HOMEWORK #2

Due: February 12 (Tuesday) by midnight

Instructions:

- The assignment consists of *three* questions, worth 3, 4, and 3 points.
- Submit your assignment *electronically* (via Email) to the address math2t03@math.mcmaster.ca; hardcopy submissions will not be accepted.
- It is obligatory to use the MATLAB template file available at http://www.math.mcmaster.ca/~bprotas/MATH2T03/template.m (see also the link in the "Computer Programs" section of the course website on the left); submissions non compliant with this template will not be accepted.
- Make sure to enter your name and student I.D. number in the appropriate section of the template.
- Late submissions and submissions which do not comply with these guidelines will not be accepted.
- 1. You are given the following four vectors:

$$\mathbf{v}_1 = \begin{bmatrix} 3 & 5 & 6 & 1 \end{bmatrix}^T, \\ \mathbf{v}_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \end{bmatrix}^T, \\ \mathbf{v}_3 = \begin{bmatrix} 0 & 2 & -1 & 1 \end{bmatrix}^T, \\ \mathbf{v}_4 = \begin{bmatrix} 2 & 9 & 3 & 2 \end{bmatrix}^T.$$

Write a MATLAB code that will:

- (a) check if these vectors are linearly independent,
- (b) construct and print out a basis for span {v₁,..., v₄}; the basis should be *minimal*, i.e., it should consist of as few elements as possible.

[3 points]

2. You are given the matrix

$$\mathbb{B} = \left[\begin{array}{cc} 2 & -2 \\ -1 & 1 \end{array} \right]$$

Write a MATLAB code that will:

- (a) visualize the subspaces null(\mathbb{B}) and range(\mathbb{B}) as lines with different colors in \mathbb{R}^2 ,
- (b) check if the subspaces null(\mathbb{B}) and range(\mathbb{B}) are orthogonal.

[4 points]

3. You are given the matrix

$$\mathbb{C}(\alpha) = \left[egin{array}{cc} 1 & -lpha \ -2lpha & 2 \end{array}
ight],$$

where $\alpha \in \mathbb{R}.$ Write a MATLAB code that will plot on a separate figures

- (a) the values $\|\mathbb{C}(\alpha)\|_1$, $\|\mathbb{C}(\alpha)\|_2$ and $\|\mathbb{C}(\alpha)\|_{\infty}$, and
- (b) the values $\|\mathbb{C}^{-1}(\alpha)\|_1$, $\|\mathbb{C}^{-1}(\alpha)\|_2$ and $\|\mathbb{C}^{-1}(\alpha)\|_{\infty}$

corresponding to $\alpha \in [0,1)$ with the step size $\Delta \alpha = 0.05$. [3 points]