Appendix D
Fast Multipole Methods

A whole range of important problems encountered in mathematical
physics are described by linear PDE’s that can be cast in the following op-
erator form

LV =W, (D.1)

where L is the given linear differential operator, W is the solution and W the
source term. In many cases the solution of this problem can be found by
convolving the source term W with the suitable Green’s function G (z,z')

U(z) = /S;W'(x')G(:r,x’)dx’, (D.2)

where ) denotes the computational domain. When the support of the source
term is a collection of points, then the integral in (D.2) reduces to a sum

(z) = ZH”(I')G(I,.T') , (D.3)

with N standing for the number of points (i.e. the computational elements).
This is the origin of the N-Body Problem, widely encountered in various
areas of astrophysics, electrostatics, heat transfer, hydrodynamics, etc. In
the context of our study the general relation (D.1) corresponds to the Poisson
equation (4.4), whereas the solution (D.2) is equivalent to formula (4.6). The
Green’s function for this problem is given by (4.5).

In the literature there are many varieties of Fast Multipole Methods (see
the review paper by Strickland and Baty [131]), in our study however we will
consider the Greengard-Rokhlin algorithm proposed in [52]' All FMM’s rely

! Application of the Greengard-Rokhlin algorithm to solution of boundary integral equa-
tions is described by Rokhlin in [115]. Problems posed in spatially periodic settings are
addressed by Berman and Greengard in [14] and by Hamilton and Majda in [58].
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on the observation that induction of all the particles at a given point can be
split into that coming from neighbors and that due to all remaining objects.
The former must be evaluated exactly, whereas for the latter approximate
formulas can be derived. In these relations multipolar expansions are used
to account for the induction of particle clusters. In the derivation we will
use complex notation with z = z + iy (i is the imaginary unit), in which the
potential (4.5) is given by

D(z) = %ln(z — 2) , (D.4)

where I is the particle charge (i.e. circulation). Using the well-known ex-
pansion formula In(1 —a) = —=>"77, %7 (le| < 1) we obtain for (D.4)

3 - {ln(a -3z (?)k} el > Jaol (D.5)

k=1
In the algorithm the following four lemmas are essential:
Lemma D.1 For a set of particles z;, i = 1,... m, with circulations T';

located inside a circle with radius r, the induced potential at point z belonging
to the exterior of the circle (see Fig.D.1a) is given by

B(2) = QIn(z) + > %, (D.6)
k=1 s
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This is equivalent to finding an expansion centered at the origin.

Lemma D.2 Ifthe complex potential valid in the exterior of a circle centered

at zo and with radius r is given by ®(z) = agln(z — z) + Y 5, ("7")‘ for
0

z—2

every z such that |z| > |z| +r (see Fig.D.1b), then it can be re-evaluated as

> b]
B(2) = apln(z) + ; o D.7)
1
-1 g2t
()]

k=1

This is equivalent to shifting the expansion center from zy to the origin.
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Lemma D.3 If the complex potential valid in the exterior of the circle K,
(see Flig.D.1c) with radius cr and centered at zy (|20 > (c+1)7) is again given
by ®(2) = agln(z — z9) + Doy (zj—;n)’” then inside the circle Ky (Fig.D.1c)
centered at the origin and with radius v the complex potential can be recom-
puted as

oo

Sonel b= (1) 4 agIn(—2). (D.8)
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This is equivalent to changing from Laurent to Taylor series expansions with
different, though overlapping, ranges of validity.

®(2)

Lemma D.4 If ®(2) = Y31_, ax (2 — 2)* represents complex potential valid
inside the circle K, (see Fig.D.1d) centered at zy and with radius |z| + 1,
then in the interior of a circle Ky with radius v and centered at the origin
this potential can be recomputed as

n

B(z) — gb,z', =X a ( f ) (—20)cL (D.9)

k=1

This transformation represents the shift of the expansion center from z to
the origin.

In all of the above lemmas infinite series were used, hence the expan-
sions are exact. Nevertheless, in numerical computations only finite numbers
of terms can be used which unavoidably introduces errors. In [52] suitable
error bounds were derived which are used to determine the number of terms
required to achieve desired accuracy.

In the algorithm it is assumed that all the particles are located within
a unit square in which an (H + 1)-level hierarchy of meshes is introduced.
Every cell at level i consists of four cells at level (i + 1) (Fig.D.2a). At
the center of every cell we introduce a local coordinate system in which the
corresponding expansions will be computed. Below we will make use of the
following definitions:

e every cell located at the level ¢ = {0,..., H} will be regarded as the
parent of the four children cells at the level i + 1 and contained in it
(Fig.D.2a),
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Figure D.1: Figures illustrating the four expansion lemmas (D.6)-(D.9) .
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Figure D.2: Figures illustrating the definitions used in the description of the
algorithm.

o the nearest neighborhood will denote the given cell with the eight adja-
cent cells located at the same level (see Fig.D.2h),

(a) (b)

the interaction list will be the set of children whose parents belong to
the nearest neighborhood of the parent of the given cell and which are
not adjoining to it (see Fig.D.2b), &

close induction will refer to the potential due to the particles in the }
nearest neighborhood, whereas far induction to those outside of it; at [ %
\

every point the complex potential is the sum of the close and far in-
duction.

We now describe a method for fast evaluation of the far induction. The
objective is to construct Taylor series expansions in every cell at the level H,
so that they could be used to calculate the potential. Basically, the algorithm () (d)
consists of the three following phases:

1. for every cell located at the level F the Laurent series expansions (D.6) Figure D.3: Figures describing the consecutive phases of the algorithm.

are determined for particles belonging to the given cell; the expansions
are computed in the local coordinate system coinciding with the cell’s
center (Fig.D.3a)

2. expansions analogous to obtained in the previous step are computed
for cells at the levels from (H — 1) to 1; this is accomplished by using
formula (D.7) to shift the expansions computed in the children cells to
the center of the parent cells where they are all summed up (Fig.D.3b);
as a result, in every cell we will have multipolar expansions due to all
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the particles present in it; every expansion remains valid in the exterior
of the nearest neighborhood of the given cell; this phase is called the
upward move,

3. in this phase we compute local Taylor series expansions for induction
due to particles located outside the nearest neighborhood of a given cell;
at the levels 0 and 1 they vanish identically, and at the levels 2,..., H
the following two sub-steps are required:

(a) the Taylor series expansions of the parents are shifted (using (D.9))
to the centers of the children cells (Fig.D.3c); this phase is thus
called the downward move,

(b

=

induction of the particles in the cells belonging to the interaction
list is accounted for by changing from Laurent to Taylor series ex-
pansions (D.8) which are then added to the expansion coefficients
obtained in the given cell during the previous substep (Fig.D.3d).

The overall cost of the algorithm depends on N and the number of
the expansion terms p, and scales as Nlog(N). In the original paper [52]
it was shown that if the required accuracy is €, then p ~ |log,(¢)|. The
number of levels H does not influence accuracy and is adjusted so as to
maximize performance. In the present study we normally use p = 20 and H
varying from 7 to 9. When the number of particles is around 10* — 10°, the
computational cost of our algorithm is smaller by approximately two orders
of magnitude than that required for direct evaluation of interactions.

The present Fast Multipole Method is also used to compute induction of
the boundary vortex sheet. Here induction is usually evaluated sufficiently far
from the obstacle, where Laurent-type expansions can be used. Consequently,
only the upward move is needed. When induction must be determined in the
close proximity of the boundary, then the influence of the nearby panels
is computed using exact formulas (4.75) and (4.76), whereas the remaining
panels are accounted for by using Laurent-type expansions at intermediate
levels.
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Exact Solution for the Vortex Patch




