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PART IV

Spectral Methods

• ADDITIONAL REFERENCES:

– R. Peyret,Spectral methods for incompressible viscous flow, Springer (2002),

– B. Mercier,An introduction to the numerical analysis of spectral methods,

Springer (1989),

– C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang,Spectral Methods in

Fluid Dynamics, Springer (1988).
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METHOD OF WEIGHTED RESIDUALS(I)

• SPECTRAL METHODS belong to the broader category ofWEIGHTED

RESIDUAL METHODS, for which approximations are defined in terms of

series expansions, such that a measure of the error knows as theRESIDUAL

is set to be zero in some approximate sense

• In general, an approximationuN(x) to u(x) is constructed using a set of basis
functionsϕk(x), k = 0, . . . ,N (note thatϕk(x) need not beORTHOGONAL)

uN(x) , ∑
k∈IN

ûkϕk(x), a≤ x≤ b, IN = {1, . . . ,N}

• Residual for two central problems:

– APPROXIMATIONof a functionu:

RN(x) = u−uN

– APPROXIMATE SOLUTIONof a (differential) equationLu− f = 0:

RN(x) = LuN − f
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METHOD OF WEIGHTED RESIDUALS(II)
• In general, the residualRN in canceled in the following sense:

(RN,ψi)w∗ =
Z b

a
w∗ RN ψ̄i dx= 0, i ∈ IN,

whereψi(x), i ∈ IN are theTRIAL (TEST) FUNCTIONS andw : [a,b] → R+

are theWEIGHTS

• Spectral Methodis obtained by:

– selecting theBASIS FUNCTIONSϕk to form anORTHOGONALsystem
under the weightw:

(ϕi ,ϕk)w = δik, i,k∈ IN and

– selecting the trial functions to coincide with the basis functions:
ψk = ϕk, k∈ IN

with the weightsw∗ = w ( SPECTRALGALERKIN APPROACH), or

– selecting the trial functions as
ψk = δ(x−xk), xk ∈ (a,b),

wherexk are chosen in a non–arbitrary manner, and the weights are

w∗ = 1 ( COLLOCATION, “ PSEUDO–SPECTRAL” APPROACH)
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METHOD OF WEIGHTED RESIDUALS(III)

• Note that the residualRN vanishes

– in the mean sense specified by the weightw in the Galerkin approach

– pointwise at the pointsxk in the collocation approach
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APPROXIMATION OFFUNCTIONS (I) —
GALERKIN METHOD

• Assume that the basis functions{ϕk}N
k=1 form an orthogonal set

• Define the residual

RN(x) = u−uN = u−
N

∑
k=0

ûkϕk

• Cancellation of the residual in the mean sense (with the weight w)

(RN,ϕi)w =
Z b

a

(

u−
N

∑
k=0

ûkϕk

)

ϕ̄i wdx= 0, i = 0, . . . ,N

(·) denotes complex conjugation (cf. definition of the inner product)

• Orthogonality of the basis / trial functions thus allows us to determine the
coefficients ˆuk by evaluating the expressions

ûk =
Z b

a
uϕ̄k wdx, k = 0, . . . ,N

• Note that, for this problem, the Galerkin approach is equivalent to theLEAST

SQUARESMETHOD .
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APPROXIMATION OFFUNCTIONS (II) —
COLLOCATION METHOD

• Define the residual

RN(x) = u−uN = u−
N

∑
k=0

ûkϕk

• POINTWISE cancellation of the residual
N

∑
k=0

ûkϕk(xi) = u(xi), i = 0, . . . ,N

Determination of the coefficients ˆuk thus requires solution of an algebraic

system. Existence and uniqueness of solutions requires that det{ϕk(xi)} 6= 0

(condition on the choice of the collocation pointsx j and the basis functions

ϕk)

• For certain basis pairs of basis functionsϕk and collocation pointsx j the

above system can be easily inverted and therefore determination of ûk may

be reduced to evaluation of simple expressions

• For this problem, the collocation method thus coincides with an

INTERPOLATION TECHNIQUEbased on the set of points{x j}
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APPROXIMATION OFPDES (I) —
GALERKIN METHOD

• Consider a generic PDE problem














Lu− f = 0 a < x < b

B−u = g− x = a

B+u = g+ x = b,

whereL is a linear, second–order differential operator, andB− andB+

represent appropriate boundary conditions (Dirichlet, Neumann, or Robin)

• Reduce the problem to an equivalentHOMOGENEOUSformulation via a
“lifting” technique, i.e., substituteu = ũ+v , whereũ is an arbitrary function
satisfying the boundary conditions above and the new (homogeneous)
problem forv is















Lv−h= 0 a < x < b

B−v = 0 x = a

B+v = 0 x = b,

whereh = f −L ũ
• The reason for this transformation is that the basis functionsϕk (usually)

satisfy homogeneous boundary conditions.
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APPROXIMATION OFPDES (II) —
GALERKIN METHOD

• The residual

RN(x) = LvN −h, where vN =
N

∑
k=0

v̂kϕk(x)

satisfies (“by construction”) the boundary conditions

• Cancellation of the residual in the mean (cf.THE WEAK FORMULATION )

(RN,ϕi)w = (LvN −h,ϕi)w, i = 0, . . . ,N

Thus
N

∑
k=0

v̂k (Lϕk,ϕi)w = (h,ϕi)w, i = 0, . . . ,N,

where the scalar product(Lϕk,ϕi)w can be accurately evaluated using

properties of the basis functionsϕi and(h,ϕi)w = ĥi

• An (N+1)× (N+1) algebraic system is obtained with the matrix

determined by

– the properties of the basis functions{ϕk}N
k=1

– the properties of the operatorL
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APPROXIMATION OFPDES (III) —
COLLOCATION METHOD

• The residual (corresponding to the original inhomogeneousproblem)

RN(x) = LuN − f , where uN =
N

∑
k=0

ûkϕk(x)

• Pointwise cancellation of the residual, including the boundary nodes:














LuN(xi) = f (xi) i = 1, . . . ,N−1

B−uN(x0) = g−

B+uN(xN) = g+,

This results in an(N+1)× (N+1) algebraic system. Note that depending

on the properties of the basis{ϕ0, . . . ,ϕN}, this system may be singular.

• Sometimes an alternative formulation is useful, where the nodal values
uN(x j ) j = 0, . . . ,N, rather than the expansion coefficients ˆuk, k = 0, . . . ,N
are unknown. The advantage is a convenient form of the expression for the
derivative

u(p)
N (xi) =

N

∑
j=0

d(p)
i j uN(x j ),

whered(p) is a p–TH ORDER DIFFERENTIATION MATRIX .
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ORTHONORMAL SYSTEMS(I) —
CONSTRUCTION

• THEOREM— Let H be a separable Hilbert space andT a compact

Hermitian operator. Then, there exists a sequence{λn}n∈N and{Wn}n∈N

such that

1. λn ∈ R,

2. the family{Wn}n∈N formsA COMPLETE BASISin H

3. TWn = λnWn for all n∈ N

• Systems of orthogonal functions are therefore related to spectra of certain

operators, hence the nameSPECTRAL METHODS
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ORTHONORMAL SYSTEMS(II) —
EXAMPLE # 1

• Let T : L2(0,π) → L2(0,π) be defined for allf ∈ L2(0,π) by T f = u, where
u is the solution of the Dirichlet problem

{ −u′′ = f

u(0) = u(π) = 0

Compactness ofT follows from the Lax–Milgram lemma and compact

embeddedness ofH1(0,π) in L2(0,π).

• EIGENVALUES AND EIGENVECTORS

λk =
1
k2 and Wk =

√
2sin(kx) for k≥ 1

• Thus, each functionu∈ L2(0,π) can be represented as

u(x) =
√

2 ∑
k≥1

ûkWk(x),

where ûk = (u,Wk)L2 =
√

2
π

R π
0 u(x)sin(kx)dx .

• Uniform (pointwise) convergence is not guaranteed (only inL2 sense)!
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ORTHONORMAL SYSTEMS(III) —
EXAMPLE # 2

• Let T : L2(0,π) → L2(0,π) be defined for allf ∈ L2(0,π) by T f = u, where
u is the solution of the Neumann problem

{ −u′′ +u = f

u′(0) = u′(π) = 0

Compactness ofT follows from the Lax–Milgram lemma and compact

embeddedness ofH1(0,π) in L2(0,π).

• EIGENVALUES AND EIGENVECTORS

λk =
1

1+k2 and W0(x) = 1, Wk =
√

2cos(kx) for k > 1

• Thus, each functionu∈ L2(0,π) can be represented as

u(x) =
√

2 ∑
k≥0

ûkWk(x),

where ûk = (u,Wk)L2 =
√

2
π

R π
0 u(x)cos(kx)dx .

• Uniform (pointwise) convergence is not guaranteed (only inL2 sense)!
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ORTHONORMAL SYSTEMS(IV) —
EXAMPLE # 3

• Expansion inSINE SERIESgood for functions vanishing on the boundaries

• Expansion inCOSINE SERIESgood for functions with first derivatives

vanishing on the boundaries

• Combining sine and cosine expansions we obtain theFOURIER SERIES

EXPANSIONwith the basis functions (inL2(−π,π))

Wk(x) = eikx, for k≥ 0

Wk form a Hilbert basis with better properties then sine or cosine series alone.

• FOURIER SERIESvs. FOURIER TRANSFORM —

– FOURIER TRANSFORM: F1 : L2(R) → L2(R),

F1[u](k) =
Z ∞

−∞
e−ikxu(x)dx, k∈ R

– FOURIER SERIES: F2 : L2(0,2π) → l2, (i.e., bounded to discrete)

ûk = F2[u](k) =
Z 2π

0
e−ikxu(x)dx, k = 0,1,2, . . .
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ORTHONORMAL SYSTEMS(V) —
POLYNOMIAL APPROXIMATION

• WEIERSTRASSAPPROXIMATION THEOREM — To any functionf (x) that

is continuous in[a,b] and to any real numberε > 0 there corresponds a

polynomialP(x) such that‖P(x)− f (x)‖C(a,b) < ε, i.e. the set of

polynomials isDENSE in the Banach spaceC(a,b)

(C(a,b) is the Banach space with the norm‖ f‖C(a,b) = maxx∈[a,b] | f (x)|

• Thus the power functionsxk, k = 0,1, . . . represent a natural basis inC(a,b)

• QUESTION — Is this set of basis functions useful?

NO! — SEE BELOW
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ORTHONORMAL SYSTEMS(VI) —
EXAMPLE

• Find the polynomialP̄N (of orderN) that best approximates a function
f ∈ L2(a,b) [note that we will need the structure of a Hilbert space, hence
we go toL2(a,b), butC(a,b) ⊂ L2(a,b)], i.e.

Z b

a
[ f (x)− P̄N(x)]2 dx≤

Z b

a
[ f (x)−PN(x)]2 dx

where P̄N(x) = ā0 + ā1x+ ā2x2 + · · ·+ āNxN

• Using the formula∑N
j=0 ā j (ej ,ek) = ( f ,ek), j = 0, . . . ,N, whereek = xk

N

∑
k=0

āk

Z b

a
xk+ j dx=

Z b

a
x j f (x)dx

N

∑
k=0

āk
bk+ j+1−ak+ j+1

k+ j +1
=

Z b

a
x j f (x)dx

• The resulting algebraic problem is extremelyILL –CONDITIONED , e.g. for
a = 0 andb = 1

[A]k j =
1

k+ j +1
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ORTHONORMAL SYSTEMS(VII) —
POLYNOMIAL APPROXIMATION

• Much better behaved approximation problems are obtained with the use of

ORTHOGONAL BASIS FUNCTIONS

• Such systems oforthogonal basis functionsare derived by applying the

SCHMIDT ORTHOGONALIZATION PROCEDUREto the system{1,x, . . . ,xN}

• Various families ofORTHOGONAL POLYNOMIALSare obtained depending

on the choice of:

– the domain[a,b] over which the polynomials are defined, and

– the weightw characterizing the inner product(·, ·)w used for

orthogonalization
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ORTHONORMAL SYSTEMS(VIII) —
ORTHOGONAL POLYNOMIALS

• Polynomials defined on the interval[−1,1]

– LEGENDRE POLYNOMIALS(w = 1)

Pk(x) =

√

2k+1
2

1
2k k!

dk

dxk (x2−1)k, k = 0,1,2, . . .

– JACOBI POLYNOMIALS (w = (1−x)α(1+x)β)

J(α,β)
k (x) = Ck(1−x)−α(1+x)−β dk

dxk [(1−x)α+k(1+x)β+k] k = 0,1,2, . . . ,

whereCk is a very complicated constant

– CHEBYSHEV POLYNOMIALS (w = 1√
1−x2 )

Tn(x) = cos(k arccos(x)), k = 0,1,2, . . . ,

Note that Chebyshev polynomials are obtained from Jacobi polynomials

for α = β = −1/2
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ORTHONORMAL SYSTEMS(IX) —
ORTHOGONAL POLYNOMIALS

• Polynomials defined on thePERIODICinterval [−π,π]
TRIGONOMETRIC POLYNOMIALS(w = 1)

Sk(x) = eikx k = 0,1,2, . . .

• Polynomials defined on the interval[0,+∞]
LAGUERRE POLYNOMIALS(w = e−x)

Lk(x) =
1
k!

ex dk

dxk (e−xxk), k = 0,1,2, . . .

• Polynomials defined on the interval[−∞,+∞]
HERMITE POLYNOMIALS (w = 1)

Hk(x) =
(−1)k

(2k k!
√

π)1/2
ex2 dk

dxk e−x2
, k = 0,1,2, . . .
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ORTHONORMAL SYSTEMS(X) —
ORTHOGONAL POLYNOMIALS

• What is the relationship betweenORTHOGONAL POLYNOMIALSand

eigenfunctions of aCOMPACT HERMITIAN OPERATOR (cf. Theorem on

page 75)?

• Each of the aforementioned families ofORTHOGONAL POLYNOMIALSforms
the set of eigenvectors for the followingSTURM–LIOUVILLE PROBLEM

d
dx

[

p(x)
dy
dx

]

+[q(x)+λr(x)]y = 0

a1y(a)+a2y′(a) = 0

b1y(b)+b2y′(b) = 0

for appropriately selected domain[a,b] and coefficientsp, q, r, a1, a2, b1, b2.
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FOURIER SERIES(I) — CALCULATION OF
FOURIER COEFFICIENTS

• TRUNCATED FOURIER SERIES:

uN(x) =
N

∑
k=−N

ûkeikx

• The series involves 2N+1 complex coefficients of the form (weightw≡ 1):

ûk =
1
2π

Z π

−π
ue−ikx dx, k = −N, . . . ,N

• The expansion is redundant for real–valuedu — the property ofCONJUGATE

SYMMETRY û−k = ¯̂uk , which reduces the number of complex coefficients to

N+1; furthermore,ℑ(û0) ≡ 0 for realu, thus one has 2N+1 REAL

coefficients; in the real case one can work with positive frequencies only!

• Equivalent real representation:

uN(x) = a0 +
N

∑
k=1

[ak cos(kx)+bk sin(kx)] ,

wherea0 = û0, ak = 2ℜ(ûk) andbk = 2ℑ(ûk).
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FOURIER SERIES(II) — U NIFORM
CONVERGENCE

• Consider a functionu that is continuous, periodic (with the period 2π) and

differentiable; note the following two facts:

– The Fourier coefficients are always less than the average ofu

|ûk| =
∣

∣

∣

∣

1
2π

Z π

−π
u(x)eikx dx

∣

∣

∣

∣

≤ M(u) ,
1
2π

Z π

−π
|u(x)|dx

– If v = dαu
dxα = u(α), then ûk = v̂k

(ik)α

• Then, using integration by parts, we have

ûk =
1
2π

Z π

−π
u(x)e−ikx dx=

1
2π

[

u(x)
e−ikx

−ik

]π

−π
− 1

2π

Z π

−π
u′(x)

e−ikx

−ik
dx

• Repeating integration by partsp times

ûk = (−1)p 1
2π

Z π

−π
u(p)(x)

e−ikx

(−ik)p dx =⇒ |ûk| ≤
M(u(p))

|k|p

Therefore, the more regular is the functionu, the more rapidly its Fourier

coefficients tend to zero as|n| → ∞
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FOURIER SERIES(III) — U NIFORM
CONVERGENCE

• We have

|ûk| ≤
M(u′′)
|k|2 =⇒ ∑

k∈Z

|ûkeikx| ≤ û0 + ∑
n6=0

M(u′′)
n2

The latter series convergesABSOLUTELY

• Thus, ifu is TWICE CONTINUOUSLY DIFFERENTIABLEand its first

derivative isCONTINUOUS AND PERIODICwith period 2π, then its Fourier

seriesuN = PNu CONVERGES UNIFORMLYto u for |N| → ∞

• SPECTRAL CONVERGENCE– if φ ∈C∞
p (−π,π), then for allα > 0 there

exists a positive constantCα such that|φ̂k| ≤ Cα
|n|α , i.e., for a function with an

infinite number of smooth derivatives, the Fourier coefficients vanish faster

than algebraically
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FOURIER SERIES(IV) — RATES OF
CONVERGENCE

• RATE OF DECAY of Fourier transform of a functionf : R → R is determined
by its SMOOTHNESS; functions defined on a bounded (periodic) domain are
a special case

• THEOREM [a collection of several related results, see also Trefethen (2000)]— Let
u∈ L2(R) have Fourier transform ˆu.

– If u hasp−1 continuous derivatives inL2(R) for somep≥ 0 and ap–th
derivative of bounded variation, then̂u(k) = O(|k|−p−1) as|k| → ∞,

– If u has infinitely many continuous derivatives inL2(R), thenû(k) = O(|k|−m) as
|k| → ∞ for EVERY m≥ 0 (the converse also holds)

– If there exista,c > 0 such thatu can be extended to anANALYTIC function in the
complex strip|ℑ(z)| < a with ‖u(·+ iy)‖ ≤ c uniformly for all y∈ (−a,a), where
‖u(·+ iy)‖ is theL2 norm along the horizontal lineℑ(z) = y, thenua ∈ L2(R),
whereua(k) = ea|k|û(k) (the converse also holds)

– If u can be extended to anENTIRE function (i.e., analytic throughout the complex
plane) and there existsa > 0 such that|u(z)| = o(ea|z|) as|z| → ∞ for all complex
valuesz∈ C, theû has compact support contained in[−a,a]; that isû(k) = 0 for
all |k| > a (the converse also holds)
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FOURIER SERIES(V) — RADII OF
CONVERGENCE

• DARBOUX’ S PRINCIPLE [see Boyd (2001)] — for all types of spectral

expansions (and for ordinary power series), both the domainof convergence

in the complex plane and the rate of convergence are controlled by the

location and strength of theGRAVEST SINGULARITY in the complex plane

(“singularities” in this context denote poles, fractionalpowers, logarithms

and discontinuities off (z) or its derivatives)

• Thus, given a functionf : [0,2π] → R, the rate of convergence of its Fourier

series is determined by the properties of itsCOMPLEX EXTENSION

F : C → C!!!

• Shapes of regions of convergence:

– Taylor series — circular disk extending up to the nearest singularity

– Fourier (and Hermite) series — horizontal strip extending vertically up to the
nearest singularity

– Chebyshev series — ellipse with foci atx = ±1 and extending up to the nearest
singularity
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FOURIER SERIES(VI) —
PERIODIC SOBOLEV SPACES

• Let Hr
p(I) be aPERIODICSOBOLEV SPACE, i.e.,

Hr
p(I) = {u : u(α) ∈ L2(I),α = 0, . . . , r},

whereI = (−π,π) is a periodic interval. The spaceC∞
p (I) is dense inHr

p(I)

• The following two norms can be shown to beEQUIVALENT in Hr
p:

‖u‖r =

[

∑
k∈Z

(1+k2)r |ûk|2
]1/2

|‖u‖|r =

[

r

∑
α=0

Cα
r ‖u(α)‖2

]1/2

Note that the first definition is naturally generalized for the case whenr is non–integer!

• ThePROJECTION OPERATORPN commutes with the derivative in the
distribution sense:

(PN u)(α) = ∑
|k|≤N

(ik)αûkWk = PNu(α)
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FOURIER SERIES(VII) —
APPROXIMATION ERRORESTIMATES IN Hs

p(I)

• Let r,s∈ R with 0≤ s≤ r; then we have:

‖u−PNu‖s ≤ (1+N2)
s−r
2 ‖u‖r , for u∈ Hr

p(I)

Proof:

‖u−PNu‖2
s = ∑

|k|>N

(1+k2)s−r+r |ûk|2 ≤ (1+N2)s−r ∑
|k|>N

(1+k2)r |ûk|2

≤ (1+N2)s−r‖u‖2
r

• Thus, accuracy of the approximationPNu is better whenu is SMOOTHER;

more precisely, foru∈ Hr
p(I), theL2 leading order error isO(N−r) which

improves whenr increases.
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FOURIER SERIES(VIII) —
APPROXIMATION ERRORESTIMATES IN L∞(I)

• First, a useful lemma(SOBOLEV INEQUALITY ) — let u∈ H1
p(I), then there

exists a constantC such that

‖u‖2
L∞(I) ≤C‖u‖0‖u‖1

Proof: Supposeu∈C∞
p (I); note the following facts

– û0 is the average ofu

– From the mean value theorem:∃x0 ∈ I such that ˆu0 = u(x0)

Let v(x) = u(x)− û0, then

1
2
|v(x)|2 =

Z x

x0

v(y)v′(y)dy≤
(

Z x

x0

|v(y)|2 dy

)1/2(Z x

x0

|v′(y)|2dy

)1/2

≤ 2π‖v‖‖v′‖

|u(x)| ≤ |û0|+ |v(x)| ≤ |û0|+2π1/2‖v‖1/2‖v′‖1/2 ≤C‖u‖1/2
0 ‖u‖1/2

1 ,

sincev′ = u′, ‖v‖ ≤ ‖u‖ and|û0| ≤ ‖u‖.

As C∞
p (I) is dense inH1

p(I), the inequality also holds for anyu∈ H1
p(I).
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FOURIER SERIES(IX) —
APPROXIMATION ERRORESTIMATES IN L∞(I)

• An estimate in the normL∞(I) follows immediately from the previous
lemma and estimates in theHs

p(I) norm

‖u−PNu‖2
L∞(I) ≤C(1+N2)−

r
2 (1+N2)

1−r
2 ,

whereu∈ Hr
p(I)

• Thus forr ≥ 1
‖u−PNu‖2

L∞(I) = O(N
1
2−r )

• UNIFORM CONVERGENCE for all u∈ H1
p(I)

(Note thatu need only to beCONTINUOUS, therefore this result is stronger

than the one given on page 87)
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FOURIER SERIES(X) —
SPECTRAL DIFFERENTIATION

• Assume we have a truncated Fourier series ofu(x)

uN(x) = PNu(x) =
N

∑
k=−N

ûkeikx

• The Fourier series of thep–th derivative ofu(x) is

u(p)
N (x) = PNu(p) =

N

∑
k=−N

(ik)pûkeikx =
N

∑
k=−N

û(p)
k eikx

• Thus, using the vectorŝU = [û−N, . . . , ûN]T andÛ (p) = [û(p)
−N, . . . , û(p)

N ]T , one

can introduce theSPECTRAL DIFFERENTIATION MATRIX D
(p) defined in

Fourier space aŝU (p) = D̂
(p)Û , where

D̂(p) = ip

























−Np

.. .

0

...

Np
























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FOURIER SERIES(XI) —
SPECTRAL DIFFERENTIATION

• Properties of the spectral differentiation matrix in Fourier representation

– D
(p) is DIAGONAL

– D(p) is SINGULAR (diagonal matrix with a zero eigenvalue)

– after desingularization the 2–norm condition number ofD(p) grows in

proportion toNp (since the matrix is diagonal, this is not an issue)

• QUESTION — how to derive the corresponding spectral differentiation

matrix in REAL REPRESENTATION?

Will see shortly ...
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I)

• We need to evaluate the expansion (Fourier) coefficients

ûk = (u,φk)w =
Z b

a
w(x)u(x)φk(x)dx, k = 0, . . . ,N

• QUADRATURE is a method to evaluate such integrals approximately.

• GAUSSIAN QUADRATURE seeks to obtain the best numerical estimate of an

integral
R b

a w(x) f (x)dx by pickingOPTIMAL POINTSxi , i = 1, . . . ,N at

which to evaluate the functionf (x).

• THE GAUSS–JACOBI INTEGRATION THEOREM — If the (N+1)
interpolation points{xi}N

i=0 are chosen to be the zeros ofPN+1(x), where
PN+1(x) is the polynomial of degree(N+1) of the set of polynomials which
are orthogonal on[a,b] with respect to the weight functionw(x), then the
quadrature formula

Z b

a
w(x) f (x)dx=

N

∑
i=0

wi f (xi)

is EXACT for all f (x) which are polynomials of at most degree(2N+1)
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (II)

• DEFINITION — Let K be a non-empty, Lipschitz, compact subset ofRd. Let

lq ≥ 1 be an integer. A quadrature onK with lq points consists of:

– A set of lq real numbers{ω1, . . . ,ωlq} calledQUADRATURE WEIGHTS

– A set of lq points{ξ1, . . . ,ξlq} in K calledGAUSS POINTSor

QUADRATURE NODES

The largest integerk such that∀p∈ Pk,
R

K p(x)dx= ∑
lq
l=1ωl p(ξl ) is called

the quadrature orderand is denoted bykq

• REMARK — As regards 1D bounded intervals, the most frequently used

quadratures are based onLegendre polynomialswhich are defined on the

interval(0,1) asEk(t) = 1
k!

dk

dtk (t
2− t)k, k≥ 0. Note that they are orthogonal

on (0,1) with the weightW = 1.
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (III)

• Theorem — Letlq ≥ 1, denote byξ1, . . . ,ξlq the lq roots of the Legendre

polynomialElq(x) and setωl =
R 1

0 ∏
lq
j=1
j 6=l

t−ξ j

ξl−ξ j
dt. Then

{ξ1, . . . ,ξlq ,ω1, . . . ,ωlq} is a quadrature of orderkq = 2lq−1 on[0,1]

Proof — Let{L1,dots,Llq} be the set of Lagrange polynomials associated

with the Gauß points{ξ1, . . . ,ξlq}. Thenωl =
R 1

0 Ll (t)dt, 1≤ l ≤ lq

– when p(x) is a polynomial of degree less than lq, we integrate both sides

of the identity p(t) = ∑
lq
l=1 p(ξl )Ll (t)dx,∀t ∈ [0,1] and deduce that the

quadrature is exact for p(x)

– when the polynomial p(x) has degree less than2lq we write it in the form
p(x) = q(x)Elq(x)+ r(x), where both q(x) and r(x) are polynomials of
degree less than lq; owing to orthogonality of the Legendre polynomials,
we conclude

Z 1

0
p(t)dt =

Z 1

0
r(t)dt =

lq

∑
l=1

ωl r(ξl ) =
lq

∑
l=1

ωl p(ξl ),

since the pointsξl are also roots ofElq
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (IV)

• PERIODIC GAUSSIAN QUADRATURE — If the interval[a,b] = [0,2π] is

periodic, the weightw(x) ≡ 1 andPN(x) is the trigonometric polynomial of

degreeN, the Gaussian quadrature is equivalent to theTRAPEZOIDAL RULE

(i.e., the quadrature with unit weights and equispaced nodes)

• Evaluation of the spectral coefficients:

– Assume{φ}N
k=1 is a set of basis functions orthogonal under the weightw

ûk =
Z b

a
w(x)u(x)φk(x)dx∼=,

N

∑
i=0

w(xi)u(xi)φk(xi), k = 0, . . . ,N,

wherexi are chosen so thatφN+1(xi) = 0, i = 0, . . . ,N

– DenotingÛ = [û0, . . . , ûN]T andU = [u(x0), . . . ,u(xN)]T we can write the

above as

Û = TU,

whereT is aTRANSFORMATIONMATRIX
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SPECTRAL INTERPOLATION (I)
• INTERPOLATION is a way of determining an expansion of a functionu in

terms of someORTHONORMAL BASIS FUNCTIONSalternative to Galerkin

spectral projections

• Assuming thatSN = span{ei0k, . . . ,eiNx} , we can determine an
INTERPOLANT v∈ SN of u, such thatv coincides withu at 2N+1 points
{x j}| j |≤N defined by

x j = jh, | j| ≤ N, where h =
2π

2N+1

• For the interpolant we set
v(x) = ∑

|k|≤N

akeikx

where the coefficientsak, k = 1, . . . ,N can be determined by solving the
algebraic system (cf. page 71)

∑
|k|≤N

eikx j ak = u(x j ), | j| ≤ N

with the matrixAk j = eikx j , k, j = 1, . . . ,N
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SPECTRAL INTERPOLATION (II)
• The system can be rewritten as

∑
|k|≤N

W jk ak = u(x j ), | j| ≤ N

whereW = eih = e
2iπ

2N+1 is the principal root of order(2N+1) of unity (since

W jk =
(

eih
) jk

)

• The matrix[W] jk = W jk is unitary (i.e. W
T

W = I(2N+1))
Proof: Examine the expression

1
2N+1

WT W = I =⇒ 1
2N+1 ∑

| j|≤N

W jkW− jl = δkl

– If k = l , thenW jkW− jl = W j(k−l) = W0 = 1

– If k 6= l , defineω = Wk−l , then

1
2N+1 ∑

| j|≤N

W jkW− jl =
1

2N+1 ∑
| j|≤N

ω j =
1
M

M−1

∑
j′=0

ω j′

whereM = 2N+1, j ′ = j if 0 ≤ j ≤ N and j ′ = j +M if −N ≤ j < 0, so that
ω j+M = ω j . Using the expression for the sum of a finite geometric series
completes the proof:(1−ω)∑M−1

j ′=0 ω j ′ = 1−ωM = 0
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SPECTRAL INTERPOLATION (III)

• Since the matrixW is unitary and hence itsINVERSE is given by its
TRANSPOSE, the Fourier coefficients of theINTERPOLANT of u in SN can be
calculated as follows:

ak =
1

2N+1 ∑
|k|≤N

zjW
− jk, where zj = u(x j )

• The mapping
{zj}| j |≤N −→ {ak}|k|≤N

is referred to asDISCRETEFOURIER TRANSFORM(DFT)

• Straightforward evaluation of the expressions forak, k = 1, . . . ,N

(matrix–vector products) would result in the computational costO(N2);

clever factorization of this operation, known as theFAST FOURIER

TRANSFORMS(FFT) , reduces this cost down toO(N log(N))

• Seewww.fftw.org for one of the best publicly available implementations of

the FFT.
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SPECTRAL INTERPOLATION (IV)
• Let PC : C0

p(I) → SN be the mapping which associates withu its interpolant
v∈ SN. Let (·, ·)N be theGAUSSIAN QUADRATURE approximation of the
inner product(·, ·)

(u,v) =
Z π

−π
uvdx∼= 1

2N+1 ∑
| j |≤N

u(x j )v(x j) , (u,v)N

• By construction, the operatorPC satisfies:

(PCu)(x j ) = u(x j ), | j| ≤ N

and therefore also (orthogonality of the defect toSN)

(u−PCu,vN)N = 0, ∀vN ∈ SN

• By the definition ofPN we have

(u−PNu,vN) = 0, ∀vN ∈ SN

• Thus,PCu(x) = ∑N
k=−N(u,eikx)Neikx can be obtained analogously to

PNu(x) = ∑N
k=−N(u,eikx)eikx by replacing the scalar product(·, ·) with the

DISCRETE SCALAR PRODUCT(·, ·)N
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SPECTRAL INTERPOLATION (V)
• Thus, theINTERPOLATION COEFFICIENTSak are equivalent to theFOURIER

SPECTRAL COEFFICIENTŜuk when the latter are evaluated using the

GAUSSIAN QUADRATURES

• The two scalar products coincide onSN, i.e.

(uN,vN) = (uN,vN)N, ∀uN,vN ∈ SN,

hence foru∈ SN, ûk = ak, k = 1, . . . ,N

• Proof — examine the numerical integration formula

1
2π

Z π

−π
f (x)dx∼= 1

2N+1 ∑
| j |≤N

f (x j );

then for everyf = ∑N
k=−N ûkeikx ∈ SN we have

1
2π

Z π

−π
eikx dx=

1
2N+1 ∑

| j |≤N

eikx j =
1

2N+1 ∑
| j |≤N

W jk =

{

1 k = 0

0 otherwise

Thus, for the uniform distribution ofx j , the Gaussian (trapezoidal) formula is

EXACT for f ∈ SN
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SPECTRAL INTERPOLATION (VI)
• Relation between Fourier coefficients ˆuk of a functionu(x) and Fourier

coefficientsak of its interpolant; assume thatu(x) /∈ SN

ûk =
1
2π

Z π

−π
uWk dx, Wk(x) = eikx

ak =
1

2N+1 ∑
| j |≤N

u(x j )Wk(x j )

• THEOREM— For u∈C0
p(I) we have the relation

ak = ∑
l∈Z

ûk+lM , whereM = 2N+1

Proof — Consider the set of basis functions (inL2(I)) Uk = eikx. We have:

(Uk,Un)N =
1

2N+1 ∑
| j |≤N

Uk(x j )Un(x j ) =
1

2N+1 ∑
| j |≤N

W j(k−n) =

{

1 k = n (mod M)

0 otherwise

SincePCu = ∑| j |≤N a jWj , we infer from(PCu,Wk)N = (u,Wk)N that

ak = (PCu,Wk)N = (u,Wk)N =

(

∑
n∈Z

ûnWn,Wk

)

N
= ∑

n∈Z

ûn
(

Wn,Wk
)

N = ∑
l∈Z

ûk+lM
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SPECTRAL INTERPOLATION (VII)

• Thus

u(x j ) = v(x j ) =
∞

∑
k=−∞

ûkeikx j = ∑
|k|≤N

akeikx j = ∑
|k|≤N

(

ûk + ∑
l∈Z�{0}

ûk+lM

)

eikx j

• EXTREMELY IMPORTANT COROLLARY CONCERNINGINTERPOLATION

— two trigonometric polynomialseik1x andeik2x with different frequenciesk1

andk2 are equal at the collocation pointsx j , | j| ≤ N when

k2−k1 = l(2N+1), l = 0,±1, . . ..

Therefore, give a set of values at the collocation pointsx j , | j| ≤ N, it is

impossible to distinguish betweeneik1x andeik2x. This phenomenon is

referred to asALIASING

• Note, however, that the modes appearing in the alias term correspond to

frequencies larger than the cut–off frequencyN.
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SPECTRAL INTERPOLATION (VIII) —
ERRORESTIMATES IN Hs

p(I)
• Supposes≤ r, r > 1

2 are given, then there exists a constantC such that if
u∈ Hr

p(I), we have

‖u−PCu‖s ≤C(1+N2)
s−r
2 ‖u‖r

Outline of the proof:
Note thatPC leavesSN invariant, thereforePCPN = PN and we may thus write

u−PCu = u−PNu+PC(PN − I)u

Settingw = (I −PN)u and using the “triangle inequality” we obtain

‖u−PCu‖s ≤ ‖u−PNu‖s+‖PCw‖s

– The term‖u−PNu‖s is upper–bounded using theorem from page 91

– Need to estimate‖PCw‖s — straightforward, but tedious ...
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SPECTRAL INTERPOLATION (IX)
• Until now, we defined the Discrete Fourier Transform for anODD number

(2N+1) of grid points

• FFT algorithms generally require anEVEN number of grid points

• We can define the discrete transform for anEVEN number of grid points by
constructing the interpolant in the spaceS̃N for which we have
dim(S̃N) = 2N. To do this we choose:

x̃ j = j h̃, −N+1≤ j ≤ N

h̃ =
π
N

• All results presented before can be established in the case with 2N grid

points with only minor modifications

• However, now theN-th Fourier mode ˆuN does not have its complex

conjugate! This coefficient is usually set to zero ( ˆuN = 0) to avoid an

uncompensated imaginary contribution resulting from differentiation

• ODD or EVEN collocation depending on whetherM = 2N+1 orM = 2N
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SPECTRAL INTERPOLATION (X)
• Before we focused on representing theINTERPOLANTas a Fourier series

v(x j ) = ∑N
k=−N akeikx j

• Alternatively, we can represent theINTERPOLANTusing the nodal values as

(assuming, for the moment, infinite domainx∈ R)

v(x) =
∞

∑
j=−∞

u(x j )Cj (x),

whereCj (x) is aCARDINAL FUNCTION with the property thatCj (xi) = δi j

(i.e., generalization of theLAGRANGE POLYNOMIAL for infinite domain)

• In an infinite domain we have theWHITTAKER CARDINAL or SINC function

Ck(x) =
sin[π(x−kh)/h]

π(x−kh)/h
= sinc[(x−kh)/h],

wheresinc(x) =
sin(πx)

πx

• Proof — the Fourier transform ofδ j0 is δ̂(k) = h for all k∈ [−π/h,π/h];

hence, the interpolant ofδ j0 is v(x) = h
2π

R π/h
−π/heikhdk=

sin(πx/h)
πx/h
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SPECTRAL INTERPOLATION (XI)
• Thus, the spectral interpolant of a function in anINFINITE domain is a linear

combination ofWHITTAKER CARDINAL functions

• In a PERIODIC DOMAIN we still have the representation

v(x) =
N−1

∑
j=0

u(x j )Sj (x),

but now theCARDINAL FUNCTIONS have the form

Sj (x) =
1
N

sin

[

N(x−x j)

2

]

cot

[

(x−x j)

2

]

• Proof — similar to the previous (unbounded) case, except that now the

interpolant in given by aDISCRETEFourier Transform

• The relationship between the Cardinal Functions corresponding to the

PERIODICandUNBOUNDED domains

S0(x) =
1

2N
sin(Nx)cot(x/2) =

∞

∑
m=−∞

sinc

(

x−2πm
h

)
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SPECTRAL DIFFERENTIATION (I)

• Two ways to calculate the derivativew(x j ) = u′(x j ) based on the values

u(x j ), where 0≤ j ≤ 2N+1; denoteU = [u0, . . . ,u2N+1]
T and

U ′ = [u′0, . . . ,u
′
2N+1]

T

• METHOD ONE — approach based on differentiation in Fourier space:

– calculate the vector of Fourier coefficientsÛ = TU

– apply the diagonal differentiation matrix̂U ′ = D̂Û (cf. page 94)

– return to real space via inverse Fourier transformU = TTÛ

• REMARK — formally we can write

U ′ = T
T
D̂TU,

however in practice matrix operations are replaced by FFTs
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SPECTRAL DIFFERENTIATION (II)
• METHOD TWO — approach based on differentiation (in real space) of the

interpolantu′(x j ) = v′(x j ) = ∑N−1
j=0 u(x j )S′j (x), where the cardinal function

has the following derivatives

S′(x j ) =







0, j = 0 (mod N)

1
2
(−1) j cot( jh/2), j 6= 0 (mod N)

• Thus, since the interpolant is a linear combination of shited Cardinam
Functions, the differentiation matrix has the form of aTOEPLITZ
CIRCULANT matrix

D =















































0 − 1
2 cot[(1h)/2]

− 1
2 cot[(1h)/2]

.
.
.

.
.
. 1

2 cot[(2h)/2]

1
2 cot[(2h)/2]

.
.
. − 1

2 cot[(3h)/2]

− 1
2 cot[(3h)/2]

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. 1

2 cot[(1h)/2]

1
2 cot[(1h)/2] 0
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• Higher–order derivatives obtained calculatingS(p)(x j )


