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PART I

Review of Interpolation and Approximation

Theory

Although this may seem a paradox,

all exact science is dominated by the idea of approximation.

— Bertrand Russell (1872–1970)
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REVIEW OF INTERPOLATION AND
APPROXIMATION THEORY I

• Goal — given a function f , known exactly or only approximately, find its

representation that has

– a more simply computable form, and

– error of interpolation / approximation is within some prescribed

tolerance.

• Interpolation vs. Approximation

• Reduction to an algebraic problem :

– existence of a solution,

– its uniqueness,

– conditioning of the resulting algebraic system

• Error estimates

Interpolation & Approximation 4

INTERPOLATION THEORY I
ABSTRACT FRAMEWORK

• Let:

– V be a normed vector space over a field K of numbers (real R, or

complex C)

– V ′ be the dual space , i.e., a space of linear bounded functionals on V

• Statement of an abstract INTERPOLATION PROBLEM:

– suppose Vn ∈V is an n–dimensional subspace of V with a basis

{v1, . . . ,vn}
– let Li ∈V ′, 1 ≤ i ≤ n be n linear functionals

– given n numbers bi ∈ R, 1 ≤ i ≤ n, find un ∈Vn such that the following

interpolation conditions are satisfied:

Liun = bi, 1 ≤ i ≤ n• Questions:

– Does the interpolation problem have a solutions?

– If so, is this solution unique?

– Can we estimate the error?
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INTERPOLATION THEORY II
ABSTRACT FRAMEWORK

• Definition — The functionals Li, 1 ≤ i ≤ n, are linearly independent over Vn

if

∀v ∈Vn,
n

∑
i=1

αiLi(v) = 0 =⇒ αi = 0, 1 ≤ i ≤ n

• Lemma — the linear functionals L1, . . . ,Ln are linearly independent over Vn
iff

det(Liv j) = det











L1v1 · · · L1vn

...
. . .

...

Lnv1 · · · Lnvn











6= 0

• Proof — L1, . . . ,Ln linearly independent over Vn

⇐⇒
n

∑
i=1

αiLi(v j) = 0, 1 ≤ j ≤ n =⇒ αi = 0, 1 ≤ i ≤ n

⇐⇒ det(Liv j) 6= 0.
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INTERPOLATION THEORY III
ABSTRACT FRAMEWORK

• Theorem — the following statements are equivalent:

1. The interpolation problem has a unique solution

2. The functionals L1, . . . ,Ln are linearly independent over Vn

3. The only element un ∈Vn satisfying Liun = 0, 1 ≤ i ≤ n is un = 0

4. For any data {bi}n
i=1, there exists one un ∈Vn such that

Liun = bi, 1 ≤ i ≤ n

• Proof — from linear algebra, for a square matrix A ∈ K
x×n, the following

statements are equivalent:

1. The system Ax = b has a unique solution x ∈ Kn for any b ∈ Kn,

2. det(A) 6= 0,

3. If Ax = 0, the x = 0,

4. For any b ∈ Kn, the system Ax = b has a solution x ∈ Kn.

The results of the theorem follow from the above statements.
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INTERPOLATION THEORY IV
ABSTRACT FRAMEWORK

• Given u ∈V , its interpolant un = ∑n
i=1 αivi in Vn is defined by the

interpolation conditions
Liun = Liu, 1 ≤ i ≤ n

• The coefficients {αi}n
i=1 can be found from the linear system










L1v1 · · · L1vn

...
. . .

...

Lnv1 · · · Lnvn





















α1

...

αn











=











L1u
...

Lnu











which has a unique solution of the functionals L1, . . . ,Ln are linearly

independent over Vn.

• Specific examples of interpolation:

– Lagrange polynomial interpolation

– Hermite polynomial interpolation

– Piecewise polynomial interpolation

– trigonometric interpolation
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LAGRANGE POLYNOMIAL INTERPOLATION I

• Let:

– f : [a,b] → K be a continuous function defined on a finite closed interval

[a,b], so that one can choose V = C[a,b]

– ∆ : a ≤ x0 ≤ x1 ≤ ·· · ≤ xn ≤ b be a partition of the interval [a,b]

– Vn+1 be given by Pn, the space of polynomials of degree less then or

equal to n

• Defining the interpolation linear functionals as Li f = f (xi), 0 ≤ i ≤ n, we

obtain the following conditions for the Lagrange polynomial interpolant of

degree n

pn(xi) = f (xi), 0 ≤ i ≤ n, pn ∈ Pn
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LAGRANGE POLYNOMIAL INTERPOLATION II
EXISTENCE OF SOLUTIONS AND UNIQUENESS
• Choosing the set of basis functions for Pn as v j(x) = x j , 0 ≤ i ≤ n, we obtain

Liv j in the form of the Vandermonde matrix :

Liv j =























1 x0 x2
0 . . . xn

0

1 x1 x2
1 . . . xn

1
...

...
... . . .

...

1 xn−1 x2
n−1 . . . xn

n−1

1 xn x2
n . . . xn

n























The determinant of this matrix can be shown to be

det(Liv j) =
n

∏
j>i

(x j − xi) 6= 0.

Hence, there exists a unique Lagrange interpolation polynomial.

• Caveat — Note that the Vandermonde matrix is extremely ill–conditioned!

This mean that in the resulting algebraic system is hard to solve accurately

and therefore in practice other methods are preferred.
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LAGRANGE POLYNOMIAL INTERPOLATION III
• An alternative approach — Lagrange’s formula for the interpolation

polynomial:
pn(x) =

n

∑
i=0

f (xi)φi(x),

where {φi}n
i=0 are the Lagrange basis functions defined as

φi(x) = ∏
j 6=i

x− x j

xi − x j
,

• Note that {φi}n
i=0 satisfy the interpolation condition

φi(x j) = δi j =

{

0, i 6= j,

1, i = j,

and constitute a basis for the space Pn.

• Solution obtained directly (i.e., without solving an algebraic system); Note

that for homogeneous data the interpolant is zero which by the above

theorem ensures uniqueness of the solution (this is often a very convenient

way of proving existence and uniqueness).
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LAGRANGE POLYNOMIAL INTERPOLATION IV
ERROR ESTIMATES

• Theorem — Assume f ∈C(n+1)[a,b]. Then there exists a ξx between

min(xi,x) and max(xi,x) such that the local interpolation error is

f (x)− pn(x) =
ωn(x)

(n+1)!
f (n+1)(ξx), where ωn(x) =

n

∏
i=0

(x− xi)

• Proof:

– The result is obvious for x = xi, 0 ≤ i ≤ n,

– Suppose x 6= xi, 0 ≤ i ≤ n, and denote E(x) = f (x)− pn(x) .

Consider the function: g(t) = E(t)− ωn(t)
ωn(x)

E(x)

We note that g(t) has (n+2) distinct roots: t = x and t = xi, 0 ≤ i ≤ n.

By the Mean Value Theorem, g′(t) has (n+1) distinct roots. Repeatedly

applying the Mean Value Theorem to derivatives of g we conclude that

g(n+1)(t) has a root ξx ∈ (min(xi,x),max(xi,x)). Thus

g(n+1)(t) = f (n+1)(ξx)−
(n+1)!
ωn(x)

E(x) = 0 �
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LAGRANGE POLYNOMIAL INTERPOLATION V
REMARKS

• Runge Phenomenon — Examination of the interpolation error formula

shows that there may be points x∗ in the interval [a,b] such that

lim
n→∞

| f (x∗)− pn(x
∗)| = ∞,

meaning that the sequence of the approximation polynomials pn(x) does not

uniformly converge to f !

Such situation often arises close to the endpoints of the interpolation interval

[a,b].

• This difficulty can be mitigated by performing interpolation on sets of

non–uniformly spaced grid points — for instance, zeros of Chebyshev

polynomials
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HERMITE POLYNOMIAL INTERPOLATION I
• General idea — use the values of both f (x) and f ′(x) as interpolation

conditions

• Assume that f ∈C1[a,b] and let ∆ : a ≤ x1 ≤ ·· · ≤ xn ≤ b be a partition of

the interval [a,b]

• The Hermite interpolation polynomial p2n−1 ∈ P2n−1 is chosen to satisfy

the conditions

p2n−1(xi) = f (xi), p′2n−1(xi) = f ′(xi), 1 ≤ i ≤ n

• More generally, given a set of integers {mi}n
i=1 and f ∈CM [a,b], where

M = maxi(mi), the Hermite interpolation problem can be stated as follows —

find an pN ∈ PN , N = ∑n
i=1(mi +1)−1 such that

p( j)
N (xi) = f ( j)(xi), 0 ≤ j ≤ mi, 1 ≤ i ≤ n

• Similar results concerning existence and uniqueness of solutions and the

corresponding error bounds can be proven as for the Lagrange interpolation.
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PIECEWISE POLYNOMIAL INTERPOLATION I
• Assume that f ∈C[a,b] and let ∆ : a ≤ x0 ≤ x1 ≤ ·· · ≤ xn ≤ b be a partition

of the interval [a,b]; denote hi = xi − xi−1, 1 ≤ i ≤ n and h = max1≤i≤n hi.

• The piecewise linear interpolant is defined as follows:

– for each i = 1, . . . ,n Π∆ f
∣

∣

[xi−1,xi]
is linear,

– for i = 0,1, . . . ,n, Π∆ f (xi) = f (xi)

• Is is easy to see that the following unique linear interpolation polynomial

exists:

Π∆ f (x) =
xi − x

hi
f (xi−1)+

x− xi−1

hi
f (xi), x ∈ [xi−1,xi]

• Suppose that f ∈C2[a,b]; local interpolation error can be assessed using the

estimate derived previously, i.e.

max
x∈[a,b]

| f (x)−Π∆ f (x)| ≤ h2

8
max

x∈[a,b]
| f ′′(x)|

• What about global error (i.e., in the integral sense)?
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PIECEWISE POLYNOMIAL INTERPOLATION II
• Instead of f ∈C2[a,b], assume now that f ∈ H2(a,b)

• Consider the interpolation error in the L2 sense

‖ f (x)−Π∆ f (x)‖2
L2(a,b)

=
Z b

a
| f (x)−Π∆ f (x)|2 dx =

n

∑
i=1

Z xi

xi−1

| f (x)−Π∆ f (x)|2 dx

• Introduce a function f̂ ∈ H2(0,1) with its linear interpolant

Π̂ f̂ (ξ) = f̂ (0)(1−ξ)+ f̂ (1)ξ, 0 ≤ ξ ≤ 1

• By Taylor’s theorem
f̂ (0) = f̂ (ξ)−ξ f̂ ′(ξ)−

Z 0

ξ
t f̂ ′′(t)dt

f̂ (1) = f̂ (ξ)+(1−ξ) f̂ ′(ξ)+
Z 1

ξ
(1− t) f̂ ′′(t)dt, then

| f̂ (ξ)− Π̂ f̂ (ξ)| = |ξR 1
ξ (1− t) f̂ ′′(t)dt +(1−ξ)

R ξ
0 t f̂ ′′(t)dt| ≤ ξ(1−ξ)|R 1

0 f̂ ′′(ξ)dξ|
and therefore (by Cauchy’s theorem)

Z 1

0
| f̂ (ξ)− Π̂ f̂ (ξ)|2 dξ ≤ c

Z 1

0
| f̂ ′′(ξ)|2 dξ

for some c independent of f̂ .
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PIECEWISE POLYNOMIAL INTERPOLATION III

• On the other hand
Z xi

xi−1

| f (x)−Π∆ f (x)|2 dx = hi

Z 1

0
| f (xi−1 +hiξ)− Π̂ f (xi−1 +hiξ)|2 dξ

≤ chi

Z 1

0

∣

∣

∣

d2 f (xi−1 +hiξ)

dξ2

∣

∣

∣

2
dξ

≤ ch5
i

Z 1

0
| f ′′(xi−1 +hiξ)|2 dξ = ch4

i

Z xi

xi−1

| f ′′(x)|2 dx

• Therefore

‖ f (x)−Π∆ f (x)‖2
L2(a,b) =

n

∑
i=1

Z xi

xi−1

| f (x)−Π∆ f (x)|2 dx ≤ ch4‖ f ′′‖2
L2(a,b),

or ‖ f (x)−Π∆ f (x)‖L2(a,b) ≤ ch2‖ f ′′‖L2(a,b)

• A similar argument shows that

‖ f ′(x)− (Π∆ f (x))′‖2
L2(a,b) ≤ c1h‖ f ′′‖L2(a,b)
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TRIGONOMETRIC INTERPOLATION I

• When considering periodic functions, an important class of of interpolating

functions is given by trigonometric polynomials

pn(x) = a0 +
n

∑
j=1

[

a j cos( jx)+b j sin( jx)
]

When |an|+ |bn| 6= 0 pn(x) is said to be of order n.

• The polynomial can equivalently be written as

pn(x) =
n

∑
j=−n

c je
i jx =

n

∑
j=−n

c jz
j = z−n

2n

∑
k=0

ck−nzk,

where a0 = c0, a j = c j + c− j, b j = i(c j − c− j), and z = eix . Note similarity

of the last expression to the algebraic polynomials described before.
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TRIGONOMETRIC INTERPOLATION II

• Consider a periodic domain [0,2π) with the following partition

∆ : 0 ≤ x0 ≤ x1 ≤ ·· · ≤ x2n < 2π, where x j = jh, j = 0,1, . . . ,2n and

h = 2π
2n+1

• Given the numbers {b j}2n
j=0 and introducing the complex nodes z j = eix j

( j = 0,1, . . . ,2n), the trigonometric interpolation problem can be stated as

follows
2n

∑
k=0

ck−nzk
j = zn

jb j, j = 0,1, . . . ,2n

• Existence and uniqueness of a solution to this problem can be proven by

reducing it to the solution of the complex Lagrange interpolation problem.

Interpolation & Approximation 19

APPROXIMATION — ABSTRACT FRAMEWORK I
• The best approximation problem consists in choosing the member of a

restricted class of functions that provides the best representation of the given

function f when the approximation error is measured in a prescribed norm;

Solution of this problem depends on:

– properties of the function f

– properties of the set of approximating functions

– properties of the norm quantifying the approximation error

• More precisely, given a normed vector space V with some u ∈V and a set

K ⊆V , we are interested in solution of the following minimization problem

inf
v∈K

‖u− v‖

• Remark — recall analogy with the classical theorem by Weierstraß:

– Theorem — a real–valued continuous function f : R → R on a

bounded closed interval [a,b] (−∞ < a < b < ∞) has a maximum and a

minimum.
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APPROXIMATION — ABSTRACT FRAMEWORK II
• Depending on the setting, existence of a best approximation is addressed by

the following two theorems:

– Theorem — Assume K ⊆V is a convex and closed finite–dimensional

subset of a normed space V . Then there is an element û ∈ K such that

‖u− û‖ = infv∈K ‖u− v‖
– Theorem — Assume K is a finite–dimensional subspace of a normed

space V . Then there is an element û ∈ K such that

‖u− û‖ = infv∈K ‖u− v‖
• Let V = Lp(a,b) and K = Pn, the space of all the polynomials of degree less

then or equal to n. Associated with the space V , we may use Lp(a,b) norms

with 1 ≤ p ≤ ∞. The above results ensure that for any f ∈ Lp(a,b) there

exists a polynomial fn ∈ Pn such that

‖ f − fn‖Lp(a,b) = inf
qn∈Pn

‖ f −qn‖Lp(a,b)

For different values of p we have different best approximations. When

p = ∞, fn is called a best uniform approximation of f .



Interpolation & Approximation 21

APPROXIMATION IN HILBERT SPACES I

• When V is an inner–product (Hilbert) space, the norm ‖ · ‖ is induced by the

associated inner product; this significantly simplifies solution of an

approximation problem.

• Definition — Let V be a linear space and V1 and V2 subspaces of V . We say

that V is a direct sum of V1 and V2 and write V = V1 ⊕V2 is any element

v ∈V can be uniquely decomposed as

v = v1 + v2, v1 ∈V1, v2 ∈V2.

Furthermore, if V is an inner–product space and (v1,v2) = 0 for any v1 ∈V1

and v2 ∈V2, then V is called the orthogonal direct sum of V1 and V2

• Proposition — Let V be a linear space. Then V = V1 ⊕V2 iff there is a linear

operator P : V →V with P2 = P such that in the above decomposition

v1 = Pv and v2 = (I−P)v, and also V1 = P(V ) and V2 = (I−P)(V ).

• Note that V = P(V )⊕ (I−P)(V )
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APPROXIMATION IN HILBERT SPACES II
• If V is a Banach space , P is called the projection operator

• If V is a Hilbert space and V = P(V )⊕ (I−P)(V ) is an orthogonal direct

sum , the P is called the orthogonal projection operator

• Is is easy to see that if a projection operator is orthogonal , then

(Pv,(I−P)w) = 0, ∀v,w ∈V

In other words, when v = w we note that the best approximation in P(V ) of

an element v ∈V and the approximation error are orthogonal !

• Example — Let V = C[a,b], V1 = Pn be the space of polynomials of degree

less than or equal to n and let ∆ : a ≤ x0 ≤ x1 ≤ ·· · ≤ xn ≤ b be a partition of

the interval [a,b]. For v ∈C[a,b], we define Pv ∈ Pn to be the Lagrange

interpolant of v corresponding to the partition ∆, i.e., Pv satisfies the

interpolation conditions Pv(xi) = v(xi), 0 ≤ i ≤ n. The interpolant Pv is

uniquely determined, hence thus defined operator P is a projector (although

not an orthogonal one). Analogous statements can be made for piecewise

polynomial interpolation.
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APPROXIMATION IN HILBERT SPACES III

• Let Vn be an n–dimensional subspace of a Hilbert space V . Suppose

{u1, . . . ,un} be an orthogonal basis of Vn. For any v ∈V , the formula

Pv =
n

∑
i=1

(ui,v)ui

defines an orthogonal projection from V onto Vn.

• How to find orthogonal systems in function (e.g., polynomial) spaces? —

Perform Schmidt orthogonalization procedure on the system {1,x, . . . ,xn}

• Various families of ORTHOGONAL POLYNOMIALS are obtained depending

on the choice of:

– the domain [a,b] over which the polynomials are defined, and

– the weight w characterizing the inner product (u,v) =
R b

a wuvdx used for

Schmidt orthogonalization
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ORTHOGONAL POLYNOMIALS I

• Polynomials defined on the interval [−1,1]

– Legendre polynomials (w = 1)

Pk(x) =

√

2k +1
2

1
2k k!

dk

dxk (x2 −1)k, k = 0,1,2, . . .

– Jacobi polynomials (w = (1− x)α(1+ x)β)

J(α,β)
k (x) = Ck(1− x)−α(1+ x)−β dk

dxk [(1− x)α+k(1+ x)β+k] k = 0,1,2, . . . ,

where Ck is a very complicated constant

– Chebyshev polynomials (w = 1√
1−x2 )

Tn(x) = cos(k arccos(x)), k = 0,1,2, . . . ,

Note that Chebyshev polynomials are obtained from Jacobi polynomials

for α = β = −1/2
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ORTHOGONAL POLYNOMIALS II

• Polynomials defined on the periodic interval [−π,π]
Trigonometric polynomials (w = 1)

Sk(x) = eikx k = 0,1,2, . . .

• Polynomials defined on the interval [0,+∞]
Laguerre polynomials (w = e−x)

Lk(x) =
1
k!

ex dk

dxk (e−xxk), k = 0,1,2, . . .

• Polynomials defined on the interval [−∞,+∞]
Hermite polynomials (w = 1)

Hk(x) =
(−1)k

(2k k!
√

π)1/2
ex2 dk

dxk e−x2
, k = 0,1,2, . . .
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ORTHOGONAL POLYNOMIALS III
• Each of the aforementioned families of orthogonal polynomials forms the

set of eigenvectors for the following Sturm–Liouville problem

d
dx

[

p(x)
dy
dx

]

+[q(x)+λr(x)]y = 0

a1y(a)+a2y′(a) = 0

b1y(b)+b2y′(b) = 0

for appropriately selected domain [a,b] and coefficients p, q, r, a1, a2, b1 and

b2.

• As regards estimates of approximation errors in the different bases, consult

– for trigonometric polynomials:

http://www.math.mcmaster.ca/˜bprotas/MATH745/spectr_01.pdf,

pages 70–72

– for Chebyshev polynomials:

http://www.math.mcmaster.ca/˜bprotas/MATH745/spectr_03.pdf

page 111


