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Dirichlet Boundary Conditions
Neumann Boundary Conditions
Compact Schemes

Boundary-Value Problems

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
DIRICHLET BOUNDARY CONDITIONS :
d2y
dx?
y(0) =y(2m) =0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:

Yi+1 — 2yt yi—1
2

=g for x € (0, 2m)

=giforj=1,....N
whereh:l\f—I1

» Endpoint nodes: )
Yo=0 = w—-2y;=hgy

and x; = jh

yni1 = 0= —2yy + yn_1 = h°gn

» Tridiagonal algebraic system — solved very efficiently with the
THOMAS ALGORITHM (a version of the Gaussian elimination)

B. Protas MATH3Q03, Winter 2017



Dirichlet Boundary Conditions
Neumann Boundary Conditions
Compact Schemes

Boundary-Value Problems

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
NEUMANN BOUNDARY CONDITIONS :
4y
dx?
dy
0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:
Yit1 — 2y +Yyj-1
A2
» First-order Forward/Backward Difference formulae to
re—express endpoint values:
Y1i—Y
h
YN+1 — YN
h
First-order only — DEGRADED ACCURACY!
» Tridiagonal algebraic system — Is there any problem? Where?
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_dy _
= 5(271') =

=giforj=1,...,N



Dirichlet Boundary Conditions
Neumann Boundary Conditions
Compact Schemes

Boundary-Value Problems

> In order to retain the SECOND-ORDER ACCURACY in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

) _ —y2t+4y1 -3y
Yo 2h

1
=0 = y= g(ﬂ’z + 4y1)

» The first row thus becomes

3

SECOND—ORDER ACCURACY RECOVERED!

2 2 )
§y2—7y1:hg1
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Dirichlet Boundary Conditions

Boundary-Value Problems Neumann Boundary Conditions

Compact Schemes

» COMPACT STENCILS — stencils based on three grid points
(in every direction) only: {xji1, X, xj—1} at the j — th node

» Is is possible to obtain higher (then second) order of accuracy
on compact stencils? — YES!

» Consider the central difference approximation to the equation
Py _
&2 &

h? 12

Yirr =2y +yi1 W
i+ iTYi yj( )+(9(h4):gj
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Dirichlet Boundary Conditions

Boundary-Value Problems Neumann Boundary Conditions

Compact Schemes

2 (iv) . . .
> Re-express the error term %yj('v)usmg the equation in question:

W Gy _ 0, W lgn—2g+g1 B
oGy _ o _m (v ) h4
127 125 T 12 2 &  TOoU)

> Inserting into the original finite-difference equation:

Yitr —2¥+yi-1 | g+l — 28+ g1
h2 =&+ 12

+ O(h%)

» Slight modification of the RHS = FOURTH-ORDER
ACCURACY!!!
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Dirichlet Boundary Conditions

Boundary-Value Problems Neumann Boundary Conditions

Compact Schemes

» COMPACT FINITE DIFFERENCE SCHEMES —

» ADVANTAGES:

> Increased accuracy on compact stencils

» DRAWBACKS:

> need to be tailored to the specific equation solved

> can get fairly complicated for more complex equations
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Generalis

Initial-Value Problems Time-Stepping Schemes

» Consider the following CAUCHY PROBLEM :

dy _
dt

The independent variable t is usually referred to as TIME .

f(y,t) with y(to) = yo

» Equations with higher-order derivatives can be reduced to
systems of first-order equations

» Generalizations to systems of ODEs straightforward
» When the RHS function does not depend on y, i.e.,

solution obtained via a QUADRATURE

» Assume uniform time-steps ( h is constant )
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Generalis

Initial-Value Problems Time-Stepping Schemes

» ACCURACY — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the GLOBAL ERROR

(global error) = (local error) x (# of time steps),

rather than the LOCAL ERROR .

» STABILITY — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.
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Generalis
Initial-Value Problems Time-Stepping Schemes

Model Problem

> STABILITY of various numerical schemes is usually analyzed
by applying these schemes to the following LINEAR MODEL :

d . .
d%: =)y = ()\r + 1)\,-)y with y(to) = Yo,

which is stable when \, <=0 .

» EXACT SOLUTION:
A2h2 \3p3
> Yo

y(t):yoe)‘t:<l+)\h+2+6+
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Generalis
Initial-Value Problems Time-Stepping Schemes

Euler Explicit Scheme (1)

» Consider a Taylor series expansion

h2
Y(tat1) = y(ta) + hy'(tn) + ?y”(tn) +
Using the ODE we obtain

dy

!

= — = f
T

dy’ df

V=== =f+ff
dt ar T

» Neglecting terms proportional to second and higher powers of
h yields the ExpLIiCIT EULER METHOD

Yn+1 =Yn+ hf()/na tn)

» Retaining higher—order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with

desirable stability properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes

Euler Explicit Scheme (1)

» LOCAL ERROR analysis:

Vi1 = (L4 Ah) yn +[O(h7)]

» GLOBAL ERROR analysis:

-
(global error) = Ch? - N = Ch?* - b= C'h

Thus, the scheme is
> locally second-order accurate

» globally (over the interval [to, ty + NAh]) first-order accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes

Euler Explicit Scheme (I11)

» Stability (for the model problem)

Yn+1 = ¥Yn + Ahyn = (L + Ah)y,

» Thus, the solution after n time steps

Yo=1+M)"y=0"yy = oc=1+A\h

> For large n, the numerical solution remains stable iff
o] <1 = (L+A\h)?+(\h)?2<1
» CONDITIONALLY STABLE for real A

» UNSTABLE for imaginary A
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Generalis
Initial-Value Problems Time-Stepping Schemes

Euler Implicit Scheme (1)

» IMPLICIT SCHEMES — based on approximation of the RHS that
involve f(y,+1,t), where y,.1 is the unknown to be determined

» [MPLICIT EULER SCHEME — obtained by neglecting second and
higher-order terms in the expansion:

h2
y(tn) = y(tntr1) — hy'(tng1) + Ey”(tm) -

» Upon substitution % = f(Yn+1, tn+1) we obtain
tn+1

Yn+1 = Yn + hf(yn+17 tn+1)

» The scheme is
> locally SECOND—ORDER accurate

» globally (over the interval [to, to + Nh]) FIRST-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes

Euler Implicit Scheme (I1)

» Stability (for the model problem):

Y41 =Yn+ AYny1 = yar1 = (1—Ah)"ly,
1
1—Ah
o] <1 = (1-XM\h2+\h)?>1
» Implicit Euler scheme is thus stable for

> all stable model problems
» most unstable model problems

» REMARK: When solving systems of ODEs of the form
y = A(t)y, each implicit step requires solution of an algebraic
system: ypy1 = (I — hA) 1y,

» Implicit schemes are generally hard to implement for nonlinear
problems
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