TEST #1

9:30–10:20am, October 8 (Thursday), 50 minutes, 10 points max (no textbooks, no notes)

Write your name and student number on the top of this sheet. Write your answers on the reverse side and/or attach additional sheets as necessary.

- 1. The following instructions are executed in MATLAB:
 - a = 10.0; b = 1.0e - 20;a = a + b

What will be the *exact* value of the variable a? Justify your answer. [2 points]

- 2. Explain what *linear convergence* and *quadratic convergence* mean in the context of root-finding methods for problems of the type f(x) = 0, where $f : \mathbb{R} \to \mathbb{R}$ is a given function. Provide an example of a method characterized by each of these two types of convergence.
 - [2 points]
- 3. Describe the fixed-point iteration technique for solution of nonlinear equations in the form f(x) = 0, where $f : \mathbb{R} \to \mathbb{R}$; in particular, derive the conditions under which it converges to a solution R and estimate the rate of convergence, i.e., the rate at which $|e_n| = |x_n R|$ vanishes $(x_n \text{ denotes the approximation obtained at the$ *n*-th iteration)). [2 points]
- 4. You are solving the equation f(x) = 0 with some function $f : \mathbb{R} \to \mathbb{R}$ using the *bisection* method. Knowing that the root R of this equation belongs to the interval [0, 1], how many iterations does one have to perform in order to ensure that the error $|e_n| = |R x_n|$ is not greater than 10^{-3} (x_n denotes the approximation of the root obtained at the *n*-th iteration)? [2 points]
- 5. You are given the following two systems of linear equations

(a)	$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\ 4 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} =$	$=\begin{bmatrix}0\\0\end{bmatrix},$	(b) $\begin{bmatrix} 1\\ 2 \end{bmatrix}$	$\begin{bmatrix} 2\\1 \end{bmatrix} \begin{bmatrix} x_1\\x_2 \end{bmatrix} =$	$= \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$
-----	--	---	--------------------------------------	---	---	---

How many solutions $[x_1 \ x_2]^T$ does each of these systems admit? Justify your answer. [2 points]