TEST #1

9:30–10:20, February 15 (Thursday) in REF/102

Make sure to put your name and ID number in the top–left corner of the answer sheet No textbooks or notes allowed!

- 1. You are given an equation f(x) = 0, where $f : \mathbb{R} \to \mathbb{R}$. Consider a modified version of this equation $\alpha f(x) = 0$, where $\alpha \neq 0$ is a real number. Construct a fixed-point algorithm for solution of the modified equation. How to choose the parameter α at every iteration, so that this algorithm will be identical with Newton's method applied to the original equation? [2 points]
- You are given an algebraic system in the form Ax = b; derive an estimate of the relative solution error ||x-x||/|x|| when the system matrix is replaced with a perturbed matrix A = A + E and the new system is Ax = b; comment how this error depends on the properties of the matrix A.
 [2 points]
- 3. You are given a large number N of linear algebraic systems with the same matrix A and different right-hand side vectors $\mathbf{b}_1, \ldots, \mathbf{b}_N$. Assuming that A is full, propose a cost-efficient way of solving these N systems (note that the optimal approach is not iterative). [2 points]
- 4. You are given two data points $\{x_1, y_1\}$ and $\{x_2, y_2\}$. Construct an interpolating polynomial $P_1(x)$ that will go through these two point using
 - (a) the direct (Vandermonde) approach; (only derive, but do not solve, the algebraic system),
 - (b) Lagrange polynomials,
 - (c) divided differences.

[2 points]

5. Given a set of data points $\{x_i, y_i\}_{i=1}^N$, where *N* is a large number, show how to solve the least-squares approximation problem using $y(x) = ae^{bx}$ as the interpolating function $(a, b \in \mathbb{R})$. [2 points]