
Solutions to some of the problems in
Chapters 15 and 16 of Cain & Herod.

1 Section 15.1

15.1, Problem 1

We use x = u and y = v as parameters. The surface can then be parametrized by

r(u, v) = 〈u, v,
√

u + 2 v2〉, u, v ≥ 0.

15.1, Problem 2

If we let x′ = 2 x, y′ = y and z′ = 2
√

2 z, the equation becomes (x′)2 + (y′)2 + (z′)2 = 42,
which is a sphere centered at the origin with radius 4 in the x′, y′, z′ coordinates. We can
use spherical coordinates to parametrize the sphere:

x′ = 4 cos θ sin φ, y′ = 4 sin θ sin φ, z′ = 4 cos φ, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π.

Reverting back to the x, y, z coordinates, we have thus

x = 2 cos θ sin φ, y = 4 sin θ sin φ, z =
√

2 cos φ, 0 ≤ θ < 2 π, 0 ≤ φ ≤ π.

or, letting u = θ and v = φ,

r(u, v) = 〈2 cos u sin v, 4 sin u sin v,
√

2 cos v〉, 0 ≤ u ≤ 2 π, 0 ≤ v ≤ π.

15.1, Problem 3

If x2 + y2 = 1, we can write, using polar coordinates that x = cos θ and y = sin θ for
some θ with 0 ≤ θ < 2 π. Using u = θ and v = z as parameters, the cylinder can thus be
parametrized by

r(u, v) = 〈cos u, sin u, v〉, 0 ≤ u ≤ 2 π, −∞ < v < ∞.

15.1, Problem 4

If the surface is parametrized by

r(u, v) = 〈u cos v, u sin v, u〉, 0 ≤ v ≤ 2 π, −1 ≤ u ≤ 1,
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we have x2 + y2 = u2 cos2 v + u2 sin2 v = u2 = z2. The surface is thus the part of the
hyperboloid x2 + y2 = z2 between the planes z = −1 and z = 1.

15.1, Problem 5

If the surface is parametrized by

r(u, v) = 〈u cos v, u sin v, u2〉, 0 ≤ v ≤ 2 π, 1 ≤ u ≤ 2,

we have x2 + y2 = u2 cos2 v + u2 sin2 v = u2 = z. The surface is thus the part of the
paraboloid z = x2 + y2 between the planes z = 1 and z = 2.

15.1, Problem 6

The equation for the sphere of radius 3 centered at the point (1, 2, 3) is

(x− 1)2 + (y − 2)2 + (z − 3)2 = 32.

If we let x′ = x− 1, y′ = y− 2 and z′ = z − 3, we get the equation (x′)2 + (y′)2 + (z′)2 = 32,
which is a sphere centered at the origin with radius 3 in the x′, y′, z′ coordinates. We can
use spherical coordinates to parametrize the sphere:

x′ = 3 cos θ sin φ, y′ = 3 sin θ sin φ, z′ = 3 cos φ, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π.

Reverting back to the x, y, z coordinates, we have thus

x = 1 + 3 cos θ sin φ, y′ = 2 + 3 sin θ sin φ, z′ = 3 + 3 cos φ, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π.

or, letting u = θ and v = φ,

r(u, v) = 〈1 + 3 cos u sin v, 2 + 3 sin u sin v, 3 + 3 cos v〉, 0 ≤ u ≤ 2 π, 0 ≤ v ≤ π.

15.1, Problem 7

We use the parametrization

x = a cos θ sin φ, y = a sin θ sin φ, z = a cos φ, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π.

or
r(φ, θ) = 〈a cos θ sin φ, a sin θ sin φ, a cos φ〉, 0 ≤ θ ≤ 2 π, 0 ≤ φ ≤ π.

We have
rφ = 〈a cos θ cos φ, a sin θ cos φ, −a sin φ〉,

and
rθ = 〈−a sin θ sin φ, a cos θ sin φ, 0〉.

Thus,

rφ × rθ = 〈a2 cos θ sin2 φ, a2 sin θ sin2 φ, a2 cos φ sin φ〉 = a sin φ r(φ, θ).
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This implies that the normal vector rφ × rθ to the sphere at a point P on the surface

has the same direction has the direction vector of that point,
−→
OP . In particular, if P =

( a√
3
, a√

3
, − a√

3
), the normal vector will have the same direction as 〈 a√

3
, a√

3
, − a√

3
〉 or as

〈1, 1, −1〉. The normal line at P as thus vector equation

s(t) = 〈 a√
3
,

a√
3
, − a√

3
〉+ t 〈1, 1, −1〉, −∞ < t < ∞,

or, more simply,
s(t) = t 〈1, 1, −1〉, −∞ < t < ∞.

15.1, Problem 8

Following problem 7 above, we have that the vector 〈1, 1, −1〉 is normal to the sphere at
the point P = ( a√

3
, a√

3
, − a√

3
). The tangent plane at P has thus equation

(x− a√
3
) + (y − a√

3
)− (z +

a√
3
) = 0 or x + y − z =

√
3 a.

15.1, Problem 9

To find the points on the surface parametrized by

r(s, t) = (s2 + t2) i + (s + 3 t) j− s tk

at which the tangent plane is parallel to the plane 5 x − 6 y + 2 z = 7, we fist compute the
normal vector rs × rt. We have

rs = (2 s) i + j− tk

and
rt = (2 t) i + 3 j− sk.

Thus,

rs × rt =

∣∣∣∣∣∣

i j k
2 s 1 −t
2 t 3 −s

∣∣∣∣∣∣
= (3 t− s) i + 2 (s2 − t2) j + (6 s− 2 t)k

For the planes to be parallel, we need their normal vectors to be parallel. There must thus
exist a constant λ 6= 0, such that

(3 t− s) i + 2 (s2 − t2) j + (6 s− 2 t)k = λ (5 i− 6 j + 2k).

or
3 t− s = 5 λ, 2 (s2 − t2) = −6 λ, 6 s− 2 t = 2 λ.

Solving first the 1st and 3rd equation yields t = 2 λ and s = λ. Replacing s, t in terms of
λ in the 2d equation yields −6 λ2 = −6λ or λ = 0 or 1. Since λ 6= 0, we have thus λ = 1
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which implies that s = 1 and t = 2. the point on the surface corresponding to the parameter
values is thus P = (5, 7, −2).

15.1, Problem 10

If the surface is parametrized by

r(s, t) = (s + t) i + (s2) j− 2 t2 k,

we have
rs = i + (2 s) j

and
rt = i− 4 tk.

Thus,

rs × rt =

∣∣∣∣∣∣

i j k
1 2 s 0
1 0 −4 t

∣∣∣∣∣∣
= (−8 s t) i + (4 t) j + (−2 s)k

The point P = (1, 4, −18) on the surface corresponds to parameters s, t such that

s + t = 1, s2 = 4, −2 t2 = −18.

From the last two equation, we get s = ±2 and t = ±3 and for the 1st equation to be
satisfies, the only possibility is take t = 3 and s = −2. A vector normal to the surface at the
point P = (1, 4, −18) is thus

(rs × rt) (−2, 3) = 〈48, 12, 4〉

or, more simply, the vector 〈12, 3, 1〉. The equation for the plane parallel to that tangent
plane to the surface at (1, 4, −18) and containing the point (1, −2, 3) is thus

12 (x− 1) + 3 (y + 2) + (z − 3) = 0 or 12 x + 3 y + z = 9.

2 Section 15.2

15.2, Problem 1

We parametrize S by

r(x, y) = 〈x, y, x2 + y2〉, 1 ≤ x2 + y2 ≤ 2.

We have
rx = 〈1, 0, 2 x〉 and ry = 〈0, 1, 2 y〉.

Hence,
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rx × ry =

∣∣∣∣∣∣

i j k
1 0 2 x
0 1 2 y

∣∣∣∣∣∣
= (−2 x) i + (−2 y) j + k

and ‖rx × ry‖ =
√

4 x2 + 4 y2 + 1. Letting D = {(x, y), 1 ≤ x2 + y2 ≤ 2}, we have thus

A(S) =

∫

S

1 dS =

∫∫

D

‖rx × ry‖ dA =

∫∫

D

√
4 (x2 + y2) + 1 dA

Passing to polar coordinates, we obtain

A(S) =

∫ 2 π

0

∫ √
2

1

√
4 r2 + 1 r dr dθ = 2 π

[
1

12
(4 r2 + 1)3/2

]r=
√

2

r=1

=
π

6
(93/2 − 53/2) =

π

6
(27− 5

√
5)

15.2, Problem 1

The centroid is the point (x, y, z), where

x =

∫
S

x dS

A(S)
, y =

∫
S

y dS

A(S)
, z =

∫
S

z dS

A(S)
.

We have ∫

S

x dS =

∫∫

D

x ‖rx × ry‖ dA =

∫∫

D

x
√

4 (x2 + y2) + 1 dA

Passing to polar coordinates, we obtain

∫

S

x dS =

∫ 2 π

0

∫ √
2

1

r cos θ
√

4 r2 + 1 r dr dθ =

∫ 2 π

0

cos θ dθ

∫ √
2

1

r2
√

4 r2 + 1 dr

= [sin θ]2 π
0

∫ √
2

1

r2
√

4 r2 + 1 dr = 0

since the first factor in the product is zero. Similarly,

∫

S

y dS =

∫∫

D

x ‖ry × ry‖ dA =

∫∫

D

y
√

4 (x2 + y2) + 1 dA

and, after passing to polar coordinates,

∫

S

y dS =

∫ 2 π

0

∫ √
2

1

r sin θ
√

4 r2 + 1 r dr dθ =

∫ 2 π

0

sin θ dθ

∫ √
2

1

r2
√

4 r2 + 1 dr

= [− cos θ]2 π
0

∫ √
2

1

r2
√

4 r2 + 1 dr = 0.
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Finally,
∫

S

z dS =

∫∫

D

(x2 + y2) ‖ry × ry‖ dA =

∫∫

D

(x2 + y2)
√

4 (x2 + y2) + 1 dA

and, after passing to polar coordinates,

∫

S

z dS =

∫ 2 π

0

∫ √
2

1

r2
√

4 r2 + 1 r dr dθ = 2 π

∫ √
2

1

r3
√

4 r2 + 1 dr

= 2 π

∫ √
2

1

r

(
4r2 + 1

4
− 1

4

) √
4 r2 + 1 dr

= 2 π

∫ √
2

1

r

(
(4r2 + 1)3/2

4
− (4r2 + 1)1/2

4

)
dr

= 2 π

[
(4r2 + 1)5/2

80
− (4r2 + 1)3/2

48

]√2

1

= 2 π

(
95/2 − 55/2

80
− 93/2 − 53/2

48

)

= 2 π

(
243

80
− 27

48
+

5
√

5

48
− 25

√
5

80

)

= π

(
99

20
− 5

12

√
5

)

Therefore,

z =

∫
S

z dS

A(S)
=

π
(

99
20
− 5

12

√
5
)

π
6

(27− 5
√

5)
= 6

(99
20
− 5

12

√
5) (27 + 5

√
5)

604

and the centroid is

(x, y, z) =

(
0, 0, 6

(99
20
− 5

12

√
5) (27 + 5

√
5)

604

)
.

15.2, Problem 16

The surface can be parametrized by

r(x, y) = 〈x, y, 2 x〉, for x2 + y2 ≤ 1.

We have
rx = 〈1, 0, 2〉 and ry = 〈0, 1, 0〉

Hence,

rx × ry =

∣∣∣∣∣∣

i j k
1 0 2
0 1 0

∣∣∣∣∣∣
= (−2) i + k and ‖rx × ry‖ =

√
5.
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Therefore, letting D = {(x, y), x2 + y2 ≤ 1}, we have

A(S) =

∫∫

S

1 dS =

∫∫

D

‖rx × ry‖ dA =

∫

D

√
5 dA =

∫ 2 π

0

∫ 1

0

√
5 r dr dθ = π

√
5.

15.2, Problem 18

The integral to be computed should be replaced by

∫∫

S

x
√

4 + y2 dS

(Otherwise, it can’t be computed explicitely) Note that the paraboloid y2+4 z = 16 intersects
the plane z = 0 when y = ±4. The surface is thus the graph of the function z = 4 − y2/4
defined for 0 ≤ x ≤ 1 and −4 ≤ y ≤ 4. It is thus parametrized by

r(x, y) = 〈x, y, 4− y2/4〉, for 0 ≤ x ≤ 1, −4 ≤ y ≤ 4.

rx = 〈1, 0, 0〉 and ry = 〈0, 1, −y/2〉
Hence,

rx × ry =

∣∣∣∣∣∣

i j k
1 0 0
0 1 − y/2

∣∣∣∣∣∣
= (y/2) j + k and ‖rx × ry‖ =

√
1 + y2/4.

Therefore, letting D = {(x, y), 0 ≤ x ≤ 1, −4 ≤ y ≤ 4}, we have

∫∫

S

x
√

y2 + 4 dS =

∫∫

D

x
√

y2 + 4 ‖rx × ry‖ dA =

∫

D

x
√

y2 + 4
√

1 + y2/4 dA

=

∫ 1

0

x dx

∫ 4

−4

y2 + 4

2
dy =

1

2

[
y3

6
+ 2 y

]4

−4

=
56

3
.
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3 Section 16

16, Problem 1

The surface is parametrized by

r(x, y) = 〈x, y, x2 + y2〉, for − 1 ≤ x ≤ 1, −1 ≤ y ≤ 1.

We have
rx = 〈1, 0, 2 x〉 and ry = 〈0, 1, 2 y〉.

Hence,

rx × ry =

∣∣∣∣∣∣

i j k
1 0 2 x
0 1 2 y

∣∣∣∣∣∣
= (−2 x) i + (−2 y) j + k

Note that since the z-coordinate of the normal is positive, the normal points upwards and
our parametrization gives the correct orientation. Therefore, letting D = {(x, y), −1 ≤ x ≤
1, −1 ≤ y ≤ 1}, we have

∫∫

S

[
z i + x2 k

] · dS =

∫∫

D

[
(x2 + y2) i + x2 k

] · rx × ry dA

=

∫∫

D

[
(x2 + y2) i + x2 k

] · [(−2 x) i + (−2 y) j + k] dA

=

∫ 1

−1

∫ 1

−1

−2 x3 − 2 x y2 + x2 dx dy = 2

∫ 1

−1

x2 dx =
4

3
.

16, Problem 4

The surface is the graph of the function z = x2 + y2 defined for x2 + y2 ≤ 1. It is thus
parametrized by

r(x, y) = 〈x, y, x2 + y2〉, for x2 + y2 ≤ 1.

As in Problem 1, rx × ry = (−2 x) i + (−2 y) j + k. Since the normal points outward (i.e.
away from the z-axis), this parametrization give sthe correct orientation. Letting D =
{(x, y), x2 + y2 ≤ 1}, we have
∫∫

S

[(4 x) i + (4 y) j + 2k] · dS =

∫∫

D

[(4 x) i + (4 y) j + 2k] · rx × ry dA

=

∫∫

D

[(4 x) i + (4 y) j + 2k] · [(−2 x) i + (−2 y) j + k] dA

=

∫∫

D

2− 8 (x2 + y2) dA.

Passing to polar coordinates, this last integral becomes
∫ 2 π

0

∫ 1

0

(2− 8 r2) r dr dθ = 2 π

∫ 1

0

2 r − 8 r3 dr = 2 π
[
r2 − 2 r4

]1

0
= −2 π.
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Additional problems

Problem 1

Let S be the surface parametrized by

r(u, v) = (v cos u) i + (v sin u) j + (1 + v)k, 0 ≤ u ≤ 2 π, 1 ≤ v ≤ 2.

Find the surface area of S.

Solution. We have

ru = (−v sin u) i + (v cos u) j and rv = (cos u) i + (sin u) j + k.

Thus,

ru × rv =

∣∣∣∣∣∣

i j k
−v sin u v cos u 0

cos u sin u 1

∣∣∣∣∣∣
= (v cos u) i + (v sin u) j + (−v)k

and

‖ru × rv‖ =
√

v2 (cos2 u + sin2 u) + v2 =
√

2 |v|.
Therefore, letting D = {(u, v), 0 ≤ u ≤ 2 π, 1 ≤ v ≤ 2}, we obtain

A(S) =

∫∫

S

1 dS =

∫∫

D

‖ru × rv‖ dA =

∫ 2 π

0

∫ 2

1

√
2 v dv du = 2 π

√
2

∫ 2

1

v dv = 3 π
√

2.

Problem 2

Let S be the part of the paraboloid x2 + y2− z2 = 1 A parametrization for S is given by

r(u, v) = (cos u− v sin u) i + (sin u + v cos u) j + (v)k, 0 ≤ u ≤ 2 π, 1 ≤ v ≤ 2.

Compute the surface integral
∫∫

S
z dS.

Solution. We compute

ru = (− sin u− v cos u) i + (cos u− v sin u) j and rv = (− sin u) i + (cos u) j + k.

and

ru × rv =

∣∣∣∣∣∣

i j k
(− sin u− v cos u) (cos u− v sin u) 0

− sin u cos u 1

∣∣∣∣∣∣
= (cos u− v sin u) i + (sin u + v cos u) j + (−v)k.
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Thus,
‖ru × rv‖ =

√
(cos u− v sin u)2 + (sin u + v cos u)2 + v2 =

√
1 + 2 v2.

Therefore, letting D = {(u, v), 0 ≤ u ≤ 2 π, 1 ≤ v ≤ 2}, we obtain

∫∫

S

z dS =

∫∫

D

v ‖ru × rv‖ dA =

∫ 2 π

0

∫ 2

1

v
√

1 + 2 v2 dv du

= 2 π

[
(1 + 2 v2)3/2

6

]2

1

=
π

3

(
93/2 − 33/2

)

= π
(
9−

√
3
)

.

Problem 3

Let F(x, y, z) = (−z) i + (2 x) j + (y)k. Let C be a circle of radius R lying in the plane
2 x + y + 3 z = 6. What are the possible values of

∮
C

F dr?

Solution. We apply Stokes’ theorem. We first compute

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

−z 2 x y

∣∣∣∣∣∣
= i− j + 2k.

The plane 2 x + y + 3 z = 6 can be parametrized by

r(x, y) = 〈x, y, 2− 2 x/3− y/3〉.

We have
rx = 〈1, 0, −2/3〉 and ry = 〈0, 1, −1/3〉.

Hence,

rx × ry =

∣∣∣∣∣∣

i j k
1 0 −2/3
0 1 −1/3

∣∣∣∣∣∣
= (2/3) i + (1/3) j + k

If D is the disk in the plane 2 x+y +3 z = 6 enclosed by the circle C and R is the projection
of D onto the x, y plane (so that D is the image of R under the mapping r), we have, using
Stokes’ theorem, if C and D have compatible orientations, that

∮

C

F dr =

∫∫

D

∇× F · dS =

∫∫

R

〈1, −1, 2〉 · 〈2/3, 1/3, 1〉 dA =
7

3
A(R).

Note that

A(D) =

∫∫

D

dS =

∫∫

R

‖rx × ry‖ dA =

∫∫

R

√
14

3
dA =

√
14

3
A(R).
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Thus, ∮

C

F dr = ± 7

3

3√
14

A(D) = ± 7√
14

π R2 = ±
√

14

2
π R2,

where the minus sign would appear when the orientation of C and D are not compatible.

Problem 4

Let F(x, y, z) = (−y) i + (x) j + (z)k. Let C be a curve parametrized by

r(t) = (cos t) i + (sin t) j + (sin2 t)k, 0 ≤ t ≤ 2 π,

oriented counterclockwise as viewed from above and let S be the part of the surface z = y2

inside the cylinder x2 + y2 = 1 oriented such that the normal is pointing upward. Note that
C is the boundary of S and that their orientations are compatible. Compute the integral∮

C
F dr directly and also using Stoke’ theorem.

Solution. We first compute the integral directly. We have

r′(t) = (− sin t) i + (cos t) j + (2 sin t cos t)k

Thus,
∮

C

F dr =

∫ 2 π

0

F(r(t)) · r′(t) dt =

∫ 2 π

0

〈− sin t, cos t, sin2 t〉 · 〈− sin t, cos t, 2 sin t cos t〉 dt

=

∫ 2 π

0

1 + 2 sin3 t cos t dt =

[
t +

sin4 t

2

]2 π

0

= 2 π.

We then compute the integral using Stoke’ theorem. We first compute

∇× F =

∣∣∣∣∣∣

i j k
∂
∂x

∂
∂y

∂
∂z

−y x z

∣∣∣∣∣∣
= 2k.

The surface S can be parametrized by

r(x, y) = 〈x, y, y2〉, where x2 + y2 ≤ 1.

We have
rx = 〈1, 0, 0〉 and ry = 〈0, 1, 2 y〉.

Hence,

rx × ry =

∣∣∣∣∣∣

i j k
1 0 0
0 1 2 y

∣∣∣∣∣∣
= (−2 y) j + k

Therefore, letting D = {(x, y), x2 + y2 ≤ 1}, we have∮

C

F dr =

∫∫

S

∇× F · dS =

∫∫

D

〈0, 0, 2〉 · 〈0, −2 y, 1〉 dA

=

∫∫

D

2 dA =

∫ 2 π

0

∫ 1

0

2 r dr dθ

= 2 π.
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