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e ADDITIONAL REFERENCES
— R. PeyretSpectral methods for incompressible viscous f®pringer (2002),

— B. Mercier,An introduction to the numerical analysis of spectral metho
Springer (1989),

— C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. ZaSgectral Methods in
Fluid Dynamics Springer (1988).

METHOD OF WEIGHTED RESIDUALS(I)

e SPECTRALMETHODS belong to the broader category WEIGHTED
RESIDUAL METHODS, for which approximations are defined in terms of
series expansions, such that a measure of the error knows RE$IDUAL
is set to be zero in some approximate sense

e In general, an approximatiamy (x) to u(x) is constructed using a set of basig
functionsgy(x), k=0,...,N (note thatpy(x) need not b@@RTHOGONAL)

W)= Y Gde(x), a<x<b, In={L...,N}
kel

e Residualfor two central problems:
— APPROXIMATION of a functionu:

Ru(X) =u—un
— APPROXIMATE soLuUTIONOf a (differential) equationlu— f = 0:

Ru(X) = Luy — f
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METHOD OF WEIGHTED RESIDUALS(I)

e In general, the residudty in canceled in the following sense:
b
(RuW)w. = [ w.RuGidx=0, i<y,
a

wherey;(x), i € Iy are theTRIAL (TEST) FUNCTIONS andw : [a,b] — R*
are thewEeIGHTS

e Spectral Methodis obtained by:
— selecting theBASIS FUNCTIONSGQy to form anORTHOGONALSystem
under the weightv:
(i, k)w = Bk, i,keIn and
— selecting the trial functions to coincide with the basisdtions:
Wk =0k, keln

with the weightsw, = w ( SPECTRALGALERKIN APPROACH), Or
— selecting the trial functions as
"IJk = E(X_)Q()~ Xk € (a7 b)7
wherexy are chosen in a non—arbitrary manner, and the weights are
W, =1 (COLLOCATION, “PSEUDG-SPECTRAL APPROACH)

METHOD OF WEIGHTED RESIDUALS(I1I)

o Note that the residud®y vanishes
— in the mean sense specified by the weigti the Galerkin approach

— pointwise at the pointsy in the collocation approach
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APPROXIMATION OFFUNCTIONS (1) —
GALERKIN METHOD
Assume that the basis functim{lq;k}’l:‘:1 form an orthogonal set
Define the residual N
RN =Uu—un= U*k;l]kq)k

Cancellation of the residual in the mean sense (with the ht&ijy
b N -~
Rubidw= [ (U= Gebi | Biwax=0, i =0,....N
K=0
() denotes complex conjugation (cf. definition of the innerdorct)

Orthogonality of the basis / trial functions thus allows asletermine the
coefficientsug by evaluating the expressions

b
ﬂk:/ upywdx k=0,...,N
a

Note that, for this problem, the Galerkin approach is edeivito theLEAST
SQUARESMETHOD.
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APPROXIMATION OFFUNCTIONS (II) —
COLLOCATION METHOD

Define the residual N

Ru(X) =u—un=u— % Ocdk

k=0
PoiNTWISE cancellation of the residual
N

%Uk¢k(xi) =u(x), i=0,...,N

k=
Determination of the coefficientg thus requires solution of an algebraic
system. Existence and uniqueness of solutions requiresiétédy ()} # O
(condition on the choice of the collocation poingsand the basis functions

bK)

For certain basis pairs of basis functiapsand collocation pointg; the
above system can be easily inverted and therefore detetionnat Gy may
be reduced to evaluation of simple expressions

For this problem, the collocation method thus coincide$ it
INTERPOLATION TECHNIQUEbased on the set of poin{s; }

Spectral Methods

APPROXIMATION OFPDES (1) —
GALERKIN METHOD

e Consider a generic PDE problem

Lu—f=0 a<x<b
B u=g_ Xx=a

Biu=04 X=Db,

where L is a linear, second-order differential operator, g&hdand B,
represent appropriate boundary conditions (Dirichletyiann, or Robin)

Reduce the problem to an equivalerdtMoGENEOUSformulation via a
“lifting” technique, i.e., substitutet = G+ v, whereu'is an arbitrary function
satisfying the boundary conditions above and the new (hemegus)
problem forv is
Lv—h=0 a<x<b
B v=0 X=a
B.v=0 x=h

whereh = f — L{
The reason for this transformation is that the basis funetjg (usually)

satisfy homogeneous boundary conditions.
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APPROXIMATION OFPDES (Il) —
GALERKIN METHOD

N
Ru(X) = Lvy —h, wherew = 5 Gk(x)
o

satisfies (“by construction”) the boundary conditions

e The residual

e Cancellation of the residual in the mean (CHe WEAK FORMULATION )
(Rn;9i)w = (LW~ —h,¢i)w, i=0,...,N
Thus

N
> W (LK, 91)w = (h,di)w, i=0,....N,
o

where the scalar product ¢y, di)w can be accurately evaluated using
properties of the basis functios and(h, ¢j )w = b

e An (N+1) x (N+ 1) algebraic system is obtained with the matrix
determined by
— the properties of the basis functiofgi }R ;
— the properties of the operatar




Spectral Methods

Spectral Methods

APPROXIMATION OFPDEs (IIl) —
COLLOCATION METHOD

e The residual (corresponding to the original inhomogengwablem)
N

Ru(X) = Luy — f, where uy = Z}qu)k(x)
k=

e Pointwise cancellation of the residual, including the kaany nodes:
Lun(X) = f(x) i=1..,N-1
B_Un (%) =0-
BrUn(XN) =G,
This results in arfN + 1) x (N + 1) algebraic system. Note that depending
on the properties of the basj$o, ..., pn}, this system may be singular.

Sometimes an alternative formulation is useful, where th@ahvalues
un(Xj) j=0,...,N, rather than the expansion coefficienisK=0,...,N
are unknown. The advantage is a convenient form of the esjore$or the

derivative ® N o
uy’ ()= dij” un(x;),
N jZO ]

whered(P) is ap—TH ORDER DIFFERENTIATION MATRIX.

ORTHONORMAL SYSTEMS(I) —
CONSTRUCTION

¢ THEOREM— LetH be a separable Hilbert space afich compact
Hermitian operator. Then, there exists a sequgeeneny and{Wh }nen
such that
1. \neR,
2. the family{Wh }ncry forms A COMPLETE BASISin H
3. TWh =AW, forallne N

e Systems of orthogonal functions are therefore related éotsa of certain
operators, hence the nameECTRAL METHODS
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ORTHONORMAL SYSTEMS(II) —
EXAMPLE # 1

Let 7 : L(0,1) — L2(0, M) be defined for alff € L»(0, 1) by 7 f = u, where
u is the solution of the Dirichlet problem

—u'=f
{ u(0)=u(m=0
Compactness of follows from the Lax—Milgram lemma and compact
embeddedness &f1(0,) in L,(0, ).
EIGENVALUES AND EIGENVECTORS

1
K2

M= — and W = v/2sin(kx) for k> 1

Thus, each function € L, (0, 11) can be represented as

UX) = V2 S GI(X),

k>1
~ 7@ T .
where Ox = (uW)L, = % fo u(x)sin(kx)dx.

Uniform (pointwise) convergence is not guaranteed (onlldrsense)!

ORTHONORMAL SYSTEMS(II) —
EXAMPLE # 2
LetT : L(0,1) — L2(0, M) be defined for alif € L»(0, 1) by 7 f = u, where
u is the solution of the Neumann problem

—u'+u=f
{ U(0)=u(m=0
Compactness of follows from the Lax—Milgram lemma and compact
embeddedness &f1(0,) in L»(0, ).
EIGENVALUES AND EIGENVECTORS

Ak and Wp(x) = 1, W, = v2cogkx) for k> 1

T 11K
Thus, each function € L, (0, 1) can be represented as
ux) =v2'y G\k(x),

where Ux = (U,W)L, = @ Jotu(x) cogkx) dx..

Uniform (pointwise) convergence is not guaranteed (onlydrsense)!
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ORTHONORMAL SYSTEMS(IV) —
EXAMPLE # 3

Expansion inrsINE SERIESgood for functions vanishing on the boundaries

Expansion incoSINE SERIEyood for functions with first derivatives
vanishing on the boundaries

Combining sine and cosine expansions we obtairFtheRIER SERIES
EXPANSIONwith the basis functions (ibp(—Tt, 1))

Wi(x) =¥ for k>0

FOURIER SERIESVS. FOURIER TRANSFORM —
— FOURIER TRANSFORM: A L(R) — La(R),

Falul(K) :/w ey dx, keR
— FOURIERSERIES: Fo : L2(0,21) — |2, (i.e., bounded to discrete)

2 )
= 7l = [ e Fupdx k=012...

W form a Hilbert basis with better properties then sine orweseries alone.
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ORTHONORMAL SYSTEMS(V) —
POLYNOMIAL APPROXIMATION

e WEIERSTRASSAPPROXIMATION THEOREM — To any functionf (x) that
is continuous irfa, b] and to any real number> 0 there corresponds a
polynomialP(x) such that|P(x) — f (X)cap) <& i.e. the set of
polynomials isDENSEINn the Banach spadg(a, b)

(C(a,b) is the Banach space with the noffh||c(ap) = MaXxc(ap [ f(X)]

e Thus the power functions, k=0,1,... represent a natural basis@ta, b)

e QUESTION — Is this set of basis functions useful?
NoO! — SEE BELOW
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ORTHONORMAL SYSTEMS(VI) —
EXAMPLE

e Find the polynomiaPy (of orderN) that best approximates a function
f € La(a,b) [note that we will need the structure of a Hilbert space, kenc
we go tol»(a,b), butC(a,b) C Ly(a,b)], i.e.

1100~ AucoPaxs [1100 Ao Pax

o Pu(X) = 80+ 81X+ X + -+ A
e Using the formulag’j\‘zoa_j (e,&) = (f,&), j =0,...,N, whereg, = XK

N b b
Z]ak/ xk“dx:/ x! f (x) dx
K= a a

N _bk+j+17ak+j+1 b .
———— = | X f(x)dx

2% ki1 /a )

e The resulting algebraic problem is extremely —CONDITIONED, e.g. for
a=0andb=1

1

Wi =7
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ORTHONORMAL SYSTEMS(VII) —
POLYNOMIAL APPROXIMATION

e Much better behaved approximation problems are obtainddtive use of
ORTHOGONAL BASIS FUNCTIONS

e Such systems obrthogonal basis functionare derived by applying the
SCHMIDT ORTHOGONALIZATION PROCEDURHO the systen{1,x,...,xN}

e Various families ofoRTHOGONAL POLYNOMIALSare obtained depending
on the choice of:
— the domaina, b] over which the polynomials are defined, and

— the weightw characterizing the inner produgt - )w used for
orthogonalization
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ORTHONORMAL SYSTEMS(VIII) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on the intenviat 1, 1]
— LEGENDRE POLYNOMIALS(W = 1)

_[2k+1 1 o

KL L U2 4k _
> gk X~ D5 k=012,

R(X)
— JACOBI POLYNOMIALS (W= (1—X)%(1+x)P)
k
3P :ck<1—x>*“<1+xrﬁcj’7&[<1fx>°+k<1+x>ﬁ+k] k=012...,

whereCy is a very complicated constant
_ __ 1
CHEBYSHEV POLYNOMIALS (W= \/W)

Tn(X) = cogkarccogx)), k=0,1,2,...,

Note that Chebyshev polynomials are obtained from Jacdpnpmials
fora=p=-1/2
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ORTHONORMAL SYSTEMS(IX) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on theerioDICinterval [Tt 11
TRIGONOMETRIC POLYNOMIALS(W = 1)

S(x) =€ k=0,1,2,...
e Polynomials defined on the intervi@, +oo]
LAGUERRE POLYNOMIALS(W = e %)

1, d xk
Lk(x):ﬁexd—xk(e ), k=0,1,2,...

e Polynomials defined on the intenvatco, +oo]
HERMITE POLYNOMIALS (W= 1)

(—1)k & dk e

H) = g ymiz® ak®

. k=0,1,2,...
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ORTHONORMAL SYSTEMS(X) —
ORTHOGONAL POLYNOMIALS

e What is the relationship betwe@RTHOGONAL POLYNOMIALSand
eigenfunctions of @OMPACTHERMITIAN OPERATOR (cf. Theorem on
page 75)?

e Each of the aforementioned familiesORTHOGONAL POLYNOMIALSforms
the set of eigenvectors for the followir8f URM—LIOUVILLE PROBLEM

o [P0 a0 + Ay =0
ary(a) +azy'(a) =0
b1y(b) +boy' (b) =0

for appropriately selected doméja b] and coefficientp, q, r, az, ag, by, ba.
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FOURIER SERIES(I) — CALCULATION OF
FOURIER COEFFICIENTS

TRUNCATED FOURIER SERIES
< ik
un(X) = Z e
k=N

The series involvesi2+ 1 complex coefficients of the form (weight= 1):

Ok:i/nue kXgx, k=—N,...,N
21 n ) )

The expansion is redundant for real-valued- the property 0fCONJUGATE
SYMMETRY 0_i = Uy , which reduces the number of complex coefficients
N + 1; furthermore J(0p) = O for realu, thus one hasi+ 1 REAL
coefficients; in the real case one can work with positive dieggties only!

Equivalent real representation:

un(X) =ag+ % [ax cog(kx) + by sin(kx)]
K=1

whereag = (g, ax = 20 (0x) andby = 20( ).
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FOURIER SERIES(Il) — UNIFORM
CONVERGENCE

e Consider a functiomw that is continuous, periodic (with the period)2and
differentiable; note the following two facts:
— The Fourier coefficients are always less than the average of

— i 1 ikx a i U

0| = ‘ZT[/_nu(x)e'A dx| < M(u) 2 2n/_ﬂ|u(x)\dx
— Ifv= 38 = u@, then G = ("‘:ﬁ
e Then, using integration by parts, we have

R _i e ik —i g ikx T _l/n ,
Ok = 2T[/iﬂu(x)e dx= o {u(x) Tk | o 7nu
e Repeating integration by pargstimes

1 fm e ikx M(U(P))
O = (—1)P— (P) G| <
O = (-1) 2n/,nu (X)(—ik)pdx = |G| < KPP
Therefore, the more regular is the functionthe more rapidly its Fourier
coefficients tend to zero 4| — o
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FOURIER SERIES(I1I) — U NIFORM
CONVERGENCE

M (u//) M (u//)

|G| < =y |0 < o+
k|2 n?
IK| &, iy

The latter series convergeg8 SOLUTELY

Thus, ifuis TWICE CONTINUOUSLY DIFFERENTIABLEanNd its first
derivative iISCONTINUOUS AND PERIODICwith period 21, then its Fourier
seriesuy = PyU CONVERGES UNIFORMLYtO u for |[N| — oo

SPECTRAL CONVERGENCE- if ¢ € Cg (-, 1), then for alla > O there
exists a positive consta@y such thaﬂ(:q(\ < % i.e., for a function with an
infinite number of smooth derivatives, the Fourier coeffitsevanish faster
than algebraically
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FOURIER SERIES(IV) — RATES OF
CONVERGENCE

e RATE OF DECAY of Fourier transform of a functiori : R — R is determined
by its SMOOTHNESS; functions defined on a bounded (periodic) domain ar¢
a special case

e THEOREM J[a collection of several related results, see algfethen (2000)}— Let
u € Lp(R) have Fourier transform.

— If uhasp— 1 continuous derivatives iby(R) for somep > 0 and ap-th
derivative of bounded variation, theitk) = O(|k|~P~1) as|k| — o,

— If uhas infinitely many continuous derivativeslip(R), thent(k) = O(|k| ™) as
|k| — oo for EVERY m > O (the converse also holds)

— If there exista, ¢ > 0 such thati can be extended to aNALYTIC function in the
complex strip0(z)| < awith ||u(- +iy)|| < c uniformly for ally € (—a,a), where
lu(- +iy)|| is theLz norm along the horizontal linE(z) =y, thenu, € L2(R),
whereu, (k) = e?KlG(k) (the converse also holds)

— If ucan be extended to &nTIRE function (i.e., analytic throughout the complex
plane) and there exists> 0 such thatu(z)| = o(e??) as|z| — oo for all complex
valuesz € C, theu'has compact support contained ira, a); that isti(k) = 0 for
all |k| > a (the converse also holds)
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FOURIER SERIES(V) — RADII OF
CONVERGENCE

e DARBOUX’SPRINCIPLE[see Boyd (2001)] — for all types of spectral
expansions (and for ordinary power series), both the domwiadonvergence
in the complex plane and the rate of convergence are comdrbl the
location and strength of theRAVEST SINGULARITY in the complex plane
(“singularities” in this context denote poles, fractiopalwers, logarithms
and discontinuities of (z) or its derivatives)

Thus, given a functiorf : [0,21] — R, the rate of convergence of its Fourier
series is determined by the properties ofdtSMPLEX EXTENSION
F:C—Cl

e Shapes of regions of convergence:
— Taylor series — circular disk extending up to the nearegjdarity
— Fourier (and Hermite) series — horizontal strip extendiegically up to the
nearest singularity
— Chebyshev series — ellipse with focixat +1 and extending up to the nearest
singularity
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FOURIER SERIES(VI) —
PERIODIC SOBOLEV SPACES FOURIER SERlES(V”) -

LetH{,(I) be aPERIODICSOBOLEV SPACE, i.e., APPROXIMATlON ERROR ESTIMATES IN Hg(l)
H() = {u: u® e Ly(1),a=0,...,r},

wherel = (—T 1) is a periodic interval. The spa& (1) is dense irH(I) e Letr.sc R with 0<s< r: then we have:

The following two norms can be shown to BQUIVALENT in H{): gy ot
[u—Pulls < (1+N%)"2 [|ullr, for ueHy(l)

1/2
ulle = [ (1+k2)r0k|2] Proof:
=&

. 1/2 [u=PaulE= 5 (14K 0> < (1+N?)>T 5 (14K |Gl
[lulllr = [z C?’IU(")IZ] >N KEN
=0 < (L4+N?)*"|uf?
Note that the first definition is naturally generalized fog ttase when is non—integer!
. o Thus, accuracy of the approximati®qu is better whenu is SMOOTHER;
The PROJECTION OPERATORy commutes with the derivative in the y . y PP il . . ]
distribution sense: more precisely, fou € Hy(1), theL leading order error i(N~") which

(@) . (@ improves wherr increases.
(Avw)'® = ; (ik) % QW = Pyu
[KI<N
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FOURIER SERIES(VIII) —
APPROXIMATION ERRORESTIMATES IN Lo (1) FOURIER SERIES(IX) —

APPROXIMATION ERRORESTIMATES IN L (1)

o First, a useful lemm&SOBOLEV INEQUALITY) — letue H%(I ), then there

exists a constar@ such that . _ : . .
e An estimate in the normi, () follows immediately from the previous

ullE,.qy < Cliullo]lullx lemma and estimates in tS(1) norm
Proof: Suppose € C3(1); note the following facts

Jlu=Paul, ) < C(1+N) "2 (14N,
— (g is the average ai

.
— From the mean value theorefixg € | such thaug = u(xo) whereu € Hp(1)

Let v(x) = u(x) — Up, then e Thusforr >1

1 2 X X 2 1/2 X 2 1/2
s = [“vovnay= ([“woieay) ([ wmidy) < zniiivi
2 /xO /XO /Xo e UNIFORM CONVERGENCEforallue Hg(l)

u(X)| < [do] + [V(X)| < [0o| + 22| /2 V|| Y/2 < Cljul|&/? |ju) 32, (Note thatu need only to beeoNTINUOUS, therefore this result is stronger
sincev' =/, |[v|| < |lu]| and|do| < [lul]. than the one given on page 87)
AsCy (1) is dense irH3(1), the inequality also holds for anye H3(1).

1_
HU*PNUHEN(U =O0(Nz™")
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FOURIER SERIES(X) —
SPECTRAL DIFFERENTIATION

e Assume we have a truncated Fourier series(jf
N ;
Un() =Pu) = Y e

k=—N
e The Fourier series of thp-th derivative ofu(x) is
N N
(P) vy — pyy(P — 1P, alkx A(P) Jkx
Uy’ (X) = PyutP) = (ik)Pae** = G,"¢e
N 2, 00— 5
e Thus, using the vectoid = [d_,...,0n]T andd® = [@®,....aP]T, one

can introduce th&PECTRAL DIFFERENTIATION MATRIX D(P) defined in
Fourier space ad (P = D(P)U , where
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FOURIER SERIES(XI) —
SPECTRAL DIFFERENTIATION

e Properties of the spectral differentiation matrix in Feuriepresentation
— D is DIAGONAL
— D(P isSINGULAR (diagonal matrix with a zero eigenvalue)
— after desingularization the 2—norm condition numbeB6? grows in
proportion toNP (since the matrix is diagonal, this is not an issue)

e QUESTION — how to derive the corresponding spectral differentiation
matrix in REAL REPRESENTATION?
Will see shortly ...
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (1)

We need to evaluate the expansion (Fourier) coefficients

QUADRATURE is a method to evaluate such integrals approximately.

integralf;’w(x) f(x)dx by pickingOPTIMAL POINTSX;, i =1,...,N at
which to evaluate the functiofi(x).

THE GAUSS-JACOBI INTEGRATION THEOREM — If the (N+1)
interpolation pointsft)q}i'\‘zo are chosen to be the zerosRf, 1(x), where
Pn+1(X) is the polynomial of degregN + 1) of the set of polynomials which
are orthogonal offe, b] with respect to the weight function(x), then the
guadrature formula

b N
/a w(x) f (x) dx= Zowi f(x)

is EXACT for all f(x) which are polynomials of at most degré2N + 1)

GAUSSIAN QUADRATURE seeks to obtain the best numerical estimate of a|
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (1)

e DEFINITION — LetK be a non-empty, Lipschitz, compact subseR8f Let
lg > 1 be aninteger. A quadrature ghwith I points consists of:

— A set oflq real numbergy, ... ,(qq} calledQUADRATURE WEIGHTS
— Aset oflq points{&y,... ,E|q} in K calledGAUSS POINTSOr
QUADRATURE NODES

The largest integek such that/p € R, [k p(x)dx= z:“:lw, p(&) is called
the quadrature ordeand is denoted bl

e REMARK — As regards 1D bounded intervals, the most frequently used
quadratures are based bagendre polynomiale/hich are defined on the
interval (0,1) asZ(t) = & d%kp (t2—t)k, k> 0. Note that they are orthogonal
on (0, 1) with the weightw = 1.
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SPECTRAL GALERKIN METHOD — SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I11) NUMERICAL QUADRATURES (1V)

e Theorem — Letq > 1, denote by, ..., §, thelq roots of the Legendre
. lg  t=§;
polynomial %, (x) and sety = foll_l_jq:l ;,T%dt- Then e PERIODIC GAUSSIAN QUADRATURE — If the interval[a, b] = [0, 211 is
(E1,....8 00 W }isa quadraéaérle of ordeg = 2l — 1 on[0,1] periodic, the weightv(x) = 1 andPy(x) is the trigonometric polynomial of
Y ) q7 )t q )

Proof — Let{ £y, dots £, } be the set of Lagrange polynomials associated o!egreeN, the Gaussiar_1 quac.iratu.re is equivaleht totR@PEZOIDAL RULE
with the GauR points$€, £, ). Thenoy = [Olbl (t)dt,1<1<Iq (i.e., the quadrature with unit weights and equispaced sjode
yrrroSlg S N 1 > =

— when fix) is a polynomial of degree less thap We integrate both sides e Evaluation of the spectral coefficients:
N . . . .
of the identity jot) = Z:q:l P(&1) 4 (t)dx, ¥t € [0,1] and deduce that the — Assume{@},' ; is a set of basis functions orthogonal under the weight
quadrature is exact for (x)

— when the polynomial (%) has degree less thatiq we write it in the form
P(X) = d(x) i, (X) +r(X), where both ¢x) and r(x) are polynomials of
degree less thary] owing to orthogonality of the Legendre polynomials,
we conclude N

N
O = /abw(X)u(X)(n((x) dx%,zbw(xi)u(xi)(g((xm k=0,...,N,

wherex; are chosen so thgi;1(%)=0,i=0,...,N
— DenotingU = [dg,...,0n]T andU = [u(x),...,u(xn)]" we can write the

/ p(t)dt:/lr(t)dt:licqr(z.)zlzq(qp(z,). above as
0 0 =1 =1 /

U =Tu,

since the pointg; are also roots o, whereT is a TRANSFORMATION MATRIX
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SPECTRAL INTERPOLATION (1) SPECTRAL INTERPOLATION (1)

e INTERPOLATIONIs a way of determining an expansion of a functioim e The system can be rewritten as
terms of SOmMe@RTHONORMAL BASIS FUNCTIONSalternative to Galerkin Wika, =u(xj), [j|<N
spectral projections =N

Assuming thagy = spa{€% ... ,&NX} | we can determine an whereW = eh = 21 is the principal root of ordef2N + 1) of unity (since
INTERPOLANTV € Sy of u, such thav coincides withu at 2N 4 1 points wik = (eih)lk)
{Xj}\j\<N defined by . K . . T
= e The matrix[W];c =W/ is unitary (i.e. W' W =1(2N+1))
2n Proof: Examine the expression
2N+1 T
WW=I = -
For the interpolant we set N+1 N+1 j\éN
v =y aek — If k=1, thenWikw Il =wilk-) —wo =1
KN — If k1, definew =W, then

xj = jh, |j| <N, whereh=
whwI = &

where the coefficientay, k= 1,...,N can be determined by solving the

algebraic system (cf. page 71 _1 Y =
g y (cf. pag .) 2N+1H§NW w 2N+1”§N°’
9 ac=u(xj), i <N Lo L .
=N whereM =2N+1,j =jif0<j<Nandj =j+Mif -N < j <0, sothat
W™ = . Using the expression for the sum of a finite geometric series

. . KX . o
with the matrixAyj = €%, k,j=1,...,N completes the proof(1- ) 3% j' =1-wM =0
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SPECTRAL INTERPOLATION (I11) SPECTRAL INTERPOLATION (1V)

LetP:: Cg(l) — Sy be the mapping which associates witfts interpolant
ve Sy. Let (+,-)n be theGAUSSIAN QUADRATURE approximation of the

Since the matri®V is unitary and hence itsiVERSEIS given by its inner product-.-)

TRANSPOSE, the Fourier coefficients of th&t TERPOLANTOf uin Sy can be
. Tt
calculated as follows: (u,v) = / uvdxes z u(x;)v(x;) 2 (V)N

—m 2N+1 .
_ik [JI=N
; zjW~ %, where z; = u(x;)

1
ak:
N+1 Ly

By construction, the operat®¢ satisfies:

The mapping (Reu)(xj) = u(xj), [jl<N
{zihjen — (A
is referred to aPISCRETEFOURIER TRANSFORM(DFT)

and therefore also (orthogonality of the defectg
(u—Pcu,vn)n =0, Y € SN
Straightforward evaluation of the expressionsdgrk=1,...,N
(matrix—vector products) would result in the computatiarast O(N?);
clever factorization of this operation, known as fesT FOURIER (U—Pnuw) =0, Y €Sy

TRANSFORMS(FFT), reduces this cost down ©(Nlog(N)) Thus,Peu(x) = zll:I:7N(u7eiKX)Neikx can be obtained analogously to

Seewm. f ft w. or g for one of the best publicly available implementations o Puu(x) = S (u,€)e"* by replacing the scalar produgt ) with the
the FFT. DISCRETE SCALAR PRODUCT(-, )N

By the definition ofPy we have

Spectral Methods Spectral Methods

SPECTRAL INTERPOLATION (V) SPECTRAL INTERPOLATION (V1)

e Thus, theNTERPOLATION COEFFICIENTSA are equivalent to thEOURIER * Relation between Fourier coefficientg 6f a functionu(x) and Fourier
SPECTRAL COEFFICIENTS), when the latter are evaluated using the coefficientsay of its interpolant; assume thatx) ¢ Sy
GAUSSIAN QUADRATURES 1n W ) — dkx

The two scalar products coincide 8, i.e.
(un,VN) = (UN, VNN, YUNLVN € SN,

hence fou € Sy, Uk = ax, k=1,...,N o THEOREM— Foru € C3(I) we have the relation

Proof — examine the numerical integration formula =Y Geam, whereM = 2N +1

1 m 1 €7
E‘[/ () XNt > fx); . . . . ikx
o jl<N Proof — Consider the set of basis functions|(i{1)) Uy = €**. We have:
then for everyf = ZE— N k€€ € Sy we have 1 1 e 1 k=n(mod M)
o U Unn = =—— 3 Ug(x;)U wikn) _
0o Ui Unn = 5177 Y Uk(xj)Un(xj) = 2N+1m<N 0 otherwise

1 [i[<N

= L
2T[/—r[ TN 1‘; 2N+1 ; w {0 otherwise SincePcu = 3 |jj<n @jWj, we infer from(Peu, Wk)n = (U, Wk)n that

Thus, for the uniform distribution of;j, the Gaussian (trapezoidal) formula is ax = (Pou,W)n = (U, W)n = < EZOan,Wk> = Ezﬂn (Wh, Wk ), = EZ'JK-HM
EXACT for f € §y ne N ne I
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SPECTRALINTERPOLATION (VII)

= z akeika- = z <0k+ Z LAJkA|M>eikXJ'
[k[<N [k[<N leZ\ {0}

e EXTREMELY IMPORTANT COROLLARY CONCERNINGINTERPOLATION
— two trigonometric polynomialgk™* ande2X with different frequencieg;
andk; are equal at the collocation pointg | j| < N when

ko—ki=I1(2N+1), | =0,£1,....

Therefore, give a set of values at the collocation pakpfsj| < N, it is
impossible to distinguish betweelf* andek2*. This phenomenon is
referred to a®LIASING

Note, however, that the modes appearing in the alias ternegoond to
frequencies larger than the cut—off frequemey
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SPECTRAL INTERPOLATION (VIII) —
ERRORESTIMATES IN H5(I)

e Supposes<r,r > % are given, then there exists a const@rguch that if
ue Hy(l), we have

l[u—Peul|s < C(1+N2) 2 ||ul]

Outline of the proof:
Note thatP: leavesSy invariant, thereforécPy = Py and we may thus write

U—PReu=u—Pyu+PR(Py—1u
Settingw = (I — Py)u and using the “triangle inequality” we obtain
[Ju—Peulls < [lu—Pyulls+ [|Pew]s

— The term|ju— Pyu||s is upper—bounded using theorem from page 91

— Need to estimatéPcw||s — straightforward, but tedious ...
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SPECTRAL INTERPOLATION (1X)
Until now, we defined the Discrete Fourier Transform foramb number
(2N + 1) of grid points
FFT algorithms generally require aveEN number of grid points

We can define the discrete transform forearen number of grid points by
constructing the interpolant in the spa&g for which we have

dim(Sy) = 2N. To do this we choose:
—N+1<j<N

All results presented before can be established in the caseW grid
points with only minor modifications

However, now theN-th Fourier modeuy does not have its complex
conjugate! This coefficient is usually set to zeog & 0) to avoid an
uncompensated imaginary contribution resulting fromedihtiation

OoDD or EVEN collocation depending on whethigt=2N+1 orM = 2N
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SPECTRAL INTERPOLATION (X)
Before we focused on representing InerERPOLANTaAS a Fourier series
V(i) = SRy ek
Alternatively, we can represent th® TERPOLANTUSIng the nodal values as
(assuming, for the moment, infinite domair R)

VX< 3 UG

j )
whereC;j(x) is aCARDINAL FUNCTION with the property thaC;(xi) = djj
(i.e., generalization of theAGRANGE POLYNOMIAL for infinite domain)

In an infinite domain we have th&HITTAKER CARDINAL or SINC function

Cu(¥) = sin[r(x—kh)/h|

Tix—Kh)/h = sind(x—kh)/h],

wheresingx) = %n;'x)
Proof — the Fourier transform djo is 8(k) = hforallk € [-1/h, Tt/h];

hence, the interpolant &g is v(x) = %ffﬂ;h dkh gk = %T%h)
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SPECTRAL INTERPOLATION (XI)
Thus, the spectral interpolant of a function iniaiFINITE domain is a linear
combination ofWHITTAKER CARDINAL functions
In aPERIODIC DOMAINWe still have the representation
N-1

V)= 3 Uxi)S; (9.
J:
but now theCARDINAL FUNCTIONS have the form

Sj(x) = %sin N(X;Xj)} cot{(x_zxj)]

Proof — similar to the previous (unbounded) case, exceptiba the
interpolant in given by &1screTeFourier Transform

The relationship between the Cardinal Functions corregdipgrto the
PERIODICandUNBOUNDED domains

S(X) = %sm(Nx cot(x/2) = Z smc(

X— 2Trm>
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SPECTRAL DIFFERENTIATION (1)

e Two ways to calculate the derivativex;) = U'(xj) based on the values
u(xj), where 0< j < 2N+ 1; denotel = [up, ..., Upn+1]" and

= (U U]
e METHOD ONE — approach based on differentiation in Fourier space:
— calculate the vector of Fourier coefficietis= TU
— apply the diagonal differentiation matriX’ = DU (cf. page 94)
— return to real space via inverse Fourier transfaima: TTU

e REMARK — formally we can write
U’ =T'DTU,

however in practice matrix operations are replaced by FFTs
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SPECTRAL DIFFERENTIATION (I1)

e METHOD TwO — approach based on differentiation (in real space) of the
interpolantu’ (x;) = V' (xj) = Z'j\lz_ol u(xj)S;(x), where the cardinal function
has the following derivatives

0, j=0(mod N
Sxi)=91, . .
5(=Dicotjh/2), j #0 (mod N
e Thus, since the interpolant is a linear combination of sh@ardinam

Functions, the differentiation matrix has the form of@epPLITZ
CIRCULANT matrix

0 - % cot{(1h)/2]]

~$ cof(1h)/2) 3 coti(2n)/2)

3 cof(2n)/2) % cot(3n)/2
—3 cof(3n)/2)

: 3 cot(1h)/2)
L § coti(1h)/2) 0

e Higher—order derivatives obtained calculat®§ (x;)




