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HOMEWORK #3
Due: March 9 (Thursday) by midnight

Instructions:

• The assignment consists of three questions, worth 3, 4 and 3 points.

• Submit your assignment electronically to the Email address
math3q03@math.mcmaster.ca; hardcopy submissions will not be accepted.

• It is obligatory to use the MATLAB template file available at
http://www.math.mcmaster.ca/bprotas/MATH3Q03/template.m (see also the link
in the “Computer Programs” section of the course website); submissions non
compliant with this template will not be accepted.

• All plots should have suitable axis labels and legends.

• Make sure to enter your name and student I.D. number in the appropriate section of
the template.

• Late submissions and submissions which do not comply with these guidelines will not
be accepted.

1. Consider the problem of finding roots of the function F : R2 → R2, where

F

([
x1
x2

])
=

[
x1x2 − 1
x22 − x1 − 2

]
.

When the Jacobian of F is too difficult or too costly to evaluate, Broyden’s method is
a viable alternative to Newton’s method. Starting from initial guesses x0 and D0, the
iterations of Broyden’s approach are defined as follows (see Section 8.2 in Grasselli &
Pelinovsky)

Dk(xk+1 − xk) = −F(xk), k = 0, 1, . . .

Dk+1 = Dk +
F(xk+1) · (xk+1 − xk)T

(xk+1 − xk)T · (xk+1 − xk)

(both x and F(·) are assumed to be column vectors). Use both Newton’s method and
Broyden’s method to approximate the root x∗ = [−1,−1]T of the equation F(x) = 0
using the initial guesses x0 = [1.5,−1.5]T and D0 = I (the identify matrix). Then,

(a) plot the approximation errors ‖xk − x∗‖2 obtained with the two approaches as
functions of k; this plot should use the logarithmic scaling for the vertical axis
and appear as figure(1),

(b) plot the all the approximations xk, k = 0, 1, . . . , produced by the two approaches
in the (x1, x2) coordinates; make the region shown on this plot big enough so
that all points xk are visible also mark the exact solution x∗; this plot should
appear as figure(2).

You may want to use the script script multi Newton.m posted on the course website
as the starting point for your implementation.
(3 points)
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2. Consider Runge’s function

f(x) =
1

1 + a2 x2
, x ∈ [−1, 1],

which depends on a parameter a > 0, and its truncated Taylor-series expansion

gN (x) =

N∑
k=0

akx
k, x ∈ [−1, 1],

where a0, . . . , aN are suitable coefficients and N = 10. Construct chebfun objects
representing f(x) and gN (x) and then determine by trial-and-error two values of the
parameter a not too different from 1 such that

(a) the Taylor series gn(x), n = 0, 1, . . . , N , is uniformly convergent to f(x) as n in-
creases; plot both f(x) and gn(x), n = 0, 1, . . . , N as functions of x in figure(3)

and save the value of a in the variable Answer1,

(b) the Taylor series gn(x), n = 0, 1, . . . , N , is not uniformly convergent to f(x)
as n increases; plot both f(x) and gn(x), n = 0, 1, . . . , N as functions of x in
figure(4) and save the value of a in the variable Answer2.

In both cases compute the approximation error max−1≤x≤1 |f(x)− gn(x)| and plot it
as a function of the number of terms n = 0, . . . , N in figure(5). This plot should
use the logarithmic scaling for the vertical axis, whereas the expression max−1≤x≤1 | · |
can be evaluated using chebfun function norm(., inf).
(4 points)

3. Your are given the function f(x) = x cos(x2) in the interval Ω = [−π, π] which is
discretized using a uniform mesh with N + 1 grid points (take x0 = −π and xN = π).

(a) consider the Vandermonde approach to interpolation and determine the value of
N for which the condition number κ (obtained using MATLAB function cond)
of the interpolation matrix exceeds the threshold E = 106; write out this value
of N ,

(b) calculate the Lagrange interpolating polynomials in the case when N = 4 and plot
them using different colors and the step size h = xi+1 − xi = π

50 in figure(6),

(c) plot the function f(x) together with its interpolants constructed using the La-
grange polynomials with N = 4 (in figure(7)) and N = 16 (in figure(8)); all
functions should be plotted for x ∈ Ω using the same step size h as above; mark
the interpolation points {xi, f(xi)}Ni=0 with symbols.

(3 points)


