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2) Interpolation and Approximation
(Grasselli & Pelinovsky - Chapter 5)

Basic Definitions: What is the difference between the two?

Given a set of data points �  and a function �  where �  are suitably 

chosen basis functions.

- the interpolation problem: find �  such that �

- the approximation problem: find  �  such that �

Note that usually N>>M

Questions:
- what are good choices of the basis function � ?

- easy to compute
- fast decrease of errors with �

- how to determine the expansion coefficients � ?
- Estimates of integration/approximation errors
- computational cost

Polynomials - a first natural choice of basis functions
- MATLAB convention for indexing coefficients �
- �  is determined by a coefficient vector � � . Hence, polynomials �  can be identified with 

a finite-dimensional vector space �
- trigonometric functions can also be integrated as (complex) polynomials

set �  then �
- roots of polynomials

Fundamental Theorem of Algebra: a polynomial of degree n has exactly n possibly multiple roots
� , � - distinct roots with multiplicities �  and 
�

{xi , yi}i=1
N f (x) = aiφi (x)

i=1

M

∑ {φ}i=1
M

{ai}i=1
M f (xi ) = yi ,i = 1,...,M

{ai}i=1
M [yk − f (xk )]

2 = min
k=1

N

∑

φi

M →∞
ai ,...,aM

Pn (x) = c0x
n + c1x

n−1 + ...+ cn−1x + cn
Pn c∈Rn Pn

Pn ∈V = Rn+1

z = eiϕ = cosϕ + isinϕ zk = eikϕ = cos(kϕ )+ isin(kϕ )

pn (x) = c1(x − x1)
m1 (x − x2 )

m2 ⋅...⋅(x − xk )
mk x1,.., xk m1,..,mk

m1 + ...+mk = n
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Remark: Given the numbers � , consider an (nxn) companion matrix  

�

It can be shown that �  and the roots of �  are given by the eigenvalues of 
the companion matrix A. Solving the eigenvalue problem for the companion matrix A the preferred 
way of finding the roots of a polynomial (MATLAB’s function roots), because 

- all roots are found in the computation (both real and complex)
- it is numerically stable and efficient procedure (no issue of the initial guess etc.)

- Representation of polynomials: power series (coefficients) vs. factorised (roots + � )
- Differentiation and integration of polynomials is trivial 

�

�

- Multiplication of polynomials �

�  � -complicated functions of �  and �

- Division of polynomials leads to rational functions (not polynomials anymore) �

Weierstrass Approximation Theorem (1885)
Let f be a continuos function on [a,b] and let �  be arbitrary. Then, there exists a polynomial �  
such that

 �

Remarks:
- Central result of approximation theory
- the theorem is not consrtuctive; it’s not even known what the degree of the polynomial should be

2.1 Integrating Polynomials
Given (N+1) pairs � , find a degree N polynomial passing through all these points.

�  has (N+1) unknown coefficients which can be determined using the following 

conditions 

{�

c0,...,cn ∈!

An =
1
c0

0 0 … 0 −cn
c0 0 ! 0 −cn−1
0 c0 " # #

# " " 0 c2
0 ! 0 c0 c1

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

Pn (λ) = det(A − λI ) Pn (λ)

c1

Pn '(x) = nc0x
n−1 + (n −1)c1x

n−2 + ...+ cn

Pn (x).dx∫ = c0x
n+1

n +1
+ c1x

n

n
+ ...+ cnx + cn+1
Pn (x) ⋅Pm (x) = Pn+m (x)

( aix
n−i

i=0

n

∑ )( bjx
m− j

j=0

m

∑ ) = clx
n+m−l

l=0

n+m

∑ cl {ai} {bi}

R(x) = Pn (x)
Pm (x)

ε > 0 Pn

max
a≤x≤b

| Pn (x)− f (x) |< ε

{(xi , yi )}i=0
N

g(x) = akx
k

k=0

N

∑

akx0
k = y0

k=0

N

∑

akx1
k = y1

k=0

N

∑
!

akxN
k = yN

k=0

N

∑
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    Vandermonde Matrix V

Vandermonde determinant: � .

Thus, for distinct integration points � , �  and the Vendermonde matrix is 
nonsingular �  unique solutions exist.

Theorem: There exists a unique interpolating polynomial �  iff the data points �  are 
distinct.

However, the Vandermonde matrix is extremely ill-conditioned, to the point that it is very difficult to 
use in practice. This is because the basis functions are monomials � which for large k 
look alike; in analogy with vectors in � , they are almost collinear (linearly dependent).

Lagrange Interpolating Polynomials 
Choose �  interpolating polynomial is a special form:

�  where

(*) �  <— Lagrange/cardinal polynomial

(the terms i=k are omitted in both the numerator and denominator)

For example (with n=3)
�

Remarks: 
- the interpolating polynomial is a sum of n+1 n-degree polynomials (Lagrange functions)
- the Lagrange functions have the property � ,

i.e. have unit value at the corresponding node and zero at all other nodes.
Thanks to this property, the interpolation conditions �  are satisfied automatically  
(ly construction).
- the interpolating polynomial is easy to construct (no need to solve an algebra system)

- computational cost: �

Can we do better than that?

1 x0
1 … x

0
N

1 x1
1 ! x1

N

" " # "
1 xN

1 ! xN
N

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

a0
a1
"
aN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

y0
y1
"
yN

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

det(v) = (xi − x j )
j=i+1

N

∏
i=0

N

∏
xi ≠ yi ,i ≠ j det(V ) ≠ 0

⇒

Pn (x) xo,..., xN

xk ,k = 0,..,N
!n

Pn

Pn (x) = φk (x)yk
k=0

n

∑

φk (x) =
(x − xi )

i=0,i≠k

n

∏

(xk − xi )
i=0,i≠k

n

∏

P3(x) =
(x − x1)(x − x2 )(x − x3)
(x0 − x1)(x0 − x2 )(x0 − x3)

y0 +
(x − x1)(x − x2 )(x − x3)
(x1 − x0 )(x1 − x2 )(x1 − x3)

y1 +
(x − x1)(x − x2 )(x − x3)
(x2 − x0 )(x2 − x1)(x0 − x3)

y2 +
(x − x1)(x − x2 )(x − x3)
(x3 − x0 )(x3 − x1)(x3 − x2 )

y3

φk (xi ) = δ ik ,i,k = 0,...,n

Pn (xi ) = yi ,i = 0,...,n

O(n) operations to evaluate
φi (x) for each x
⎧
⎨
⎩

⎫
⎬
⎭
⋅n =O(n2 )
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Barycentric Interpolation Formula 

Examples:
- Lagrangian polynomial
- Lagrangian inrerpolation

For all k, the numerators in (*) are the same, except that they miss different factors � . One 
should take advantage of that.
Define the node polynomial for the given grid

�

Then, the Lagrange polynomials become � .

We can also define �  so that we have � .

Then, the Lagrange interpolation formula becomes

 �

Remarks:
- single dependence on x in side the sum
- if the weights �  are known, the formula produces a value for �  is just O(n) operations
- evaluation of the weights �  requires �  computation, but this is independent of x and 

hence can be performed just once at the beginning (for special grids the weights are known 
analytically)

- The barycentric formula is numerically stable (w.r.t round-off errors)
- further modifications exist, e.g for chebyshev interpolation

Analysis of Errors of Polynomial Interpolation
Assume the data is obtained using the function � as �
Consider the error function: �

It vanishes at � , thus �  

g(x) accounts for the behaviour between the nodes. Then,

�

Need to determine g(x). For this purpose we will define a near function W(t) (depending on the 
variable t)

�
W(t) has n+2 roots: �  and t=x
Assume W(t) is continuous and differentiable 

Mean Value Thereom: There is a root of the derivative W’(t) between every two roots of W(t); thus, 
altogether, there are n+1 roots of the derivative

(x − xk )

ζ (x) = (x − xk )
i=0

n

∏

φk (x) =
ℓ(x)

ℓ '(xk )(x − xk )

λk =
1

(xk − xi )
i=0

n

∏
= 1
ℓ '(xk )

φk (x) = ℓ(x)
λk

x − xk
,k = 0,...,n

pn (x) = ℓ(x) λk

x − xk
yk

k=0

n

∑
The First Form of the Barycentric Interpolation formula 
! "#### $####

λk p(x)
λk O(n2 )

f (x) yi = f (xi ),i = 0,…,n
E(x) = f (x)− Pn (x)

x0, x1,..., xn
E(x) = f (x)− Pn (x)

= (x − x0 )(x − x1) ⋅...⋅(x − xn )g(x)

f (x)− Pn (x)− E(x) = f (x)− Pn (x)− (x − xo ) ⋅...⋅(x − xn )g(x)
= 0

W (t) = f (t)− Pn (x)− (t − xo )(t − x1) ⋅...⋅(t − xn )g(x)
t = x0, x1,..., xn
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W’’(t) - n roots
W’’’(t) - (n-1) roots
   �
�  - 1 root (denoted � ) in the interval bounded by � . Thus, 

�

 � , where �  varies between � . Therefore �

Remarks
- since f(x) is usually unknown, the expression for E(x) has only qualitative meaning
- if � , then �
- smooth functions f(x)�  smaller errors
- for large n the error E(x) increases at the end joints of the interval (Runge Phenomenon); do not 

take n larger then 5,6,..

Another look at the Errors of Polynomial Interpolation

�

Assume �

Then � . Let �  - upper bound on the n-th 

derivative

�

Thus: �

For a fixed degree of interpolating polynomial �
How do reduce the error: �
- shrink the interval � , while keeping n unchanged
- keep the interval, but increase n then we need to control the derivatives � . 

- The rate of decay (increase) of �  depends on the analytical (regularity) properties of the 
interpolation function

- Runge’s function �  �

Least -Squares Approximation 
Applicable when,
- the number of samples is much larger than the number of parameters in the approximating 

function

!
W (n+1)(t) ξ {x0, xn , x}
W (n+1)(ξ ) = 0

= d (n+1)

dt (n+1)
[ f (t)− Pn (t)− (t − x0 )(t − x1) ⋅...⋅(t − xn )] |t=ξ

= f (n+1)(ξ )− 0 − (n +1)!g(x)
= 0

⇒ g(x) = f (n+1)(ξ )
(n +1)!

ξ {x0, x1, x} E(x) = f (n+1)(ξ )
(n +1)!

(x − xk )
k=0

n

∏

f (x) = Pn (x),m ≤ n E(x) ≡ 0
⇒

En (x) =
f (n+1)(ξ )
(n +1)!

(x − xk )
k=0

n

∏
wn+1(x )

! "# $#

x ∈[a,b]

xk = a + kh,  k = 0,...,n,  h = b − a
h

Mn = max
a≤x≤b
! | f (n)(x) |

cn = max
0≤x≤n
! | z − k |

k=0

n

∏

Emax = max
a≤x≤b
! | En (x) |≤

1
(n +1)!

cnMn+1h
n+1

Emax ≤ ch
n+1,  h <<1

h→ 0
| b − a |→ 0

lim
n→∞

Mn

Mn

f (x) = 1
1+ 25x2

, x ∈[−1,1]
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- the data is approximate only, so it is not necessary for the approximating function to go through 

every point

The approximating function y(x) should be chosen to minimise the deviation from the data in some 
suitable sense (expressing using different vector norms)

� , �

- when p is odd �  is not differentiable (problem hard to solve)
- p=2 - the most common choice (least squares approximation)

Example
Given data �
Approximating function y=ax+b

�

Want to find �

�

The approach can be generalised to higher order approximating polynomials, e.g. 
�  (degree m, m<<n)

Then �

Conditions �  give rise to the normal system

�

Structure of the normal system
�

Sp = e p ei = yi − y(xi )
− p

{xi , yi}i=1
n

S(a,b) = e 2
2 = (yi − axi − b)

2

i=1

n

∑
min
a,b
{S(a,b)}

∂s
∂a

= 2(yi − axi − b)(−xi ) = 0
i=1

n

∑
∂s
∂b

= 2(yi − axi − b)(−1) = 0
i=1

n

∑

⎫

⎬
⎪⎪

⎭
⎪
⎪

⇒
a xi

2 + b xi = xiyi
i
∑

i
∑

i
∑
a xi

i
∑ + bn = yi

i
∑

⎧

⎨
⎪

⎩
⎪

system of normal equations 
easily solved for (a,b)

! "#### $####

y(x) = a0 + a1x + ...+ anx
m

S(a0,a1,...,am ) = (yi − a0 − a1xi − ...− amxn
m )2

i=1

n

∑
∂s
∂aj

= 0,  j = 0,...,m

N xi∑ … xi
m∑

xi∑ xi
2∑ … xi

m+1∑
! ! " !
xi
m∑ xi

m+1∑ # xi
2m∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

A
$ %&&&&&& '&&&&&&

a0
a1
!
am

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

x
$%& '&

=

yi∑
xiyi∑
!
xi
nyi∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

b
$ %&& '&&

Ax = B
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�

V- rectangular nx(m+1) Vandermode matrix

�  and �

The normal system �  is thus � . The problem �  has dimension 
�  and is therefore overdetermined when n>m+1. When n=m+1, a standard interpolation 
is recovered.

Remarks:
- The normal system �  of the normal system is symmetric (good!) but ill-conditioned (bad!) 

due to poor conditioning, m should not exceed ~10
- When the data exhibits special trends, other (non polynomial) approximating functions can be 

used e.g. � . Then 

�

- Poor conditioning of the normal matrix can be eliminated by using combinations of orthogonal 
polynomials as approximating functions 

Orthogonal Polynomials (Chapter 17)
Consider definition of a weighted inner product for functions � .

The weight function: �

�

The functions f and g are orthogonal on (a,b) wrt the weight w(x) iff � .

Consider a family of degree n polynomials �  defined on [a,b]. For a given weight w(x), one can 
obtain a family of orthogonal polynomials �  by performing the Gram-Schmidt 
orthogonalisation procedure. They satisfy the relations � . 

A =VTV , where V : !m+1

degree of the
polynomial

" #$ → !n

number of
data points

"#

V =

1 x1 ! x1
m∑

1 x2 ! x2
m+1∑

" " # "
1 xn ! xn

m∑

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

b =VTb

VTVx =VTb (m +1)x(m +1) Vx = b
(m +1)xn

VTV

y(x) = axb

ei = log(yi )− log(a)
c

!"# + b log(xi )

= log(yi )− c − b log(xi )

f ,g :[a,b]→ !

w∈C1(a,b),w(x) > 0 ∀
x∈(a,b)

w(x).dx
−1

1

∫ < ∞

( f ,g)w = f (x)g(x)w(x).dx
a

b

∫
( f ,g)w = 0

Pn (x)
po, p1, p2,...

(pi , pk )w = 0,  k≠j


