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Complex Step Derivative

I Assumptions :
I f : Ω→ R is a smooth function, i.e. is continuously

differentiable sufficiently many times,

I the domain Ω = [a, b] is discretized with a uniform grid
{x1 = a, . . . , xN = b}, such that xj+1 − xj = hj = h (extensions
to nonuniform grids are straightforward)

I Problem — given the nodal values of the function f, i.e.,
fj = f (xj), j = 1, . . . ,N approximate the nodal values of the
function derivative

df

dx
(xj) = f ′(xj) =: f ′j , j = 1, . . . ,N

I The symbol
(
δf
δx

)
j

will denote the approximation of the

derivative f ′(x) at x = xj
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I The simplest approach — Derivation of finite difference
formulae via Taylor–series expansions

fj+1 = fj + (xj+1 − xj)f
′
j +

(xj+1 − xj)
2

2!
f ′′j +

(xj+1 − xj)
3

3!
f ′′′j + . . .

= fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

I Rearrange the expansion

f ′j =
fj+1 − fj

h
− h

2
f ′′j + · · · =

fj+1 − fj
h

+O(h),

where O(hα) denotes the contribution from all terms with powers of
h greater or equal α (here α = 1).

I Neglecting O(h), we obtain a first order
forward–difference formula :(

δf

δx

)
j

=
fj+1 − fj

h
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I Backward difference formula is obtained by expanding fj−1 about xj
and proceeding as before:

f ′j =
fj − fj−1

h
− h

2
f ′′j + . . . =⇒

(
δf

δx

)
j

=
fj − fj−1

h

I Neglected term with the lowest power of h is the leading–order

approximation error , i.e., Err =
∣∣∣f ′(xj)− (

δf
δx

)
j

∣∣∣ ≈ Chα

I The exponent α of h in the leading–order error represents the
order of accuracy of the method — it tells how quickly
the approximation error vanishes when the resolution is refined

I The actual value of the approximation error depends on the
constant C characterizing the function f

I In the examples above Err = − h
2 f
′′
j , hence the methods are

first–order accurate
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Higher–Order Formulas (I)

I Consider two expansions:

fj+1 = fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

fj−1 = fj − hf ′j +
h2

2
f ′′j −

h3

6
f ′′′j + . . .

I Subtracting the second from the first:

fj+1 − fj−1 = 2hf ′j +
h3

3
f ′′′j + . . .

I Central Difference Formula

f ′j =
fj+1 − fj−1

2h
− h2

6
f ′′′j + . . . =⇒

(
δf

δx

)
j

=
fj+1 − fj−1

2h
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Higher–Order Formulas (II)

I The leading–order error is h2

6 f ′′′j , thus the method is
second–order accurate

I Manipulating four different Taylor series expansions one can
obtain a fourth–order central difference formula :(

δf

δx

)
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12h
, Err =

h4

30
f (v)

B. Protas MATH3Q03, Fall 2015



Approach Based on Taylor Series
Interpolation-Based Approach

Complex Step Derivative

Approximation of the Second Derivative

I Consider two expansions:

fj+1 = fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

fj−1 = fj − hf ′j +
h2

2
f ′′j −

h3

6
f ′′′j + . . .

I Adding the two expansions

fj+1 + fj−1 = 2fj + h2f ′′j +
h4

12
f ivj + . . .

I Central difference formula for the second derivative:

f ′′j =
fj+1 − 2fj + fj−1

h2
− h2

12
f

(iv)
j + . . . =⇒

(
δ2f

δx2

)
j

=
fj+1 − 2fj + fj−1

h2

I The leading–order error is h2

12 f
(iv)
j , thus the method is

second–order accurate
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I An alternative derivation of a finite–difference scheme:
I Find an N–th order accurate interpolating function p(x) which

interpolates the function f (x) at the nodes xj , j = 1, . . . ,N, i.e., such
that p(xj) = f (xj), j = 1, . . . ,N

I Differentiate the interpolating function p(x) and evaluate at the nodes
to obtain an approximation of the derivative p′(xj) ≈ f ′(xj),
j = 1, . . . ,N

I Example:
I for j = 2, . . . ,N − 1, let the interpolant have the form of a quadratic

polynomial pj(x) on [xj−1, xj+1] (Lagrange interpolating polynomial)

pj(x) =
(x − xj)(x − xj+1)

2h2
fj−1 +

−(x − xj−1)(x − xj+1)

h2
fj +

(x − xj−1)(x − xj)

2h2
fj+1

p′j (x) =
(2x − xj − xj+1)

2h2
fj−1 +

−(2x − xj−1 − xj+1)

h2
fj +

(2x − xj−1 − xj)

2h2
fj+1

I Evaluating at x = xj we obtain f ′(xj) ≈ p′j(xj) =
fj+1−fj−1

2h
(i.e., second–order accurate center–difference formula)
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I Generalization to higher–orders straightforward

I Example:
I for j = 3, . . . ,N − 2, one can use a fourth–order polynomial as

interpolant pj(x) on [xj−2, xj+2]
I Differentiating with respect to x and evaluating at x = xj we

arrive at the fourth–order accurate finite–difference formula(
δf

δx

)
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12h
, Err =

h4

30
f (v)

I Order of accuracy of the finite–difference formula is one less
than the order of the interpolating polynomial

I The set of grid points needed to evaluate a finite–difference
formula is called stencil

I In general, higher–order formulas have larger stencils

B. Protas MATH3Q03, Fall 2015



Approach Based on Taylor Series
Interpolation-Based Approach

Complex Step Derivative

Subtractive Cancellation Errors

I Subtractive cancellation errors — when comparing
two numbers which are almost the same using finite–precision
arithmetic , the relative round–off error is proportional to the
inverse of the difference between the two numbers

I Thus, if the difference between the two numbers is decreased
by an order of magnitude, the relative accuracy with which
this difference may be calculated using finite–precision
arithmetic is also decreased by an order of magnitude.

I Problems with finite difference formulae when h→ 0 — loss
of precision due to finite–precision arithmetic ( subtractive
cancellation ), e.g., for double precision:

1.0000000000012345− 1.0≈1.2e − 12 (2.8% error)

1.0000000000001234− 1.0≈1.0e − 13 (19.0% error)

. . .
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I Consider the complex extension f (z), where z = x + iy , of
f (x) and compute the complex Taylor series expansion

f (xj + ih) = fj + ihf ′j −
h2

2
f ′′j − i

h3

6
f ′′′j +O(h4)

Need to assume that f (z) is analytic ! Then f ′ = df (z)
dz

I Take imaginary part and divide by h

f ′j =
=(f (xj + ih))

h
+

h2

6
f ′′′j +O(h3) =⇒

(
δf

δx

)
j

=
=(f (xj + ih))

h

I Note that the scheme is second order accurate — where is
conservation of complexity?

I The method doesn’t suffer from cancellation errors, is easy to
implement and quite useful

I Reference:
I J. N. Lyness and C. B.Moler, “Numerical differentiation of

analytical functions”, SIAM J. Numer Anal 4, 202-210, (1967)
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