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Explain your steps. Your mark will depend on how clear and complete your solutions

are.
The textbook is allowed, but no notes are permitted.
Only the standard McMaster calculator Casio fx 991 is allowed on this exam.

You may evaluate integrals by using a table.

Continued on next page
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1. (10 pts) Consider the curve

Find the equations of its tangent and normal lines at the point (0, 3).

Continued on next page
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2. (10 pts) Let f(z,y,2) =2y~ ' +y2z~! + zz~!. Find the maximum rate of change of f at
the point (1,2, —1), and determine the direction in which it occurs. Express your answer

as a unit vector.

Continued on next page
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3. (10 pts) Compute
% xdy — ydx
c 2?+y’

where C' is the unit circle centred at (1,1).

Continued on next page
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4. (10 pts) Say that f is a continuously differentiable function , and F is a continuously
differentiable vector field on R®. Show that

div(fF) = f div(F) +F - grad(f)

Continued on next page
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5. (10 pts) Find the centre of mass of a lamina whose boundary is given by r = cos(#)(in
polar coordinates) and whose density is directly proportional to the distance from the

origin.

Continued on next page
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6. (10 pts) Compute

//SF-dS

where F = xi + yj, and S is the part of the cone z = /22 + y? inside the cylinder
22 + y? = 4, oriented with the inwards pointing normal.

Continued on next page
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7. (10 pts) Prove that Green’s theorem is a special case of Stokes’ theorem, by identifying
(z,y) in R* with (x,7,0) in R*.

Continued on next page
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8. (10 pts) Compute the line integral

%F'dr

where F = (z, —yz,1) and C' is the intersection of the paraboloid z = x? + y? and the

plane z = 2y, oriented counterclockwise when viewed from above.

Continued on next page
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9. (10 pts) Compute

//SF-dS

where F = 2%i+2yj+ 22k, and S is the closed surface consisting of the upper hemisphere
of the unit sphere 22 + y? + 2?2 = 1, z > 0 and the unit disk in the zy plane 22 + 3? <

1, z=0.
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10. (10 pts) Compute the integral

// z? — y*dA
D

where D is the region in the plane bounded by the curves 2y = 1, y = © — 1, and

y = x + 1. (Hint: Use the change of variables © = u + v, y = —u + v.)
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THE END



