are a

ounted for by using Laurent-type expansions at intermediatelevels.

214 Exa
t Solution for the Vortex Pat
h


