

Solutions to some of the problems in
Chapters 15 and 16 of Cain & Herod.

1 Section 15.1

15.1, Problem 1

We use $x = u$ and $y = v$ as parameters. The surface can then be parametrized by

$$\mathbf{r}(u, v) = \langle u, v, \sqrt{u + 2v^2} \rangle, \quad u, v \geq 0.$$

15.1, Problem 2

If we let $x' = 2x$, $y' = y$ and $z' = 2\sqrt{2}z$, the equation becomes $(x')^2 + (y')^2 + (z')^2 = 4^2$, which is a sphere centered at the origin with radius 4 in the x', y', z' coordinates. We can use spherical coordinates to parametrize the sphere:

$$x' = 4 \cos \theta \sin \phi, \quad y' = 4 \sin \theta \sin \phi, \quad z' = 4 \cos \phi, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi.$$

Reverting back to the x, y, z coordinates, we have thus

$$x = 2 \cos \theta \sin \phi, \quad y = 4 \sin \theta \sin \phi, \quad z = \sqrt{2} \cos \phi, \quad 0 \leq \theta < 2\pi, \quad 0 \leq \phi \leq \pi.$$

or, letting $u = \theta$ and $v = \phi$,

$$\mathbf{r}(u, v) = \langle 2 \cos u \sin v, 4 \sin u \sin v, \sqrt{2} \cos v \rangle, \quad 0 \leq u \leq 2\pi, \quad 0 \leq v \leq \pi.$$

15.1, Problem 3

If $x^2 + y^2 = 1$, we can write, using polar coordinates that $x = \cos \theta$ and $y = \sin \theta$ for some θ with $0 \leq \theta < 2\pi$. Using $u = \theta$ and $v = z$ as parameters, the cylinder can thus be parametrized by

$$\mathbf{r}(u, v) = \langle \cos u, \sin u, v \rangle, \quad 0 \leq u \leq 2\pi, \quad -\infty < v < \infty.$$

15.1, Problem 4

If the surface is parametrized by

$$\mathbf{r}(u, v) = \langle u \cos v, u \sin v, u \rangle, \quad 0 \leq v \leq 2\pi, \quad -1 \leq u \leq 1,$$

we have $x^2 + y^2 = u^2 \cos^2 v + u^2 \sin^2 v = u^2 = z^2$. The surface is thus the part of the hyperboloid $x^2 + y^2 = z^2$ between the planes $z = -1$ and $z = 1$.

15.1, Problem 5

If the surface is parametrized by

$$\mathbf{r}(u, v) = \langle u \cos v, u \sin v, u^2 \rangle, \quad 0 \leq v \leq 2\pi, \quad 1 \leq u \leq 2,$$

we have $x^2 + y^2 = u^2 \cos^2 v + u^2 \sin^2 v = u^2 = z$. The surface is thus the part of the paraboloid $z = x^2 + y^2$ between the planes $z = 1$ and $z = 2$.

15.1, Problem 6

The equation for the sphere of radius 3 centered at the point (1, 2, 3) is

$$(x - 1)^2 + (y - 2)^2 + (z - 3)^2 = 3^2.$$

If we let $x' = x - 1$, $y' = y - 2$ and $z' = z - 3$, we get the equation $(x')^2 + (y')^2 + (z')^2 = 3^2$, which is a sphere centered at the origin with radius 3 in the x', y', z' coordinates. We can use spherical coordinates to parametrize the sphere:

$$x' = 3 \cos \theta \sin \phi, \quad y' = 3 \sin \theta \sin \phi, \quad z' = 3 \cos \phi, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi.$$

Reverting back to the x, y, z coordinates, we have thus

$$x = 1 + 3 \cos \theta \sin \phi, \quad y = 2 + 3 \sin \theta \sin \phi, \quad z = 3 + 3 \cos \phi, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi.$$

or, letting $u = \theta$ and $v = \phi$,

$$\mathbf{r}(u, v) = \langle 1 + 3 \cos u \sin v, 2 + 3 \sin u \sin v, 3 + 3 \cos v \rangle, \quad 0 \leq u \leq 2\pi, \quad 0 \leq v \leq \pi.$$

15.1, Problem 7

We use the parametrization

$$x = a \cos \theta \sin \phi, \quad y = a \sin \theta \sin \phi, \quad z = a \cos \phi, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi.$$

or

$$\mathbf{r}(\phi, \theta) = \langle a \cos \theta \sin \phi, a \sin \theta \sin \phi, a \cos \phi \rangle, \quad 0 \leq \theta \leq 2\pi, \quad 0 \leq \phi \leq \pi.$$

We have

$$\mathbf{r}_\phi = \langle a \cos \theta \cos \phi, a \sin \theta \cos \phi, -a \sin \phi \rangle,$$

and

$$\mathbf{r}_\theta = \langle -a \sin \theta \sin \phi, a \cos \theta \sin \phi, 0 \rangle.$$

Thus,

$$\mathbf{r}_\phi \times \mathbf{r}_\theta = \langle a^2 \cos \theta \sin^2 \phi, a^2 \sin \theta \sin^2 \phi, a^2 \cos \phi \sin \phi \rangle = a \sin \phi \mathbf{r}(\phi, \theta).$$

This implies that the normal vector $\mathbf{r}_\phi \times \mathbf{r}_\theta$ to the sphere at a point P on the surface has the same direction has the direction vector of that point, \overrightarrow{OP} . In particular, if $P = (\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, -\frac{a}{\sqrt{3}})$, the normal vector will have the same direction as $\langle \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, -\frac{a}{\sqrt{3}} \rangle$ or as $\langle 1, 1, -1 \rangle$. The normal line at P as thus vector equation

$$\mathbf{s}(t) = \langle \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, -\frac{a}{\sqrt{3}} \rangle + t \langle 1, 1, -1 \rangle, \quad -\infty < t < \infty,$$

or, more simply,

$$\mathbf{s}(t) = t \langle 1, 1, -1 \rangle, \quad -\infty < t < \infty.$$

15.1, Problem 8

Following problem 7 above, we have that the vector $\langle 1, 1, -1 \rangle$ is normal to the sphere at the point $P = (\frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}, -\frac{a}{\sqrt{3}})$. The tangent plane at P has thus equation

$$(x - \frac{a}{\sqrt{3}}) + (y - \frac{a}{\sqrt{3}}) - (z + \frac{a}{\sqrt{3}}) = 0 \quad \text{or} \quad x + y - z = \sqrt{3}a.$$

15.1, Problem 9

To find the points on the surface parametrized by

$$\mathbf{r}(s, t) = (s^2 + t^2) \mathbf{i} + (s + 3t) \mathbf{j} - st \mathbf{k}$$

at which the tangent plane is parallel to the plane $5x - 6y + 2z = 7$, we fist compute the normal vector $\mathbf{r}_s \times \mathbf{r}_t$. We have

$$\mathbf{r}_s = (2s) \mathbf{i} + \mathbf{j} - t \mathbf{k}$$

and

$$\mathbf{r}_t = (2t) \mathbf{i} + 3 \mathbf{j} - s \mathbf{k}.$$

Thus,

$$\mathbf{r}_s \times \mathbf{r}_t = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2s & 1 & -t \\ 2t & 3 & -s \end{vmatrix} = (3t - s) \mathbf{i} + 2(s^2 - t^2) \mathbf{j} + (6s - 2t) \mathbf{k}$$

For the planes to be parallel, we need their normal vectors to be parallel. There must thus exist a constant $\lambda \neq 0$, such that

$$(3t - s) \mathbf{i} + 2(s^2 - t^2) \mathbf{j} + (6s - 2t) \mathbf{k} = \lambda (5 \mathbf{i} - 6 \mathbf{j} + 2 \mathbf{k}).$$

or

$$3t - s = 5\lambda, \quad 2(s^2 - t^2) = -6\lambda, \quad 6s - 2t = 2\lambda.$$

Solving first the 1st and 3rd equation yields $t = 2\lambda$ and $s = \lambda$. Replacing s, t in terms of λ in the 2d equation yields $-6\lambda^2 = -6\lambda$ or $\lambda = 0$ or 1 . Since $\lambda \neq 0$, we have thus $\lambda = 1$

which implies that $s = 1$ and $t = 2$. the point on the surface corresponding to the parameter values is thus $P = (5, 7, -2)$.

15.1, Problem 10

If the surface is parametrized by

$$\mathbf{r}(s, t) = (s + t) \mathbf{i} + (s^2) \mathbf{j} - 2t^2 \mathbf{k},$$

we have

$$\mathbf{r}_s = \mathbf{i} + (2s) \mathbf{j}$$

and

$$\mathbf{r}_t = \mathbf{i} - 4t \mathbf{k}.$$

Thus,

$$\mathbf{r}_s \times \mathbf{r}_t = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2s & 0 \\ 1 & 0 & -4t \end{vmatrix} = (-8st) \mathbf{i} + (4t) \mathbf{j} + (-2s) \mathbf{k}$$

The point $P = (1, 4, -18)$ on the surface corresponds to parameters s, t such that

$$s + t = 1, \quad s^2 = 4, \quad -2t^2 = -18.$$

From the last two equation, we get $s = \pm 2$ and $t = \pm 3$ and for the 1st equation to be satisfies, the only possibility is take $t = 3$ and $s = -2$. A vector normal to the surface at the point $P = (1, 4, -18)$ is thus

$$(\mathbf{r}_s \times \mathbf{r}_t) (-2, 3) = \langle 48, 12, 4 \rangle$$

or, more simply, the vector $\langle 12, 3, 1 \rangle$. The equation for the plane parallel to that tangent plane to the surface at $(1, 4, -18)$ and containing the point $(1, -2, 3)$ is thus

$$12(x - 1) + 3(y + 2) + (z - 3) = 0 \quad \text{or} \quad 12x + 3y + z = 9.$$

2 Section 15.2

15.2, Problem 1

We parametrize S by

$$\mathbf{r}(x, y) = \langle x, y, x^2 + y^2 \rangle, \quad 1 \leq x^2 + y^2 \leq 2.$$

We have

$$\mathbf{r}_x = \langle 1, 0, 2x \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, 2y \rangle.$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x)\mathbf{i} + (-2y)\mathbf{j} + \mathbf{k}$$

and $\|\mathbf{r}_x \times \mathbf{r}_y\| = \sqrt{4x^2 + 4y^2 + 1}$. Letting $D = \{(x, y), 1 \leq x^2 + y^2 \leq 2\}$, we have thus

$$A(S) = \int_S 1 dS = \iint_D \|\mathbf{r}_x \times \mathbf{r}_y\| dA = \iint_D \sqrt{4(x^2 + y^2) + 1} dA$$

Passing to polar coordinates, we obtain

$$\begin{aligned} A(S) &= \int_0^{2\pi} \int_1^{\sqrt{2}} \sqrt{4r^2 + 1} r dr d\theta = 2\pi \left[\frac{1}{12} (4r^2 + 1)^{3/2} \right]_{r=1}^{r=\sqrt{2}} \\ &= \frac{\pi}{6} (9^{3/2} - 5^{3/2}) = \frac{\pi}{6} (27 - 5\sqrt{5}) \end{aligned}$$

15.2, Problem 1

The centroid is the point $(\bar{x}, \bar{y}, \bar{z})$, where

$$\bar{x} = \frac{\int_S x dS}{A(S)}, \quad \bar{y} = \frac{\int_S y dS}{A(S)}, \quad \bar{z} = \frac{\int_S z dS}{A(S)}.$$

We have

$$\int_S x dS = \iint_D x \|\mathbf{r}_x \times \mathbf{r}_y\| dA = \iint_D x \sqrt{4(x^2 + y^2) + 1} dA$$

Passing to polar coordinates, we obtain

$$\begin{aligned} \int_S x dS &= \int_0^{2\pi} \int_1^{\sqrt{2}} r \cos \theta \sqrt{4r^2 + 1} r dr d\theta = \int_0^{2\pi} \cos \theta d\theta \int_1^{\sqrt{2}} r^2 \sqrt{4r^2 + 1} dr \\ &= [\sin \theta]_0^{2\pi} \int_1^{\sqrt{2}} r^2 \sqrt{4r^2 + 1} dr = 0 \end{aligned}$$

since the first factor in the product is zero. Similarly,

$$\int_S y dS = \iint_D x \|\mathbf{r}_y \times \mathbf{r}_y\| dA = \iint_D y \sqrt{4(x^2 + y^2) + 1} dA$$

and, after passing to polar coordinates,

$$\begin{aligned} \int_S y dS &= \int_0^{2\pi} \int_1^{\sqrt{2}} r \sin \theta \sqrt{4r^2 + 1} r dr d\theta = \int_0^{2\pi} \sin \theta d\theta \int_1^{\sqrt{2}} r^2 \sqrt{4r^2 + 1} dr \\ &= [-\cos \theta]_0^{2\pi} \int_1^{\sqrt{2}} r^2 \sqrt{4r^2 + 1} dr = 0. \end{aligned}$$

Finally,

$$\int_S z \, dS = \iint_D (x^2 + y^2) \|\mathbf{r}_y \times \mathbf{r}_y\| \, dA = \iint_D (x^2 + y^2) \sqrt{4(x^2 + y^2) + 1} \, dA$$

and, after passing to polar coordinates,

$$\begin{aligned} \int_S z \, dS &= \int_0^{2\pi} \int_1^{\sqrt{2}} r^2 \sqrt{4r^2 + 1} r \, dr \, d\theta = 2\pi \int_1^{\sqrt{2}} r^3 \sqrt{4r^2 + 1} \, dr \\ &= 2\pi \int_1^{\sqrt{2}} r \left(\frac{4r^2 + 1}{4} - \frac{1}{4} \right) \sqrt{4r^2 + 1} \, dr \\ &= 2\pi \int_1^{\sqrt{2}} r \left(\frac{(4r^2 + 1)^{3/2}}{4} - \frac{(4r^2 + 1)^{1/2}}{4} \right) \, dr \\ &= 2\pi \left[\frac{(4r^2 + 1)^{5/2}}{80} - \frac{(4r^2 + 1)^{3/2}}{48} \right]_1^{\sqrt{2}} \\ &= 2\pi \left(\frac{9^{5/2} - 5^{5/2}}{80} - \frac{9^{3/2} - 5^{3/2}}{48} \right) \\ &= 2\pi \left(\frac{243}{80} - \frac{27}{48} + \frac{5\sqrt{5}}{48} - \frac{25\sqrt{5}}{80} \right) \\ &= \pi \left(\frac{99}{20} - \frac{5}{12}\sqrt{5} \right) \end{aligned}$$

Therefore,

$$\bar{z} = \frac{\int_S z \, dS}{A(S)} = \frac{\pi \left(\frac{99}{20} - \frac{5}{12}\sqrt{5} \right)}{\frac{\pi}{6} (27 - 5\sqrt{5})} = 6 \frac{\left(\frac{99}{20} - \frac{5}{12}\sqrt{5} \right) (27 + 5\sqrt{5})}{604}$$

and the centroid is

$$(\bar{x}, \bar{y}, \bar{z}) = \left(0, 0, 6 \frac{\left(\frac{99}{20} - \frac{5}{12}\sqrt{5} \right) (27 + 5\sqrt{5})}{604} \right).$$

15.2, Problem 16

The surface can be parametrized by

$$\mathbf{r}(x, y) = \langle x, y, 2x \rangle, \quad \text{for } x^2 + y^2 \leq 1.$$

We have

$$\mathbf{r}_x = \langle 1, 0, 2 \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, 0 \rangle$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2 \\ 0 & 1 & 0 \end{vmatrix} = (-2)\mathbf{i} + \mathbf{k} \quad \text{and} \quad \|\mathbf{r}_x \times \mathbf{r}_y\| = \sqrt{5}.$$

Therefore, letting $D = \{(x, y), x^2 + y^2 \leq 1\}$, we have

$$A(S) = \iint_S 1 \, dS = \iint_D \|\mathbf{r}_x \times \mathbf{r}_y\| \, dA = \int_D \sqrt{5} \, dA = \int_0^{2\pi} \int_0^1 \sqrt{5} r \, dr \, d\theta = \pi \sqrt{5}.$$

15.2, Problem 18

The integral to be computed should be replaced by

$$\iint_S x \sqrt{4 + y^2} \, dS$$

(Otherwise, it can't be computed explicitly) Note that the paraboloid $y^2 + 4z = 16$ intersects the plane $z = 0$ when $y = \pm 4$. The surface is thus the graph of the function $z = 4 - y^2/4$ defined for $0 \leq x \leq 1$ and $-4 \leq y \leq 4$. It is thus parametrized by

$$\mathbf{r}(x, y) = \langle x, y, 4 - y^2/4 \rangle, \quad \text{for } 0 \leq x \leq 1, -4 \leq y \leq 4.$$

$$\mathbf{r}_x = \langle 1, 0, 0 \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, -y/2 \rangle$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & 1 & -y/2 \end{vmatrix} = (y/2) \mathbf{j} + \mathbf{k} \quad \text{and} \quad \|\mathbf{r}_x \times \mathbf{r}_y\| = \sqrt{1 + y^2/4}.$$

Therefore, letting $D = \{(x, y), 0 \leq x \leq 1, -4 \leq y \leq 4\}$, we have

$$\begin{aligned} \iint_S x \sqrt{y^2 + 4} \, dS &= \iint_D x \sqrt{y^2 + 4} \|\mathbf{r}_x \times \mathbf{r}_y\| \, dA = \int_D x \sqrt{y^2 + 4} \sqrt{1 + y^2/4} \, dA \\ &= \int_0^1 x \, dx \int_{-4}^4 \frac{y^2 + 4}{2} \, dy = \frac{1}{2} \left[\frac{y^3}{6} + 2y \right]_{-4}^4 \\ &= \frac{56}{3}. \end{aligned}$$

3 Section 16

16, Problem 1

The surface is parametrized by

$$\mathbf{r}(x, y) = \langle x, y, x^2 + y^2 \rangle, \quad \text{for } -1 \leq x \leq 1, -1 \leq y \leq 1.$$

We have

$$\mathbf{r}_x = \langle 1, 0, 2x \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, 2y \rangle.$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 2x \\ 0 & 1 & 2y \end{vmatrix} = (-2x)\mathbf{i} + (-2y)\mathbf{j} + \mathbf{k}$$

Note that since the z -coordinate of the normal is positive, the normal points upwards and our parametrization gives the correct orientation. Therefore, letting $D = \{(x, y), -1 \leq x \leq 1, -1 \leq y \leq 1\}$, we have

$$\begin{aligned} \iint_S [z\mathbf{i} + x^2\mathbf{k}] \cdot d\mathbf{S} &= \iint_D [(x^2 + y^2)\mathbf{i} + x^2\mathbf{k}] \cdot \mathbf{r}_x \times \mathbf{r}_y dA \\ &= \iint_D [(x^2 + y^2)\mathbf{i} + x^2\mathbf{k}] \cdot [(-2x)\mathbf{i} + (-2y)\mathbf{j} + \mathbf{k}] dA \\ &= \int_{-1}^1 \int_{-1}^1 -2x^3 - 2xy^2 + x^2 dx dy = 2 \int_{-1}^1 x^2 dx = \frac{4}{3}. \end{aligned}$$

16, Problem 4

The surface is the graph of the function $z = x^2 + y^2$ defined for $x^2 + y^2 \leq 1$. It is thus parametrized by

$$\mathbf{r}(x, y) = \langle x, y, x^2 + y^2 \rangle, \quad \text{for } x^2 + y^2 \leq 1.$$

As in Problem 1, $\mathbf{r}_x \times \mathbf{r}_y = (-2x)\mathbf{i} + (-2y)\mathbf{j} + \mathbf{k}$. Since the normal points outward (i.e. away from the z -axis), this parametrization gives the correct orientation. Letting $D = \{(x, y), x^2 + y^2 \leq 1\}$, we have

$$\begin{aligned} \iint_S [(4x)\mathbf{i} + (4y)\mathbf{j} + 2\mathbf{k}] \cdot d\mathbf{S} &= \iint_D [(4x)\mathbf{i} + (4y)\mathbf{j} + 2\mathbf{k}] \cdot \mathbf{r}_x \times \mathbf{r}_y dA \\ &= \iint_D [(4x)\mathbf{i} + (4y)\mathbf{j} + 2\mathbf{k}] \cdot [(-2x)\mathbf{i} + (-2y)\mathbf{j} + \mathbf{k}] dA \\ &= \iint_D 2 - 8(x^2 + y^2) dA. \end{aligned}$$

Passing to polar coordinates, this last integral becomes

$$\int_0^{2\pi} \int_0^1 (2 - 8r^2) r dr d\theta = 2\pi \int_0^1 2r - 8r^3 dr = 2\pi [r^2 - 2r^4]_0^1 = -2\pi.$$

Additional problems

Problem 1

Let S be the surface parametrized by

$$\mathbf{r}(u, v) = (v \cos u) \mathbf{i} + (v \sin u) \mathbf{j} + (1 + v) \mathbf{k}, \quad 0 \leq u \leq 2\pi, \quad 1 \leq v \leq 2.$$

Find the surface area of S .

Solution. We have

$$\mathbf{r}_u = (-v \sin u) \mathbf{i} + (v \cos u) \mathbf{j} \quad \text{and} \quad \mathbf{r}_v = (\cos u) \mathbf{i} + (\sin u) \mathbf{j} + \mathbf{k}.$$

Thus,

$$\mathbf{r}_u \times \mathbf{r}_v = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -v \sin u & v \cos u & 0 \\ \cos u & \sin u & 1 \end{vmatrix} = (v \cos u) \mathbf{i} + (v \sin u) \mathbf{j} + (-v) \mathbf{k}$$

and

$$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{v^2 (\cos^2 u + \sin^2 u) + v^2} = \sqrt{2} |v|.$$

Therefore, letting $D = \{(u, v), 0 \leq u \leq 2\pi, 1 \leq v \leq 2\}$, we obtain

$$A(S) = \iint_S 1 \, dS = \iint_D \|\mathbf{r}_u \times \mathbf{r}_v\| \, dA = \int_0^{2\pi} \int_1^2 \sqrt{2} v \, dv \, du = 2\pi \sqrt{2} \int_1^2 v \, dv = 3\pi \sqrt{2}.$$

Problem 2

Let S be the part of the paraboloid $x^2 + y^2 - z^2 = 1$. A parametrization for S is given by

$$\mathbf{r}(u, v) = (\cos u - v \sin u) \mathbf{i} + (\sin u + v \cos u) \mathbf{j} + (v) \mathbf{k}, \quad 0 \leq u \leq 2\pi, \quad 1 \leq v \leq 2.$$

Compute the surface integral $\iint_S z \, dS$.

Solution. We compute

$$\mathbf{r}_u = (-\sin u - v \cos u) \mathbf{i} + (\cos u - v \sin u) \mathbf{j} \quad \text{and} \quad \mathbf{r}_v = (-\sin u) \mathbf{i} + (\cos u) \mathbf{j} + \mathbf{k}.$$

and

$$\begin{aligned} \mathbf{r}_u \times \mathbf{r}_v &= \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ (-\sin u - v \cos u) & (\cos u - v \sin u) & 0 \\ -\sin u & \cos u & 1 \end{vmatrix} \\ &= (\cos u - v \sin u) \mathbf{i} + (\sin u + v \cos u) \mathbf{j} + (-v) \mathbf{k}. \end{aligned}$$

Thus,

$$\|\mathbf{r}_u \times \mathbf{r}_v\| = \sqrt{(\cos u - v \sin u)^2 + (\sin u + v \cos u)^2 + v^2} = \sqrt{1 + 2v^2}.$$

Therefore, letting $D = \{(u, v), 0 \leq u \leq 2\pi, 1 \leq v \leq 2\}$, we obtain

$$\begin{aligned} \iint_S z \, dS &= \iint_D v \|\mathbf{r}_u \times \mathbf{r}_v\| \, dA = \int_0^{2\pi} \int_1^2 v \sqrt{1 + 2v^2} \, dv \, du \\ &= 2\pi \left[\frac{(1 + 2v^2)^{3/2}}{6} \right]_1^2 = \frac{\pi}{3} (9^{3/2} - 3^{3/2}) \\ &= \pi (9 - \sqrt{3}). \end{aligned}$$

Problem 3

Let $\mathbf{F}(x, y, z) = (-z) \mathbf{i} + (2x) \mathbf{j} + (y) \mathbf{k}$. Let C be a circle of radius R lying in the plane $2x + y + 3z = 6$. What are the possible values of $\oint_C \mathbf{F} \, d\mathbf{r}$?

Solution. We apply Stokes' theorem. We first compute

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -z & 2x & y \end{vmatrix} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}.$$

The plane $2x + y + 3z = 6$ can be parametrized by

$$\mathbf{r}(x, y) = \langle x, y, 2 - 2x/3 - y/3 \rangle.$$

We have

$$\mathbf{r}_x = \langle 1, 0, -2/3 \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, -1/3 \rangle.$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & -2/3 \\ 0 & 1 & -1/3 \end{vmatrix} = (2/3) \mathbf{i} + (1/3) \mathbf{j} + \mathbf{k}$$

If D is the disk in the plane $2x + y + 3z = 6$ enclosed by the circle C and R is the projection of D onto the x, y plane (so that D is the image of R under the mapping \mathbf{r}), we have, using Stokes' theorem, if C and D have compatible orientations, that

$$\oint_C \mathbf{F} \, d\mathbf{r} = \iint_D \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_R \langle 1, -1, 2 \rangle \cdot \langle 2/3, 1/3, 1 \rangle \, dA = \frac{7}{3} A(R).$$

Note that

$$A(D) = \iint_D dS = \iint_R \|\mathbf{r}_x \times \mathbf{r}_y\| \, dA = \iint_R \frac{\sqrt{14}}{3} \, dA = \frac{\sqrt{14}}{3} A(R).$$

Thus,

$$\oint_C \mathbf{F} d\mathbf{r} = \pm \frac{7}{3} \frac{3}{\sqrt{14}} A(D) = \pm \frac{7}{\sqrt{14}} \pi R^2 = \pm \frac{\sqrt{14}}{2} \pi R^2,$$

where the minus sign would appear when the orientation of C and D are not compatible.

Problem 4

Let $\mathbf{F}(x, y, z) = (-y) \mathbf{i} + (x) \mathbf{j} + (z) \mathbf{k}$. Let C be a curve parametrized by

$$\mathbf{r}(t) = (\cos t) \mathbf{i} + (\sin t) \mathbf{j} + (\sin^2 t) \mathbf{k}, \quad 0 \leq t \leq 2\pi,$$

oriented counterclockwise as viewed from above and let S be the part of the surface $z = y^2$ inside the cylinder $x^2 + y^2 = 1$ oriented such that the normal is pointing upward. Note that C is the boundary of S and that their orientations are compatible. Compute the integral $\oint_C \mathbf{F} d\mathbf{r}$ directly and also using Stoke's theorem.

Solution. We first compute the integral directly. We have

$$\mathbf{r}'(t) = (-\sin t) \mathbf{i} + (\cos t) \mathbf{j} + (2 \sin t \cos t) \mathbf{k}$$

Thus,

$$\begin{aligned} \oint_C \mathbf{F} d\mathbf{r} &= \int_0^{2\pi} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_0^{2\pi} \langle -\sin t, \cos t, \sin^2 t \rangle \cdot \langle -\sin t, \cos t, 2 \sin t \cos t \rangle dt \\ &= \int_0^{2\pi} 1 + 2 \sin^3 t \cos t dt = \left[t + \frac{\sin^4 t}{2} \right]_0^{2\pi} = 2\pi. \end{aligned}$$

We then compute the integral using Stoke's theorem. We first compute

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ -y & x & z \end{vmatrix} = 2\mathbf{k}.$$

The surface S can be parametrized by

$$\mathbf{r}(x, y) = \langle x, y, y^2 \rangle, \quad \text{where } x^2 + y^2 \leq 1.$$

We have

$$\mathbf{r}_x = \langle 1, 0, 0 \rangle \quad \text{and} \quad \mathbf{r}_y = \langle 0, 1, 2y \rangle.$$

Hence,

$$\mathbf{r}_x \times \mathbf{r}_y = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 0 & 0 \\ 0 & 1 & 2y \end{vmatrix} = (-2y) \mathbf{j} + \mathbf{k}$$

Therefore, letting $D = \{(x, y), x^2 + y^2 \leq 1\}$, we have

$$\begin{aligned} \oint_C \mathbf{F} d\mathbf{r} &= \iint_S \nabla \times \mathbf{F} \cdot d\mathbf{S} = \iint_D \langle 0, 0, 2 \rangle \cdot \langle 0, -2y, 1 \rangle dA \\ &= \iint_D 2 dA = \int_0^{2\pi} \int_0^1 2r dr d\theta \\ &= 2\pi. \end{aligned}$$