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I Solving a two-point boundary value problem with
Dirichlet Boundary Conditions :

d2y

dx2
= g for x ∈ (0, 2π)

y(0) = y(2π) = 0

I Finite-difference approximation:
I Second-order center difference formula for the interior nodes:

yj+1 − 2yj + yj−1

h2
= gj for j = 1, . . . ,N

where h = 2π
N+1 and xj = jh

I Endpoint nodes:
y0 = 0 =⇒ y2 − 2y1 = h2g1

yN+1 = 0 =⇒ −2yN + yN−1 = h2gN

I Tridiagonal algebraic system — solved very efficiently with the
Thomas algorithm (a version of the Gaussian elimination)
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I Solving a two-point boundary value problem with
Neumann Boundary Conditions :

d2y

dx2
= g for x ∈ (0, 2π)

dy

dx
(0) =

dy

dx
(2π) = 0

I Finite-difference approximation:
I Second-order center difference formula for the interior nodes:

yj+1 − 2yj + yj−1

h2
= gj for j = 1, . . . ,N

I First-order Forward/Backward Difference formulae to
re–express endpoint values:

y1 − y0

h
= 0 =⇒ y0 = y1

yN+1 − yN
h

= 0 =⇒ yN+1 = yN

First-order only — degraded accuracy!
I Tridiagonal algebraic system — Is there any problem? Where?
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I In order to retain the second-order accuracy in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

y ′0 =
−y2 + 4y1 − 3y0

2h
= 0 =⇒ y0 =

1

3
(−y2 + 4y1)

I The first row thus becomes

2

3
y2 −

2

3
y1 = h2g1

Second–order accuracy recovered!
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I Compact Stencils — stencils based on three grid points
(in every direction) only: {xj+1, xj , xj−1} at the j − th node

I Is is possible to obtain higher (then second) order of accuracy
on compact stencils? — yes!

I Consider the central difference approximation to the equation
d2y
dy2 = g

yj+1 − 2yj + yj−1

h2
− h2

12
y

(iv)
j +O(h4) = gj
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I Re-express the error term h2

12 y
(iv)
j using the equation in question:

h2

12
y

(iv)
j =

h2

12
g ′′j =

h2

12

[
gj+1 − 2gj + gj−1

h2
− h2

12
g

(iv)
j +O(h4)

]

I Inserting into the original finite-difference equation:

yj+1 − 2yj + yj−1

h2
= gj +

gj+1 − 2gj + gj−1

12
+O(h4)

I Slight modification of the RHS =⇒ fourth-order
accuracy!!!
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I Compact Finite Difference Schemes —

I Advantages:
I Increased accuracy on compact stencils

I drawbacks:
I need to be tailored to the specific equation solved

I can get fairly complicated for more complex equations
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I Consider the following Cauchy problem :

dy

dt
= f (y , t) with y(t0) = y0

The independent variable t is usually referred to as time .

I Equations with higher-order derivatives can be reduced to
systems of first-order equations

I Generalizations to systems of ODEs straightforward

I When the RHS function does not depend on y , i.e.,
f (y , t) = f (t),
solution obtained via a quadrature

I Assume uniform time-steps ( h is constant )
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I accuracy — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the global error

(global error) = (local error)× (# of time steps),

rather than the local error .

I stability — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.
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Model Problem

I Stability of various numerical schemes is usually analyzed
by applying these schemes to the following linear model :

dy

dt
= λy = (λr + iλi )y with y(t0) = y0,

which is stable when λr <= 0 .

I Exact solution:

y(t) = y0eλt =

(
1 + λh +

λ2h2

2
+
λ3h3

6
+ . . .

)
y0
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Euler Explicit Scheme (I)

I Consider a Taylor series expansion

y(tn+1) = y(tn) + hy ′(tn) +
h2

2
y ′′(tn) + . . .

Using the ODE we obtain

y ′ =
dy

dt
= f

y ′′ =
dy ′

dt
=

df

dt
= ft + ffy

I Neglecting terms proportional to second and higher powers of
h yields the Explicit Euler Method

yn+1 = yn + hf (yn, tn)

I Retaining higher–order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with
desirable stability properties.
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Euler Explicit Scheme (II)

I Local error analysis:

yn+1 = (1 + λh) yn + [O(h2)]

I Global error analysis:

(global error) = Ch2 · N = Ch2 · T

h
= C ′h

Thus, the scheme is
I locally second-order accurate

I globally (over the interval [t0, t0 + Nh]) first-order accurate
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Euler Explicit Scheme (III)

I Stability (for the model problem)

yn+1 = yn + λhyn = (1 + λh)yn

I Thus, the solution after n time steps

yn = (1 + λh)ny0 , σny0 =⇒ σ = 1 + λh

I For large n, the numerical solution remains stable iff

|σ| ≤ 1 =⇒ (1 + λrh)2 + (λih)2 ≤ 1

I conditionally stable for real λ

I unstable for imaginary λ
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Euler Implicit Scheme (I)
I Implicit Schemes — based on approximation of the RHS that

involve f (yn+1, t), where yn+1 is the unknown to be determined

I Implicit Euler Scheme — obtained by neglecting second and
higher-order terms in the expansion:

y(tn) = y(tn+1)− hy ′(tn+1) +
h2

2
y ′′(tn+1)− . . .

I Upon substitution dy
dt

∣∣∣
tn+1

= f (yn+1, tn+1) we obtain

yn+1 = yn + hf (yn+1, tn+1)

I The scheme is
I locally second–order accurate

I globally (over the interval [t0, t0 + Nh]) first–order accurate
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Euler Implicit Scheme (II)

I Stability (for the model problem):

yn+1 = yn + λhyn+1 =⇒ yn+1 = (1− λh)−1yn

yn+1 =

(
1

1− λh

)n

y0 , σny0 =⇒ σ =
1

1− λh

|σ| ≤ 1 =⇒ (1− λrh)2 + (λih)2 ≥ 1

I Implicit Euler scheme is thus stable for
I all stable model problems
I most unstable model problems

I Remark: When solving systems of ODEs of the form
y = A(t)y, each implicit step requires solution of an algebraic
system: yn+1 = (I − hA)−1yn

I Implicit schemes are generally hard to implement for nonlinear
problems
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