PART II
FINITE DIFFERENCE METHODS FOR
DIFFERENTIAL EQUATIONS
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
DIrRICHLET BOUNDARY CONDITIONS :

d2y
dx?
y(0) =y(2m) =0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:

=g for x € (0, 2m)

Yit1 — 2y +yji—1
h2

=giforj=1,....N

where h = ,\f—j_rl and x; = jh
» Endpoint nodes: )
=0 = y—2n=hg

Yn41 = 0= —2yn + yn_1 = h°gn

» Tridiagonal algebraic system — solved very efficiently with the
THOMAS ALGORITHM (a version of the Gaussian elimination)
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
NEUMANN BOUNDARY CONDITIONS :

2
% =g for x € (0,27)
dy 7@ _

dx( )= dx(zﬁ) =0

» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:
Yit1 — 2y + yj-1
h2
> First-order Forward/Backward Difference formulae to
re—express endpoint values:

y1—Y
h
YN+1 — YN
h
First-order only — DEGRADED ACCURACY!
» Tridiagonal algebraic system — Is there any problem? Where?
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Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

» In order to retain the SECOND-ORDER ACCURACY in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

R 7 Tk e 3y0
Yo 2h

1
=0 = yo=(—y2+4n)

» The first row thus becomes
2, _2 _ h?
3}’2 3}’1 =hg

SECOND—ORDER ACCURACY RECOVERED!
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT STENCILS — stencils based on three grid points
(in every direction) only: {xji1,Xj, Xj—1} at the j — th node

» |s is possible to obtain higher (then second) order of accuracy
on compact stencils? — YES!

» Consider the central difference approximation to the equation
d2
@ =&

Yt =2ty b

h2 12%

+O(h") =g
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

2 1 . . . .
» Re-express the error term %yj('v)usmg the equation in question:

h? (iv) _ h? "o_ h gi+1— 28 +g-1 h? (iv)

T m — g +o(h*
125 T 1% T h2 18 T
» Inserting into the original finite-difference equation:
i1 — 2y; P i1 — 2g; P
Yj+1 h);J+)/J 1:gj+gj+1 1g2J+gJ 1—|—O(h4)

» Slight modification of the RHS =— FOURTH-ORDER
ACCURACY!!!
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT FINITE DIFFERENCE SCHEMES —

» ADVANTAGES:

» Increased accuracy on compact stencils

> DRAWBACKS:
> need to be tailored to the specific equation solved

P can get fairly complicated for more complex equations
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» Consider the following CAUCHY PROBLEM :

dy

P f(y,t) with y(to) = yo

The independent variable t is usually referred to as TIME .

» Equations with higher-order derivatives can be reduced to
systems of first-order equations

» Generalizations to systems of ODEs straightforward
» When the RHS function does not depend on y, i.e.,
fy,t) = f(1),

solution obtained via a QUADRATURE

» Assume uniform time-steps ( h is constant )
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» ACCURACY — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the GLOBAL ERROR

(global error) = (local error) x (# of time steps),

rather than the LOCAL ERROR .

> STABILITY — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (I)

» STABILITY of various numerical schemes is usually analyzed
by applying these schemes to the following LINEAR MODEL :

d . ,
==y = (A + Ay with y(to) = yo,

which is stable when A\, <=0 .

» BEXACT SOLUTION:

A2h? \3h3
y(t) = yoet = <1+/\h+2+6+--->}/0
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (II)

» MOTIVATION — consider the following
ADVECTION-DIFFUSION PDE :

ot ox Ox2
Taking Fourier transform yields (k is the wavenumber):
%+cikﬁk+ak2ﬁk —0

where
» the real term a k? (i represents DIFFUSION

» the imaginary term ¢/ k {, represents ADVECTION
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

» Consider a Taylor series expansion

2
Y(thrl) = Y(tn) + hy/(tn) + ?y”(tn) +...
Using the ODE we obtain
yl = ﬂ =
dt
dy’ df
"= = =f+ff,
dt gt

» Neglecting terms proportional to second and higher powers of
h yields the ExpriciT EULER METHOD

Yn+1 =Yn+ hf(}/m tn)

P Retaining higher—order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with
desirable stability properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

> LOCAL ERROR analysis:

Vo1 = (L+ Ah) ya + [O(h?)]

> GLOBAL ERROR analysis:

(global error) = Ch* - N = Ch* - % =C'h

Thus, the scheme is
» locally second-order accurate

> globally (over the interval [to, to + NA]) first-order accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (I11)

» Stability (for the model problem)

Ynt1l = Yn + Ahy, = (1 + )‘h))’n

» Thus, the solution after n time steps

Yn:(l-i-)\h)nyoéanyo = o=1+M\h

» For large n, the numerical solution remains stable iff
o] <1 = (L+Ah)?+(Nh)? <1
» CONDITIONALLY STABLE for real A

> UNSTABLE for imaginary A
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (1)

» IMPLICIT SCHEMES — based on approximation of the RHS that
involve f(y,+1,t), where y,.1 is the unknown to be determined

> [MPLICIT EULER SCHEME — obtained by neglecting second and
higher-order terms in the expansion:

h2
y(tn) = y(tntr1) — hy'(tng1) + Ey”(tm) -

» Upon substitution % = f(Yn+1, tn+1) we obtain

tn+1

Yn+1 = Yn + hf(yn+17 tn+1)

» The scheme is
» locally SECOND—ORDER accurate
» globally (over the interval [ty, to + Nh]) FIRST-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (I1)

> Stability (for the model problem):

Yot1 = Yo+ Ayny1 = yor1=(1— )‘h)il)/n
1
1—Ah
o] <1 = (1—-XM\h)2+\h)?>1
» Implicit Euler scheme is thus stable for

» all stable model problems
» most unstable model problems

» REMARK: When solving systems of ODEs of the form
y' = A(t)y, each implicit step requires solution of an algebraic
system: yni1 = (/ — hA(t)) " 'yn

» Implicit schemes are generally hard to implement for nonlinear
problems
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

» Obtained by approximating the formal solution of the ODE
Ynil = Yn+ ft"“ f(y,t) dt using the TRAPEZOIDAL QUADRATURE :

h
Yn+1 = Yn + 2 [f()/na tn) + f(YnJrla tn+1)]

» The scheme is
» locally THIRD—ORDER accurate

> globally (over the interval [to, ty + Nh]) SECOND—ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

> Stability (for the model problem):

Ah 1+
Yn+1 = Yn + T(YnJrl +Yn) = Yor1= 1_an | Yn

AR\ " Ah
B 1+5 A o n _1+—2
Yn+1 = h Yo=0 Yo = 0 =

-2

1=
o] <1 = R(\h) <0

» STABLE for all model ODEs with stable solutions
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (1)

» LEAPFROG as an example of a TWO-STEP METHOD :
Yn+1 = Yn—1 + 2hAyn

» CHARACTERISTIC EQUATION for the AMPLIFICATION FACTOR
(Yn = Unyo)
02 —2hXoc—1=0
where roots give the amplification factors:

2p2

M2h
o1 =M+ 14+ N2k ~ LA+ ——+... = e+ O(h?)

2h2
02:)\h—\/1+)\2h2:—(1—/\h+/\T—...):—e‘”’+(’)(h3)

» Thus, the scheme is
» locally THIRD-ORDER accurate
» globally (over the interval [ty, to + Nh]) SECOND—ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (II)

» Stability for diffusion problems (A = A, ):

o1 =Ah+/1+X2h2>1 forall h>0

Thus the scheme is UNCONDITIONALLY UNSTABLE for diffusion
problems!

» Stability for advection problems ( A = i)\ ):

1
o3y =1 (M) for h< oy

Thus, the scheme is CONDITIONALLY STABLE and NON-DIFFUSIVE

for advection problems!

» QUESTION — analyze dispersive (i.e., related to arg(o)) errors of
the leapfrog scheme.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1)

» General form of a MULTISTEP (&, () PROCEDURE :
P q
> aynii=hY_ Bif (Yot tnr))
j:O j:O
with characteristic polynomials
€p(2) = apzP + ap_1zP M+ + g

Cq(Z) — ﬁqzq +/8q712q_1 +--+ B

» if p > g — EXPLICIT SCHEME
» if p < g — IMPLICIT SCHEME

» CONSISTENCY: h—0 =— Local Error — 0
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Generalis

Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (I1)

Theorem
» Consider an initial-value problem % = f(t,y), y(0) = yo,
where f : [0, T] x R" — R" is r times continuously
differentiable w. r. t. both variables. A (&, () —procedure
converges uniformly in [0, T], i.e.,
limp_s0 maXt,c[o,T] lyn — y(ta)|| = O if:

1. the following consistency conditions are verified: (1) = 0 and
&’'(1) = ¢(1) ( CONSISTENCY CONDITION )

2. all roots of the polynomial £(z) are such that |z;| <1 and the
roots with |zx| = 1 are simple ( STABILITY CONDITION )
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (lII)

Proof (part 1.)
> Taylor expansions

y(t+jh Zy (t) khk+o(hr+1)

(k+1) r (k)
V(t+jh) = Z y! (t) J*RK+Oh) = P4 kl(t) LR L o)
k=1 :

» Error E(t, h) (s = max{p, q})

E(t,h)=> ajy(t+jih)—h> Bif(t+jhy(t+ih)=>[ajy(t+jh)—hBy (t+jh)]
Jj=0 Jj=0 j=0

—Z [ZJ aj — kj* 151] 2 (t) H+o(h)
J
=0 (%)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1V)

Proof (Cont.)
| 2

S

() D ifa—kj B =0, k=0,....r
j=0

» For the global error to vanish we need r = 1, so that O(h?)
S
k=0: > ;=0 = £1)=0
j=0
S S
k=1: > jo=> 8 = 1)=¢1)
Jj=0 Jj=0
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)

» General form of a FRACTIONAL STEP METHOD :
Yot1 =Yn+y1hki+y2hky+y3hks+ ...
where
ki = f(yn, tn)
ka = f(yn + Bihky, tn + arh)
k3 = f(yn + B2hki + B3hko, tn + azh)

» Choose 7;, 8; and «; to match as many expansion coefficients as

possible in B2 B3
y(tns1) = y(tn) + hy'(ta) + " (tn) + ¥ (tn) ..
y'=f
y' = fo+ ffy

V" = fu + 6, 20F + 2 fy 4+ £2£,

> Runge-Kutta methods are SELF—STARTING with fairly good stability

and accuracy properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)
» RK4 — an ODE "workhorse”:

h h h
Ynt+1 = Yn + —ki + g(kz +k3) + —ka

6 6
h
ki = F(yn, tn) ke = f(yn + ki, tay1/2)
h
ks = f(yn + 5 2,t,,+1/2) ky = f(yn + hks, toy1)

» The amplification factor:
NROXR Xt
2 + 6 + 24

oc=1+ A+

Thus, stability iff |o| <1
» ACCURACY:
e =04+ 0O(h°)
Thus, the scheme is

» locally FIFTH-ORDER accurate
» globally (over the interval [ty, to + Nh]) FOURTH-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge’s Principle

» Let (k + 1) be the order of the local truncation error; denote Y(t, h)
an approximation of the exact solution y(t) computed with the step
size h; then at t = ty + 2nh:

y(t) = Y(t,h) ~ C2nh*"" = C(t — to)h"*
y(t) = Y(t,2h) ~ Cn(2h)*"" = C(t — t)2" H*

Subtracting:
Y (t,2h) — Y(t, h) ~ C(t — to)(1 — 2¥)h*

» Thus, we can obtain an estimate of the ABSOLUTE ERROR based on
solution with two step—sizes only:
Y(t, h) — Y(t,2h
y(t) = Y(t, h) ~ %
2k —1
> Runge's principle is very useful for ADAPTIVE STEP SIZE
REFINEMENT
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Lax Equivalence Theorem!

» Consider an INITIAL VALUE PROBLEM

du .
P Lu with u(to) = wo

and assume that it is well-posed, i.e., it admits solutions which are
unique and stable

» Consider a numerical method defined by a finite—difference operator
C(h) such that the approximate solution is given by

up(nh) =C(h)"wo, n=1,2,...

» The above method is CONSISTENT iff % is a convergent
approximation of the operator £

» LAX THEOREM — For a CONSISTENT difference method
STABILITY is equivalent to CONVERGENCE

For a more technical discussion, see § 5.2 in Atkinson & Han (2001)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties (1)

» |s ACCURACY and STABILITY all that matters?

» CONSERVATION PROPERTIES — conservation by the numerical
method (i.e., in the discrete sense) of various invariants the original
equation may possess

» REMARK — conservation properties are particularly relevant for
solution of Hamiltonian / hyperbolic systems

» Example — conservation of the solution norm:
> In the continuous setting (assume u = |ule’?)

dlu
w I _ o = Ju(e) = Juo,
—— =iy =
dt de _
dt - Iy
» In the discrete setting: |up(nh)| = |up((n—1)h)| =+ = |up(0)|

Necessary and sufficient condition for discrete conservation: 3h, |o(h)] =1
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties (II)

» Implicit Euler —

Il = v

Cli—ixnhl T TN
The scheme is thus DISSIPATIVE (i.e., not conservative)

» Fourth—Order Runge-Kutta —

|o| 1—%/\?h2+~-~<1forallh

X2 3R et 1
=14+ iNh— i 0 4 2 — /576 — 8ASHS + \BhB
ted i > i~ o4 24\/5 6 — 8! ;
=1- —1i4A6h6 - <1 forsmall h

The scheme is thus DISSIPATIVE (i.e., not conservative)

» Leapfrog — lo1p] =1 forall h< |
The scheme is thus CONSERVATIVE for all tlme—steps for which it is
stable!!! Leapfrog is an example of a SYMPLECTIC INTEGRATOR

) ]
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» Classification of linear PDEs in 2D: consider v : Q2 — R and
A, B, C € R such that

d%u 9%u 0%u

A +B +C f(x,y,u)=0

o TPaxay T a2 T

» ELLIPTIC PROBLEMS : B2 —4AC <0
» Poisson equation: Ry u
2 + 9y2 =g(x,y)

» PARABOLIC PROBLEMS : B2 —4AC =0
» Heat equation: @ . @ N @ + etey)
ot T\ ox2  Oy2 gy
» HYPERBOLIC PROBLEMS : B? — 4AC >0

> jon:
Wave equation: @_a @+@ )
oz~ \ox2 T ay2) TEVY
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» POISSON EQUATION

Pu , Fu

_ﬁ—i_aﬁ:g(x’y) inQ, QcR?

> Assuming Ax = Ay = h, the DISCRETE LAPLACIAN

Ay~ YLt Uije — 4/171£J +uj—1j + Uij-1 +O(K)
where uj; = u(iAx,jAy), i,j=1,....,N
» Thus
Uit + Uit — Auij + ui—1j + uijo1 = b gij, Lhj=1...,N

» After incorporating boundary conditions (Dirichlet, Neumann) and
vectorizing the variables ( &, (y_1); = &ij ), we obtain a sparse
algebraic problems with a diagonally-dominant PENTADIAGONAL
MATRIX = straightforward to solve
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Elliptic Problems

Parabolic Problems
Finite Differences for PDEs — Review Hyperbolic Problems

» HEAT EQUATION

ou u
EZW m [O, T]X[a,b]
» CRANK-NICOLSON METHOD (xj = jAx,j=1,...,M, t = nAt,
n=1,...,N):
> spatial derivative: (%)Jn = % + 0O((Ax)?)

» time derivative:

du\™ _ ut - 1| (Pu\"" | (Hu
(&)J. =~ ar T9BN=3 <8X) + (ax )
n n At n n n n n
utt g = (ujif — 20y Ul — 20l 4 uj,l) o) ((Ax)2At T (At)2)

+0((At))

T 2(Ax)?
» thus, defining r = (AA—;)Z ,we have at every time step n
—ruj"jl1 +2(1 + r)u] ol ru"+11 =ruly +2(1—r)u] + ru]

which for U™ = [uf,...,uf,]" can be wrltten as an algebralc system
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» ¢ METHOD
> allow for a more general approximation in time of the RHS (6 € [0, 1])

du n+1 ujn+1 un 92u n+1 2u\"
((,%)j =" Ar L+O(At) = 6(8)@)1. +(1-9) <8X2>J +0O(At)

» special cases
» =0 = ExpLICIT METHOD: U™ = AqU"
> 0 =1 = CRrANK NICOLSON METHOD (see previous slide)
> §=1 = IMPLICIT METHOD: A ;U™ = ("

> Stability:

» The EXPLICIT SCHEME is STABLE for r = (AX)2 <

» The CRANK—NICOLSON and IMPLICIT SCHEME are STABLE for all r

B. Protas MATH745, Fall 2025



Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» WAVE EQUATION ) )
0“u  0O°u

ﬁ:ﬁ n [0, T]X[a,b]

n Ny gyn
» Spatial derivative: (%)_ = % + O((Ax)?)
j

» Time derivative:

2 n {7+1 —oyn + {1—1 2 n
(B2 Ry (2
J J

T @) a2

2
BT (axp (0 + 0 y) —uf ™" 42 (1 - ((2?)2> 4+ O (A (Aef + (48

> Stability for gﬁi); <1

» REMARK: need two initial conditions!
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems
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