Solutions to some of the problems in
Chapters 15 and 16 of Cain & Herod.

1 Section 15.1

15.1, Problem 1

We use z = u and y = v as parameters. The surface can then be parametrized by

r(u,v) = (u,v, Vu+2v?), wu,v>0.

15.1, Problem 2

If we let 2’ = 2z, i =y and 2’ = 2+/2 2, the equation becomes (z')? + (y')? + (2)? = 42,
which is a sphere centered at the origin with radius 4 in the /.4, 2/ coordinates. We can
use spherical coordinates to parametrize the sphere:

¥ =4cosfsing, y =4sinfsing, 2 =4cosp, 0<O<2m 0<¢p<m.
Reverting back to the z,y, z coordinates, we have thus

r=2cosfsing, y=4sinfsing, z=+v2cosp, 0<0<2m 0<¢<m.
or, letting u = 6 and v = ¢,

r(u,v) = (2 cosu sinv, 4 sinu sinv, V2 cosv), 0<u<2m 0<v<m.

15.1, Problem 3

If 22 + y? = 1, we can write, using polar coordinates that + = cos@ and y = sin for
some 6 with 0 < 6 < 2x. Using u = 0 and v = 2z as parameters, the cylinder can thus be
parametrized by

r(u,v) = (cosu, sinu, v), 0<u<27m, —o0<v < 00.

15.1, Problem 4

If the surface is parametrized by

r(u,v) = (u cosv, usinv, u)y, 0<ov<2m —1<u<l,
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we have 22 + y? = u? cos?v + u? sinv = u? = 22. The surface is thus the part of the
hyperboloid 22 + 3% = 22 between the planes z = —1 and z = 1.

15.1, Problem 5

If the surface is parametrized by

r(u,v) = (u cosv, u sinv, u?), 0<v<27m, 1<u<2,
we have 22 + 32 = u? cos?v + u? sin?v = u? = 2. The surface is thus the part of the

paraboloid z = 22 + 3% between the planes z = 1 and z = 2.

15.1, Problem 6

The equation for the sphere of radius 3 centered at the point (1, 2, 3) is
(x— 1)+ (y —2)*+ (2 — 3)* = 3%

Ifwelet ' =2 —1,y =y—2and 2/ = z — 3, we get the equation (2/)? + (y)? + (z/)? = 32,
which is a sphere centered at the origin with radius 3 in the 2’,4/, 2/ coordinates. We can
use spherical coordinates to parametrize the sphere:

' =3cosfsing, y =3sinfsing, 2 =3cosp, 0<O<2m 0<¢<m.
Reverting back to the x,y, z coordinates, we have thus
r=1+3cosfsing, 3y =2+3sinfsing, 2 =3+3cosp, 0<0<2m 0<¢ <.
or, letting u = 0 and v = ¢,

r(u,v) = (1 +3 cosu sinv, 2+ 3 sinu sinv, 3+3 cosv), 0<u<2m 0<v <.

15.1, Problem 7

We use the parametrization
r=acosfsing, y=asinfsing, z=acosp, 0<0<2m 0<¢p<m.
or
r(¢,0) = (a cosf sing, asinf sing, a cosg), 0<60<27m, 0<¢ <.

We have
ry = (a cosf cos ¢, a sinf cos ¢, —a sin ¢),

and
rp = (—a sinf sin ¢, a cosf sin ¢, 0).

Thus,

ry X g = (a® cosf sin® ¢, a® sinf sin® ¢, a* cos ¢ sin @) = a sin pr(¢, ).
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This implies that the normal vector ry X ry to the sphere at a point P on the surface
—

has the same direction has the direction vector of that point, OP. In particular, if P =

(%> 7> —75) the normal vector will have the same direction as (7, 7=, —J) or as

(1, 1, —1). The normal line at P as thus vector equation

Y+ 11,1, =1), —oo<t< o0,

Sis

a a
s(t) = <ﬁ’ 73
or, more simply,

s(t)=1t(1,1, =1), —oo<t<o0.

15.1, Problem 8

Following problem 7 above, we have that the vector (1, 1, —1) is normal to the sphere at

the point P = (73, 7 —\%) The tangent plane at P has thus equation

(0= )+ = —=) = (= +

=0 or z+ —z:\/§a.
7 ) y

Sls

15.1, Problem 9

To find the points on the surface parametrized by
r(s,t) = (s> +t*)i+ (s+3t)j—stk

at which the tangent plane is parallel to the plane 5z — 6y + 22z = 7, we fist compute the
normal vector ry X r;. We have
re=(2s)i+j—tk

and
r,=(2t)i+3j—sk
Thus,
i j k
rexr,=12s 1 —t|=0Bt—s)i+2(s*—t?)j+(6s-21)k
2t 3 —s

For the planes to be parallel, we need their normal vectors to be parallel. There must thus
exist a constant A # 0, such that

(Bt—s)i+2(s*—t*)j+(65s—2t)k =A(5i—6j+ 2k).

or
3t—s=5) 2(s—t)=-6), 65—2t=2\

Solving first the 1st and 3rd equation yields t = 2\ and s = A. Replacing s,t in terms of
A in the 2d equation yields —6 A2 = —6X or A = 0 or 1. Since \ # 0, we have thus \ = 1



which implies that s = 1 and ¢ = 2. the point on the surface corresponding to the parameter
values is thus P = (5, 7, —2).

15.1, Problem 10

If the surface is parametrized by

r(s,t) = (s +t)i+ (s%)j—2t°k,

we have
rs=1+(29)j
and
I‘t:i—4tk
Thus,
i j k
rexrp=1(1 2s 0 |=(=8st)i+(4t)j+(—2s)k
1 0 —4¢

The point P = (1, 4, —18) on the surface corresponds to parameters s, ¢ such that
s+t=1 s*=4, —2¢*=-18.

From the last two equation, we get s = +2 and t = 43 and for the 1st equation to be
satisfies, the only possibility is take ¢ = 3 and s = —2. A vector normal to the surface at the
point P = (1, 4, —18) is thus

(ry X 1) (—2,3) = (48, 12, 4)

or, more simply, the vector (12, 3, 1). The equation for the plane parallel to that tangent
plane to the surface at (1, 4, —18) and containing the point (1, —2, 3) is thus

12(z—-1)+3y+2)+(*»—3)=0 or 122+4+3y+2=09.

2 Section 15.2

15.2, Problem 1

We parametrize S by
r(z,y) = (z,y, 2> +y°), 1<2?+y* <2

We have
r,=(1,0,2z) and r,=(0,1,2y).

Hence,



i k
r,xr,=1 0 2z|=(—2x2)i+(-2y)j+k
01 2y

[—py

and |lr, X r,|| = /422 +4y% + 1. Letting D = {(x,y), 1 < 2?2 + y* < 2}, we have thus

A(S):/SldS://D ||r$><ry||dA://D VA (22 +y2) + 1dA

Passing to polar coordinates, we obtain

r=v2

2w V2
A(S):/ / Var2 +1rdrdf =27 {1—12(4734_1)3/2}
0 1

m
—— (93/2 . 53/2) —
6

%(27—5\/3) _

15.2, Problem 1

The centroid is the point (Z, 7, Z), where

T =

/de:// xerxrdeA:// z/4(22 +y?) + 1dA
s D D

Passing to polar coordinates, we obtain

We have

27 \/i 2 ﬁ
/de:/ / 7‘0050\/4r2+17’drd0:/ cos@d@/ r’Vdar2 4+ 1dr
s 0 1 0 1
V2
:[sinﬁ]gﬁ/ 2 Var2 4+ 1dr =0
1

since the first factor in the product is zero. Similarly,

/de:// xHryxrdeA:// y /4 (22 +y2) + 1dA
S D D

and, after passing to polar coordinates,

27 V2 27 V2
/de:/ / TSiH@\/47‘2+17’drd0:/ sin@d@/ r?V4r2 4+ 1dr
s 0 1 0 1
V2
:[—0089]3”/ 2 Var2 4+ 1dr = 0.
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Finally,

/SzdS://D(:c2+y2)||ry><ry||dA://D(:c2—|—y2)\/4(;1:2+y2)+1dA

and, after passing to polar coordinates,

27 V2 V2
/zdS:/ / r2\/4r2+1rdrd6:27r/ 3 V4r2 + 1dr
S 0 1 1
V2

2 2
4 1 1
:271'/ r(r+ _Z) vVar2+1ldr
1

4

V2 2 3/2 2 1/2
:271'/ T((er + 1% 4t +1) )dr

1 4 4
R ) A C et Vit A
- 80 8|,

95/2 _ 55/2 93/2 _ 53/2
— 97 _

( R0 48 )

243 27 5v5 255
= 27‘( e p— + -

80 48 48 R0
_ (99 _5
T 20 12

Therefore,
_JeedS _m(B-5VE)_ (B 5VHET15VE)
A(S) (271 -5/5) 604
and the centroid is
o (% — 13 V) (27 +55)
(7, y,2) = (0, 0, 6 604 )

15.2, Problem 16

The surface can be parametrized by
r(z,y) = (z,y, 2z), for z®+y* <1.

We have
r,=(1,0,2) and r,=(0,1,0)

Hence,

= (=2)i+k and |r, xr,|| =V5

r, XTI, =

O =
—_ O
(el OB~



Therefore, letting D = {(x,y), ? + 3> < 1}, we have

A(S)://SldS://D erxrdeA:/DﬁdA:/O% /01 Vordrdd =75

15.2, Problem 18

The integral to be computed should be replaced by

//Sxmds

(Otherwise, it can’t be computed explicitely) Note that the paraboloid y?+4 z = 16 intersects
the plane z = 0 when y = 4+4. The surface is thus the graph of the function z = 4 — y?/4
defined for 0 <z <1 and —4 <y < 4. It is thus parametrized by

r(z,y) = (v, y,4—y*/4), for0<ax <1, —4<y<4

r, =(1,0,0) and r,= (0,1, —y/2)

Hence,
ij k
r,xr,=11 0 0 |=(y/2)j+k and |r,xr,|=+1+y%/4
01 —y/2

Therefore, letting D = {(z,y), 0 <z <1, —4 <y <4}, we have

//x\/y2+4dS:// x\/y2—|—4||rx><ry||dA:/ T/ Y2+ 41 +y2/4dA
S D D

1 4 2 4 1 3 4
:/ xdm/ y+ dy:—[y——l—Zy]

0 2 2 |6 »
56

3



3 Section 16

16, Problem 1

The surface is parametrized by

r(z,y) = (x,y, 2° +¢°), for —1<x<1, -1<y<1.

We have
=(1,0,2z) and r,=(0,1,2y).
Hence,
ij k
r, xr,=|1 0 2z|=(-22)i+(-2y)j+k
0 1 2y

Note that since the z-coordinate of the normal is positive, the normal points upwards and
our parametrization gives the correct orientation. Therefore, letting D = {(z,y), —1 <z <
1, =1 <y <1}, we have

//S [zi+x2k].dsz// (2% + *) i+ 2%Kk] -1, x 1, dA

// )it k} [(—22)i+ (—2y)j+ k] dA

1

4

:/ / —2x3—2xy2+x2dxdy:2/ 22 dr = -
-1 J-1 —1 3

The surface is the graph of the function z = 2?2 + y? defined for 22 + y? < 1. It is thus
parametrized by

16, Problem 4

r(z,y) = (z,y, 2> +y?), foraz®+y°<1.

As in Problem 1, r, x r, = (—22)i+ (—2y)j + k. Since the normal points outward (i.e.
away from the z-axis), this parametrization give sthe correct orientation. Letting D =
,y), 12 4y < 1}, we have

// (42)i 4y)j+2k]-dS://D (42)i+(4y)j+2K] -1y x 1, dA

://D (A2)i+ (4y)j+2k] - [(—22)i + (—2y)j + K] dA

://Dz—g(x?+y2)dA.

Passing to polar coordinates, this last integral becomes

21 ol 1
/ / (2—8r2)rdrd0:27r/ 2T—8T3d7‘:2ﬂ'[7“2—27“4](1):—277'.
0 0 0



Additional problems

Problem 1

Let S be the surface parametrized by
r(u,v) = (vcosu)i+ (vsinu)j+(1+v)k, 0<u<27m, 1<ov<2

Find the surface area of S.

Solution. We have

r, = (—vsinu)i+ (v cosu)j and r,= (cosu)i+ (sinu)j+ k.

Thus,
i i k
r, Xr,=|—vsinu vcosu 0|=(vcosu)i+ (vsinu)j+ (—v)k
Cos u sinu 1
and

|lry X 1,| = \/U2 (cos?u 4 sin®u) + v2 = V2 o).
Therefore, letting D = {(u,v), 0 <u <27, 1 <wv <2}, we obtain

2r 2 2
A(S):// 1dS:// |]ru><rv||dA:/ / ﬂvdvdu:%rﬂ/ vdv = 3m1V2.
S D 0 1 1

Problem 2

Let S be the part of the paraboloid 22 4 y? — 22 = 1 A parametrization for S is given by
r(u,v) = (cosu — v sinu)i+ (sinu+wv cosu)j+ (v)k, 0<u<27m, 1<v<2

Compute the surface integral [, zdS.

Solution. We compute
r, = (—sinu—vcosu)i+ (cosu —v sinu)j and r,=(—sinu)i+ (cosu)j+ k.
and
i j k
r, Xr, = |(—sinu—wv cosu) (cosu—wvsinu) 0
—sinu CoS U 1

= (cosu —v sinu)i+ (sinu+v cosu)j+ (—v) k.



Thus,

|ry X 1| = v/(cosu — v sinu)? + (sinu + v cosu)? + v2 = V1 + 202
Therefore, letting D = {(u,v), 0 <u < 2w, 1 <wv <2}, we obtain

27 2
// zdS:// vHruxrdeA:/ / vV1+2v2dvdu
s D o 1

2

(1+20%)3/2 T 103/2  03/2
=27 {T 1:§(9/ —3/)

—7(9-v3).

Problem 3

Let F(z,y,2) = (—2)i+ (22)j + (y) k. Let C be a circle of radius R lying in the plane
2x+y+ 32z =06. What are the possible values of fo F dr?

Solution. We apply Stokes” theorem. We first compute

i j k
VxF=|g 4 &/ =i-j+2k
—z 2x vy

The plane 2z 4+ y 4+ 3 z = 6 can be parametrized by

I'(l’,y) = <l’, Y, 2—21L’/3—y/3>

We have
r, =(1,0,—-2/3) and r,=(0,1, —1/3).
Hence,
i j k
r, xr,=|1 0 —2/3|=(2/3)i+(1/3)j+k
01 —-1/3

If D is the disk in the plane 22z 4y + 3 z = 6 enclosed by the circle C' and R is the projection
of D onto the z,y plane (so that D is the image of R under the mapping r), we have, using
Stokes’ theorem, if C' and D have compatible orientations, that

%Fdr—/ VX F-dS = // (2/3,1/3,1)dA gA(R).
Note that
// qs — / e x 1| dA = // —dA_gA(R).
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Thus,
7 3 7 V14

Fdr=4+-—AD)=+—7R*=+~— 1 R%
A svia = E T 2 "

where the minus sign would appear when the orientation of C' and D are not compatible.

Problem 4

Let F(z,y,2) = (—y)i+ (z)j+ (2) k. Let C be a curve parametrized by
r(t) = (cost)i+ (sint)j+ (sin’t) k, 0<t<2m,

oriented counterclockwise as viewed from above and let S be the part of the surface z = y?
inside the cylinder 22 + y* = 1 oriented such that the normal is pointing upward. Note that
C' is the boundary of S and that their orientations are compatible. Compute the integral
fo F dr directly and also using Stoke’ theorem.

Solution. We first compute the integral directly. We have
r'(t) = (—sint)i+ (cost)j+ (2 sint cost) k
Thus,

27 27
% Fdr = / F(r(t)) r'(t)dt = / (—sint, cost, sin®t) - (—sint, cost, 2 sint cost) dt
c 0 0

27 .4 27
. 3 sin™ ¢
:/ 1+ 2sin tcostdt:{t—i— } = 2.
0 0
We then compute the integral using Stoke’ theorem. We first compute

i j k

o o 0

-y T oz

The surface S can be parametrized by

r(z,y) = (z,y, y°), where 2°+4y° <1

We have
r,=(1,0,0) and r,= (0,1, 2y).
Hence,
ij k
r,xr,=(1 0 0|=(-2y)j+k
0 1 2y

Therefore, letting D = {(x,y), #* +y* < 1}, we have

%Fdr—/ VxF.dS = // 0, 0,2)-(0, =2y, 1) dA
27
:// 2dA:/ / 27rdrdf
D 0 0

=27
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