Spectral Methods

PART |V

Spectral Methods

e ADDITIONAL REFERENCES
— R. PeyretSpectral methods for incompressible viscous flpringer (2002),

— B. Mercier,An introduction to the numerical analysis of spectral meho
Springer (1989),

— C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zagectral Methods in
Fluid Dynamics Springer (1988).
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METHOD OF WEIGHTED RESIDUALS(I)

e SPECTRALMETHODS belong to the broader category WIEIGHTED
RESIDUAL METHODS, for which approximations are defined in terms of
series expansions, such that a measure of the error knoWws RE$IDUAL
IS set to be zero in some approximate sense

e In general, an approximatiam (X) to u(x) is constructed using a set of basis
functions¢(x), k=0,...,N (note thathy(x) need not b@RTHOGONAL)

U2 S Gedk(X), a<x<b, Iy={L...,N}
keln

e Residualfor two central problems:
— APPROXIMATION of a functionu:

Rn(X) =u—un
— APPROXIMATE sOLUTIONoOf a (differential) equatiomu— f = 0O:

Ry(X) = Luy — f
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METHOD OF WEIGHTED RESIDUALS(II)

e In general, the residuddy in canceled in the following sense:
b — .
(Ru.Yihw. = | w.RuBidx=0, i€ly,

wherey;j(x), i € Iy are theTRIAL (TEST) FUNCTIONS andw : [a,b] — R™
are thewelIGHTS

e Spectral Methodis obtained by:

— selecting theASIS FUNCTIONS to form anORTHOGONALSystem
under the weighiv:

((I)i?q)k)w — 6ik: i7 ke IN and
— selecting the trial functions to coincide with the basisdiions:
Yk =k, kely

with the weightsv, = w ( SPECTRALGALERKIN APPROACH), or

— selecting the trial functions as
Wk = 0(X—Xk), Xk € (a,b),

wherexy are chosen in a non—arbitrary manner, and the weights are
W, = 1 (COLLOCATION, “PSEUDG-SPECTRAL APPROACH)
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METHOD OF WEIGHTED RESIDUALS(I11)

e Note that the residud®y vanishes
— in the mean sense specified by the weilghh the Galerkin approach

— pointwise at the pointgy in the collocation approach
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APPROXIMATION OFFUNCTIONS (I) —
GALERKIN METHOD

Assume that the basis functio{lq;k}t'zl form an orthogonal set

Define the residual .

Ru(X) =u—un=u— % OGPk

k=0
Cancellation of the residual in the mean sense (with the ey

(RN,(Pi)w:/

a

b N
(u— Zqu)k) diwdx=0, i=0,...,N

k=0

() denotes complex conjugation (cf. definition of the innerdurct)

Orthogonality of the basis / trial functions thus allows asletermine the
coefficientsug by evaluating the expressions

b
Gk:/ U(ITde)Q k=0,...,N
a

Note that, for this problem, the Galerkin approach is edeivato theLEAST
SQUARESMETHOD.
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APPROXIMATION OFFUNCTIONS (Il) —
COLLOCATION METHOD

e Define the residual .

R =u—un=u— % OGPk
K=0

e POINTWISE cancellation of the residual
N

Z Gk(l)k(Xi) :U(Xi), 1=0,...,N

k=0
Determination of the coefficientg thus requires solution of an algebraic
system. Existence and uniqueness of solutions requiresitfd (%)} # 0
(condition on the choice of the collocation poingsand the basis functions

dk)

For certain basis pairs of basis functiajsand collocation pointg; the
above system can be easily inverted and therefore detetionraf U, may
be reduced to evaluation of simple expressions

For this problem, the collocation method thus coincide$nait
INTERPOLATION TECHNIQUEbased on the set of poin{s; }
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APPROXIMATION OFPDES (I) —
GALERKIN METHOD

e Consider a generic PDE problem
Lfu—1=0 a<x<b
B u=g_ X=a

Biu=04 X=Db,

whereL is a linear, second—order differential operator, ghdand B,
represent appropriate boundary conditions (Dirichletitdann, or Robin)

Reduce the problem to an equivaler@tMOGENEOUSformulation via a
“lifting” technique, i.e., substitutel = 0+ v, whereu'is an arbitrary function
satisfying the boundary conditions above and the new (hemegus)

problem forvis
Lv—h=0 a<x<b

B v=0 X=a

B,v=0 X =D,
whereh = f — L
The reason for this transformation is that the basis funstig (usually)
satisfy homogeneous boundary conditions.
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APPROXIMATION OFPDEs (Il) —
GALERKIN METHOD

N
Rn(X) = Lvy —h, where vy = Z Vkdk(X)
k=0

satisfies (“by construction”) the boundary conditions

e The residual

e Cancellation of the residual in the mean (cHE WEAK FORMULATION )

(Rn, 0w = (Lvn — h,0i)w, 1=0,...,N
Thus

N
Z \7k<L¢k7¢i)W: (h7¢i)W7 | = 07"'7N7
k=0

where the scalar product ¢y, ¢;)w can be accurately evaluated using
properties of the basis functios and(h, ¢; )w = hi

e An (N+1)x (N+ 1) algebraic system is obtained with the matrix
determined by
— the properties of the basis functio{nl;k}{}':l
— the properties of the operatar
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APPROXIMATION OFPDEs (lll) —
COLLOCATION METHOD

e The residual (corresponding to the original inhomogengwablem)
N

Rn(X) = Luy — f, where uy = z Ukdk(X)
K=0

e Pointwise cancellation of the residual, including the laany nodes:
LUN(Xi):f(Xi) i=1,....N—1
B_UN(X0) =g

B Un(XN) = 04,

This results in ariN + 1) x (N + 1) algebraic system. Note that depending
on the properties of the basjg$o,...,dn}, this system may be singular.

Sometimes an alternative formulation is useful, where taahvalues
Un(Xj) ] =0,...,N, rather than the expansion coefficiengsK=0,...,N
are unknown. The advantage is a convenient form of the esiore$or the

derivative 0 N 0
uy (X)) = di un(X),
N j; 1] J

whered(P) is ap-TH ORDER DIFFERENTIATION MATRIX.
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ORTHONORMAL SYSTEMS(l) —
CONSTRUCTION

e THEOREM— LetH be a separable Hilbert space anda compact
Hermitian operator. Then, there exists a sequg¢encry and{Wh }nen
such that

1. A\p € R,
2. the family{W }ncny fOrmsA COMPLETE BASISIn H

e Systems of orthogonal functions are therefore related éatsa of certain
operators, hence the nameECTRAL METHODS
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ORTHONORMAL SYSTEMS(Il) —

EXAMPLE # 1
Let7Z : Ly(0,m) — Lo(0, 1) be defined for allf € Lo(0, ) by 7 f = u, where
u is the solution of the Dirichlet problem

—u' = f

u(0) =u(m =0
Compactness af follows from the Lax—Milgram lemma and compact
embeddedness &f(0, ) in Ly (0, ).

EIGENVALUES AND EIGENVECTORS
1

M= 15 and W = v2sin(kx) for k> 1

Thus, each function € L(0, 1) can be represented as

u(x) =2 Y GWk(x),

k>1

where Gy = (UW)L, = ¥2 [ITu(x) sin(kx) dx.

Uniform (pointwise) convergence is not guaranteed (onlyJisense)!
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ORTHONORMAL SYSTEMS(III) —

EXAMPLE # 2
Let 7 : Ly(0,m) — L2(0, 1) be defined for alf € Lo(0,m) by 7 f = u, where
uis the solution of the Neumann problem

—u' +u=f
{u’(O) =u(m=0
Compactness of follows from the Lax—Milgram lemma and compact
embeddedness &f1(0, ) in Ly(0, ).
EIGENVALUES AND EIGENVECTORS

1
Ak = ke and Wo(x) = 1, W, = v'2cogkx) for k> 1

Thus, each function € L(0, 1) can be represented as

u(x) = v2'y Gk(x),

k>0

where Gy = (UW)L, = ¥2 [Iu(x) cogkx) dX.

Uniform (pointwise) convergence is not guaranteed (onlydisense)!
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ORTHONORMAL SYSTEMS(IV) —
EXAMPLE # 3

e Expansion irsINE SERIESgood for functions vanishing on the boundaries

e Expansion incOSINE SERIESyood for functions with first derivatives
vanishing on the boundaries

e Combining sine and cosine expansions we obtairftherRIER SERIES
EXPANSIONWwith the basis functions (ibho(—Tt 7))

Wi (x) = €%, for k>0

W form a Hilbert basis with better properties then sine orgeseries alone.

e FOURIER SERIESVS. FOURIER TRANSFORM —
— FOURIER TRANSFORM: T1: Lo(R) — La(R),

Tl[U](k):/_Ze_iqu(x)dx keR

— FOURIER SERIES: Fo : Lo(0,2m) — Iy, (i.e., bounded to discrete)

2n .
Gk:jfz[u](k):/o ey dx, k=0,12,...
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ORTHONORMAL SYSTEMS(V) —
POLYNOMIAL APPROXIMATION

e WEIERSTRASSAPPROXIMATION THEOREM — To any functionf (x) that
IS continuous irja, b] and to any real number> 0 there corresponds a
polynomialP(x) such that|P(x) — f(X)lcap) <&, i.e. the set of
polynomials isDENSEIn the Banach spadg(a, b)

(C(a, b) is the Banach space with the nofh(|c g p) = MaXc(ap | f(X)]

e Thus the power functions’, k= 0,1, ... represent a natural basis@ta, b)

e QUESTION — Is this set of basis functions useful?
NO! — SEE BELOW
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ORTHONORMAL SYSTEMS(VI) —
EXAMPLE

e Find the polynomiaPy (of orderN) that best approximates a function
f € Lo(a,b) [note that we will need the structure of a Hilbert space, lrenc
we go toL,(a,b), butC(a,b) C Lo(a,b)], i.e.

[71100 - AucoPaxs [ 1109~ Putglax

where Pu(X) = 80+ X+ @X2 + - - + aux

e Using the formulgy ™ ,a;j(ej, &) = (f, &), j =0,...,N, whereg, = XK

N b b
Zak/ o dx:/ x) f(x) dx
k=0 “a a
N kil gkti+l b
: = [ xf(x)dx
2 & 41 /a )

e The resulting algebraic problem is extremealy —CONDITIONED, e.g. for
a=0andb=1

1

Alkj = k+j+1
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ORTHONORMAL SYSTEMS(VII) —
POLYNOMIAL APPROXIMATION

e Much better behaved approximation problems are obtainguthe use of
ORTHOGONAL BASIS FUNCTIONS

e Such systems obrthogonal basis functionare derived by applying the

SCHMIDT ORTHOGONALIZATION PROCEDURHO the systen{1,x,...,x\}

e Various families ofORTHOGONAL POLYNOMIALSare obtained depending
on the choice of:

— the domaina, b] over which the polynomials are defined, and

— the weightw characterizing the inner produgt )\, used for
orthogonalization
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ORTHONORMAL SYSTEMS(VIII) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on the intervat1,1]
— LEGENDRE POLYNOMIALS(W=1)

[2k+1 1 d* L
Pk(x) 2 2kk| dxk( 1) ) k_071727"'

— JACOBI POLYNOMIALS (W= (1—X)%(1+x)P)
dk
dxX

whereCy is a very complicated constant
— CHEBYSHEV POLYNOMIALS (W=

FPB (5) = Ce(1—%) % (14+x) P — [(1— %)L+ %P k=0,1,2,.

L)
V1-x2
Tn(X) = cogk arccogx)), k=0,1,2,...,

Note that Chebyshev polynomials are obtained from Jacdipnpmials
forao =p=-1/2




Spectral Methods

ORTHONORMAL SYSTEMS(IX) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on theeeRIODICINterval [T, 11
TRIGONOMETRIC POLYNOMIALS(W=1)

S(x) =€ k=0,1,2,...

e Polynomials defined on the interv@l, +oo]
L AGUERRE POLYNOMIALS(W = € %)

1 ., dk
T

L (X) (eXX), k=0,1,2,...

e Polynomials defined on the intervial oo, +oo]
HERMITE POLYNOMIALS (w=1)

(—1)k o dX 2

NG

Hk(X) = . k=0,1,2,...
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ORTHONORMAL SYSTEMS(X) —
ORTHOGONAL POLYNOMIALS

e What is the relationship betwe@RTHOGONAL POLYNOMIALSand
eigenfunctions of ZOMPACTHERMITIAN OPERATOR (cf. Theorem on
page 75)?

e Each of the aforementioned familieSORTHOGONAL POLYNOMIALSforms
the set of eigenvectors for the followir®f URM—LIOUVILLE PROBLEM

d
dx

P09 G|+ a0+ Ar(0]y =0

a1y(a) +axy'(a) =0
b1y(b) + by (b) =0

for appropriately selected domdia b] and coefficient, q, r, az, ap, by, bs.
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FOURIER SERIES(l) — CALCULATION OF
FOURIER COEFFICIENTS

TRUNCATED FOURIER SERIES

N .
un() =y e

k=—N

The series involves®+ 1 complex coefficients of the form (weight= 1):

Gk:i/nue_ikxdx, k=—N,...,N
2.’_[ o Y J

The expansion is redundant for real-valued- the property ofCONJUGATE
SYMMETRY U_y = O_k , which reduces the number of complex coefficients o
N + 1; furthermore[J(0g) = O for realu, thus one hasR+ 1 REAL

coefficients; in the real case one can work with positive dietries only!

Equivalent real representation:

un(X) =ag+ % [ax cog kx) + by sin(kx)]
K=1

whereag = g, ax = 201 (Uk) andby = 200(J).
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FOURIER SERIES(Il]) — UNIFORM
CONVERGENCE

e Consider a functiom that is continuous, periodic (with the periot)2zand
differentiable; note the following two facts:

— The Fourier coefficients are always less than the average of

L 1om o s 1T
\uk'ﬁ/ u(x)ekdx < M(u) 2 2 /n\u(x)

Tt 1) —

— Ifv= % = u@) then 0 = (”‘%

e Then, using integration by parts, we have

R R VN | e ikx7 " 1/
U = ET/_nu(x)e dx= o [u(x) e

e Repeating integration by pargstimes

ikx M (U
ak:<—1)p1/ WP O)Edx = (G| < W)

21 n (—ik)P

Therefore, the more regular is the functionthe more rapidly its Fourier
coefficients tend to zero ag| — oo

[P
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FOURIER SERIES(I1l) — U NIFORM
CONVERGENCE

e \We have
M(u//)

o ~ M(u//)
kx
W o 2 A=l )

2
KeZ nzo N
The latter series converg@®SOLUTELY

|| <

Thus, ifuis TWICE CONTINUOUSLY DIFFERENTIABLEaNd its first
derivative iISCONTINUOUS AND PERIODICwith period 21, then its Fourier
seriesuy = PyU CONVERGES UNIFORMLYtO u for [N| — oo

SPECTRAL CONVERGENCE—if @€ Cy (-1 1), then for alla > O there

exists a positive consta@ such that| < % l.e., for a function with an

Infinite number of smooth derivatives, the Fourier coeffitgevanish faster

than algebraically
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FOURIER SERIES(IV) — RATES OF
CONVERGENCE

e RATE OF DECAY of Fourier transform of a functiofi : R — R is determined
by its SMOOTHNESS, functions defined on a bounded (periodic) domain arg
a special case

e THEOREM [a collection of several related results, see alsgfethen (2000)}— Let
u € L2(R) have Fourier transforra.”

— If uhasp— 1 continuous derivatives iby(R) for somep > 0 and ap-th
derivative of bounded variation, theitk) = O(|k|P~1) as|k| — oo,

If u has infinitely many continuous derivativeslip(R), thent(k) = O(|k|™™) as
|k| — oo for EVERY m > 0 (the converse also holds)

If there exista, ¢ > 0 such thati can be extended to atNALYTIC function in the
complex strip|J(z)| < awith |ju(- +iy)|| < cuniformly for ally € (—a,a), where
|lu(- +1y)|| is theL> norm along the horizontal lingl(z) =y, thenu, € Lo (R),
whereua (k) = €@K ((k) (the converse also holds)

If ucan be extended to &aNTIRE function (i.e., analytic throughout the complex
plane) and there exists> 0 such thatu(z)| = o(e??) as|z| — o« for all complex
valuesz € C, theu has compact support contained ira, al; that ist(k) = O for

all |k| > a (the converse also holds)
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FOURIER SERIES(V) — RADII OF
CONVERGENCE

e DARBOUX'SPRINCIPLE [see Boyd (2001)] — for all types of spectral
expansions (and for ordinary power series), both the domltonvergence
In the complex plane and the rate of convergence are cosdirol the
location and strength of theRAVEST SINGULARITY In the complex plane
(“singularities” in this context denote poles, fractiopalwers, logarithms
and discontinuities of (z) or its derivatives)

Thus, given a functiorf : [0,21] — R, the rate of convergence of its Fourier
series is determined by the properties ofatSMPLEX EXTENSION
F.C—-CHl

e Shapes of regions of convergence:
— Taylor series — circular disk extending up to the nearesjidarity

— Fourier (and Hermite) series — horizontal strip extendiegically up to the
nearest singularity

— Chebyshev series — ellipse with fociat= +1 and extending up to the nearest
singularity
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FOURIER SERIES(VI) —
PERIODIC SOBOLEV SPACES

e LetHp(l) be aPERIODICSOBOLEV SPACE, i.e.,
HL(1) = {u: u® e Ly(1),a=0,....r},

wherel = (—T, 1) is a periodic interval. The spa€ (1) is dense irHy(1)

e The following two norms can be shown to BQUIVALENT in Hp:

1/2
Jule=| S (1+ k2>f|ak2]
| keZ

C 1/2
Nullle=| S c9|u<“>|2]
| a=0

Note that the first definition is naturally generalized fog tase when is non—integer!

e ThePROJECTION OPERATORN commutes with the derivative in the
distribution sense:
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FOURIER SERIES(VII) —
APPROXIMATION ERRORESTIMATES IN H(1)

e Letr,se R with 0 <s<r;then we have:
lu—Pnulls < (L+N?)Z [|uflr, for ue HE(1)
Proof:

Ju—PaulZ= S (1+K)S 02 < (LHN2ST S (14 k) [G?
k|>N kK|>N

< (1+N?)*"|ul|?

e Thus, accuracy of the approximati®qu is better when is SMOOTHER,;
more precisely, fou € Hy(1), theL leading order error i(N~") which
improves whem increases.
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FOURIER SERIES(VIII) —
APPROXIMATION ERRORESTIMATES IN L ()

e First, a useful lemm&SOBOLEV INEQUALITY) — letu e H%(I), then there
exists a constar@ such that

ullE,. ) < Cliullo]lullx
Proof: Suppose € Cy(1); note the following facts

— Up is the average af

— From the mean value theorermxg € | such thatug = u(xg)
Let v(x) = u(x) — U, then

iy dy< ([ vy)2dy v "V (y)2dy 1/2§21THV\!\!\/\!
X0 X0

X0
a ~ 1/2 1/2
()| < [do| + [vX)| < [do] +2r/2 V2 V|2 < Cjulg? lully%,

sincev = U/, ||v|| < |Jul] and|do| < ||ull.
AsCy (1) is dense irHj(1), the inequality also holds for anye H3(1).
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FOURIER SERIES(IX) —
APPROXIMATION ERRORESTIMATES IN L ()

e An estimate in the norme(l) follows immediately from the previous
lemma and estimates in th&5(1) norm

1-r

Jlu—PnulZ, () SC(A+N?)"2(1+N?) 2 .

whereu € Hy(1I)

e Thusforr > 1
1_
Ju—Puull?, ¢y = O(N2™)

e UNIFORM CONVERGENCEforallue H%(I)
(Note thatu need only to becONTINUOUS, therefore this result is stronger
than the one given on page 87)
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FOURIER SERIES(X) —
SPECTRAL DIFFERENTIATION

e Assume we have a truncated Fourier series(gj
N

Un() =Pyu() = 5 G

k=—N

e The Fourier series of thp-th derlvatlve ofu(x) is

( P (x) = PyutP) Z (ik) Pl > = z uk gkx

k=—N k=—N

e Thus, using the vectotd

...,0n]T andU(P) = [0(_'0,2',...

94

~(P)

,ay” T, one

= [U_N
can introduce th&PECTRA ;_AD FERENTIATION MATRIX D(P) defined in

where
[ NP

Fourier space ds (P) =
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FOURIER SERIES(XI) —
SPECTRAL DIFFERENTIATION

e Properties of the spectral differentiation matrix in Feumepresentation

— D(P) is DIAGONAL

— D is sINGULAR (diagonal matrix with a zero eigenvalue)

— after desingularization the 2—norm condition numbeB&? grows in
proportion toNP (since the matrix is diagonal, this is not an issue)

e QUESTION — how to derive the corresponding spectral differentiation
matriXx iIn REAL REPRESENTATION?

Will see shortly ...
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I)

We need to evaluate the expansion (Fourier) coefficients
b
0= (u@w = | WOUOIQLIdx k=0,...,N

QUADRATURE is a method to evaluate such integrals approximately.

GAUSSIAN QUADRATURE seeks to obtain the best numerical estimate of a
integralfaf’w(x) f(xX)dx by pickingOPTIMAL POINTSX;, 1 =1,...,N at
which to evaluate the functioh(x).

THE GAUSS-JACOBI INTEGRATION THEOREM — If the (N + 1)
interpolation pointsx; }I_, are chosen to be the zerosRyf, 1(x), where
Pno1(X) is the polynomial of degreéN + 1) of the set of polynomials which
are orthogonal o, b] with respect to the weight function(x), then the
guadrature formula

b N
/a w(X) f (X) dx= _;Wi f(x)

is EXACT for all f(x) which are polynomials of at most degré2N + 1)
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I1)

e DEFINITION — LetK be a non-empty, Lipschitz, compact subseR8f Let
lg > 1 be an integer. A quadrature gnwith |q points consists of:

— Aset oflg real numbergwy,...,w, } calledQUADRATURE WEIGHTS

— Aset oflg points{&s,...,&,} in K calledGAUSS POINTSor
QUADRATURE NODES

The largest integet such that'p € R, [k p(x) dx= z:“:lcq p(& ) is called
the quadrature ordeand is denoted bl

REMARK — As regards 1D bounded intervals, the most frequently used
guadratures are based bagendre polynomiala/hich are defined on the
interval (0,1) asE(t) = g—ti (t2—t)k, k > 0. Note that they are orthogonal
on (0,1) with the weightW = 1.
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I11)

e Theorem — Letq > 1, denote by, ..., ¢, thelq roots of the Legendre

polynomial Z_(x) and sety = fol |-|'J.q:1 ;%EEJ, dt. Then
j#l

{&1,..,814, 1, ., 0, } is a quadrature of orddg = 2lq—1 on|0, 1]
Proof — Let{ £y, dots 4} be the set of Lagrange polynomials associated
with the GauB pointgs...., & }. Thenwy = g £ (t)dt, 1 <1 <Iq
— when [x) is a polynomial of degree less thay We integrate both sides
of the identity t) = Z:“Zl pP(& )L (t)dx, vt € [0,1] and deduce that the
quadrature is exact for (x)

— when the polynomial (x) has degree less thatlg we write it in the form
pP(x) = q(xX) B, (X) +r(X), where both ¢x) and r(x) are polynomials of
degree less thanyj owing to orthogonality of the Legendre polynomials,
we conclude

1 1 lg
| pwydt= | =3 or(E) =3

since the pointg; are also roots ofzqq
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (1V)

e PERIODIC GAUSSIAN QUADRATURE — If the interval|a,b] = [0, 211 is
periodic, the weightv(x) = 1 andPy (X) is the trigonometric polynomial of
degreeN, the Gaussian quadrature is equivalent toTthrePEZOIDAL RULE
(i.e., the quadrature with unit weights and equispaced s)ode

e Evaluation of the spectral coefficients:
- Assume{(p}{?':1 IS a set of basis functions orthogonal under the weight

b N
Gk:/a W(x)u(x)m((x)dx%,_;w(xi)u(xi)cn((xi), k=0,...,N,

wherex; are chosen so thgi1(x) =0,i=0,...,N
— DenotingU = [(g,...,0n]T andU = [u(xg),...,u(xn)]T we can write the
above as
U="TuU,

whereT is aTRANSFORMATION M ATRIX
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SPECTRAL INTERPOLATION (1)

e INTERPOLATIONIS a way of determining an expansion of a functiom
terms of SOmMe@RTHONORMAL BASIS FUNCTIONSalternative to Galerkin

spectral projections

e Assuming thaSy = spar{€%, ..., &N*} | we can determine an
INTERPOLANTV € Sy of u, such that coincides withu at 2N + 1 points

{Xj }j|<n defined by

211

Xj = jh, |j| <N, where N1

e For the interpolant we set

V)= Y ae
K[<N

where the coefficienta,, k= 1,...,N can be determined by solving the
algebraic system (cf. page 71)

e ac=u(x)), [j| <N
KN

with the matrixAyj = €%, k,j=1,...,N
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SPECTRAL INTERPOLATION (II)

e The system can be rewritten as

S Wka =u(x)), [j|<N
KI<N

whereW = el = eI js the principal root of ordef2N + 1) of unity (since
Wik — (eih) Jk)

e The matrix[W]jx = W is unitary (i.e. WT W = I(2N + 1))
Proof: Examine the expression

1 _ 1
WW=I —

wikw-Il = 5
2N + 1 N1 2 k'

lj|<N
— If k=1, thenwkw-Il = wik-1) w0 =1
— If k#1, definew =Wk, then

1 M-1

(DJ — (L)j/
N

1 D 1
k=i —
N+1 & 2N+ 1
whereM =2N+1,j=jif0O<j<Nandj' = j+Mif =N < j <0, so that

wtM = . Using the expression for the sum of a finite geometric series
completes the proof(1— w) z'j\’,';g W =1-uM=0
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SPECTRAL INTERPOLATION (111)

Since the matriX¥V is unitary and hence itsiVERSEIS given by its
TRANSPOSE, the Fourier coefficients of th&lTERPOLANT Of u in Sy can be
calculated as follows:

*=oNT1

K _ .
zyW~ ", where z; = u(x;)
KN

The mapping
{7 }jj<n — {a} k<N
IS referred to aPISCRETEFOURIER TRANSFORM(DFT)

Straightforward evaluation of the expressionsdprk=1,...,N
(matrix—vector products) would result in the computaticcast O(N?);
clever factorization of this operation, known as thesT FOURIER
TRANSFORMS(FFT), reduces this cost down ©@(Nlog(N))

Seeww. f ft w. or g for one of the best publicly available implementations o
the FFT.
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SPECTRAL INTERPOLATION (1V)

Let P : Cg(l) — Sy be the mapping which associates withs interpolant
ve SN Let (-, )N be theGAussIAN QUADRATURE approximation of the
inner product-,-)

(u,v) = /j{uvdx% 2N1+l ”éN u(x; V(xj) = (u,V)n

By construction, the operatét: satisfies:
(Peu)(xj) = u(x)), |i| <N
and therefore also (orthogonality of the defec&t
(U—PRcu,vn)N =0, Yy € Sy
By the definition ofPy we have
(u—Pyu,vn) =0, Yy € N

Thus,Pcu(x) = S\ (u,€¥¥)ne*X can be obtained analogously to
Pyu(x) = S\ (u, €)X by replacing the scalar produgt -) with the
DISCRETE SCALAR PRODUCT(-, )N
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SPECTRAL INTERPOLATION (V)

e Thus, theNTERPOLATION COEFFICIENTS3, are equivalent to thEoUuRIER
SPECTRAL COEFFICIENTSIk when the latter are evaluated using the
GAUSSIAN QUADRATURES

e The two scalar products coincide &R, i.e.
(UN,VN) = (UN, VNN, VUNSWN € SN
hence foue Sy, Uk =ac, k=1,...,N

e Proof — examine the numerical integration formula

%_[/nf(x)dxgwll T (%)

- T4ifan

then for everyf = SR\ G, € Sy we have

1 k=0
i/” dkx gy 1 dog 1 o ik
21 ) —n 2N+l“éN 2N+1|jéN 0  otherwise

Thus, for the uniform distribution ofj, the Gaussian (trapezoidal) formula is
EXACT for f € §y




Spectral Methods

SPECTRAL INTERPOLATION (VI)

e Relation between Fourier coefficienig of a functionu(x) and Fourier
coefficientsa of its interpolant; assume thatx) ¢ Sy

21 ) _

1 -
a = u(X;j )W (Xj)
2N + 1 “éN

R . »
Uk:—/nUWkdX, Wi (x) = e

e THEOREM— Foru € C3(1) we have the relation

ay = Z Oxriv, whereM = 2N +1
leZ

Proof — Consider the set of basis functionsl(i{l)) Uy, = €<*. We have:

1 S 1 i(ken) 1 k=n(mod M)
(U, Un)n = N+ 1 > Uk(X))Un(xj) = 2N+1|j|<NW =

=N 0 otherwise

SincePcu = Y jjj<n @jWj, we infer from(Pcu, Wk)n = (u,Wk)n that

ax = (Pcu,W)Nn = (U,W)N = ( Z Gan,M)N = Z an(Wn,M)N = Z Uk+im

nez ncz l€Z

105
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SPECTRAL INTERPOLATION (VII)

Z 0k+IM> ki
AN

e EXTREMELY IMPORTANT COROLLARY CONCERNINGINTERPOLATION
— two trigonometric polynomialg’** andek2* with different frequencieg;
andk; are equal at the collocation pointg |j| < N when

ko— kg =I1(2N+1), | =0,+1,....

Therefore, give a set of values at the collocation pakjit$j| <N, itis
impossible to distinguish betweelf* ande*2*, This phenomenon is
referred to a\LIASING

Note, however, that the modes appearing in the alias ternegjoond to
frequencies larger than the cut—off frequemty
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SPECTRAL INTERPOLATION (VIII) —
ERRORESTIMATES IN Hy(I)

e Supposes<r,r > % are given, then there exists a const@rsuch that if
uec Hy(l), we have

s—r
lu—Reulls <C(1+N?)"2 [|ul,

Outline of the proof:
Note thatPc leavesSy invariant, thereforé&-Py = Py and we may thus write

U—Pcu=u—Pyu+Pc(Py—1)u
Settingw = (I — Py)u and using the “triangle inequality” we obtain
lu—Peulls < [Ju—Pyulls+ [[Rewlls

— The term||u— Pyul|s is upper—bounded using theorem from page 91

— Need to estimat@Pcw||s — straightforward, but tedious ...
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SPECTRAL INTERPOLATION (1X)
Until now, we defined the Discrete Fourier Transform foramb number
(2N + 1) of grid points
FFT algorithms generally require @avEN number of grid points

We can define the discrete transform foreareN number of grid points by
constructing the interpolant in the spagefor which we have

~

dim(Sy) = 2N. To do this we choose:
—N+1<j<N

j = Jh,
_T[

N

All results presented before can be established in the cale&W grid
points with only minor modifications

However, now théN-th Fourier modauy does not have its complex
conjugate! This coefficient is usually set to zeuog & 0) to avoid an
uncompensated imaginary contribution resulting fromedghtiation

ODD or EVEN collocation depending on whethigt = 2N+ 1 orM = 2N
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SPECTRAL INTERPOLATION (X)

Before we focused on representing INFERPOLANTas a Fourier series
N — <N IKX;
V(X)) = YN €™

Alternatively, we can represent thR TERPOLANTUSING the nodal values as
(assuming, for the moment, infinite domair R)

()

V)= ¥ u(xj)Cj(x),

|=—00
whereCj(X) is aCARDINAL FUNCTION with the property thaCj(Xi) = dij
(i.e., generalization of theAGRANGE POLYNOMIAL for infinite domain)

In an infinite domain we have th&HITTAKER CARDINAL or SINC function
_sinfr(x—kh) /h]
S = —x—km/hn

= sing(x— kh) /h,

Sin(T)

wheresingx) = ~—

Proof — the Fourier transform dj is 8(k) = hforall k € [—-1t/h, Tt/h];
hence, the interpolant dg is v(x) = ! h gkh gy — Sin/h)

2nJ—m/h ™/h
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SPECTRAL INTERPOLATION (XI)

Thus, the spectral interpolant of a function inlamINITE domain is a linear
combination ofMWHITTAKER CARDINAL functions

In aPERIODIC DOMAIN Wwe still have the representation
N—1

V(x) = ) u(xj)Sj(x),
JZO j)o

but now theCARDINAL FUNCTIONS have the form

S/ (%) = = sin M] Cot[(X—Xj)]

N 2 2

Proof — similar to the previous (unbounded) case, excepiriba the
interpolant in given by &@1SscRETEFourier Transform

The relationship between the Cardinal Functions corrediogrto the
PERIODICaAandUNBOUNDED domains

() = 5 SiNNooty2) = 3 sine( X7 )
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SPECTRAL DIFFERENTIATION (1)

e Two ways to calculate the derivativgxj) = U'(x;) based on the values
u(xj), where 0< j < 2N +1; denoteU = [ug, ... ,Uxn1]" and

e METHOD ONE — approach based on differentiation in Fourier space:

— calculate the vector of Fourier coefficietds= TU
— apply the diagonal differentiation matriX’ = DU (cf. page 94)

— return to real space via inverse Fourier transfafm: TTU

e REMARK — formally we can write
U' =TT'DTU,

however in practice matrix operations are replaced by FFTs
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SPECTRAL DIFFERENTIATION (II)

e METHOD TWO — approach based on differentiation (in real space) of the
interpolantu’ (xj) = V(xj) = z'j\';ol u(x;j)S;(x), where the cardinal function
has the following derivatives

0, j=0(mod N
S(Xj){

~ (~1)icot(jh/2) j #0 (mod N

e Thus, since the interpolant is a linear combination of shifardinam
Functions, the differentiation matrix has the form of@ePLITZ
CIRCULANT matrix

0 — 1 cotf(1n)/2
—1 cot(1h)/2) 1 cof(2n)/2]
1 cof(2n)/2) 1 coff(3h)/2]
~ 3 cof(3n)/2)

. 3 cof(1h)/2)
L 3 cof(1h)/2) 0

e Higher—order derivatives obtained calculat®§ (x;)




