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PART |

Review of Interpolation and Approximation
Theory

Although this may seem a paradox,
all exact science is dominated by the idea of approximation.
— Bertrand Russell (1872—-1970)
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REVIEW OF INTERPOLATION AND
APPROXIMATION THEORY |

Goal — given a function f, known exactly or only approximately, find its
representation that has

— amore simply computable form, and

— error of interpolation / approximation is within some prescribed
tolerance.

Interpolation vs. Approximation

Reduction to an algebraic problem :
— existence of a solution,
— its uniqueness,

— conditioning of the resulting algebraic system

Error estimates
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. ABSTRACT FRAMEWORK
o Let:

— V be a normed vector space over a field K of numbers (real R, or
complex C)
— V' be the dual space, i.e., a space of linear bounded functionals onV
e Statement of an abstract INTERPOLATION PROBLEM:
— suppose Vy €V is an n—dimensional subspace of V with a basis
{V1,...,Vn}
— letL; €V’, 1 <i<nben linear functionals

— given n numbers bj € R, 1 <i <n, find un € V,, such that the following
interpolation conditions are satisfied:
e Questions: Litn =bi, 1<i<n
— Does the interpolation problem have a solutions?
— If so, isthis solution unique?
— Can we estimate the error?
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ABSTRACT FRAMEWORK

e Definition — The functionals L, 1 <i < n, are linearly independent over Vj
if
n
YV € Vp, ;uiLi(v):O = a;j=0, 1<i<n
=
e Lemma — the linear functionals L1, ..., Ly are linearly independent over Vy,
iff
Livp .- L1V
det(Livj) = det - | #0

Lavi -+ LnVn

e Proof —Lgj,...,Lp linearly independent over Vy

n
<:>ZloriLi(vj):O, 1<j<n = qaj=0, 1<i<n
i=

< det(Ljvj) #0.
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ABSTRACT FRAMEWORK
e Theorem — the following statements are equivalent:
1. The interpolation problem has a unique solution
2. The functionals L1,...,Ln are linearly independent over V,
3. The only element u, € V, satisfying Liup =0, 1 <i<nisup,=0
4. For any data {bj}_;, there exists one un € Vy, such that

Liun=bhj, 1<i<n

Proof — from linear algebra, for a square matrix A € K**", the following
statements are equivalent:

1. The system Ax = b has a unique solution x € K" for any b € K",

2. det(A) #0,

3. IfAx=0, the x =0,

4. For any b € K", the system Ax = b has a solution x € K".

The results of the theorem follow from the above statements.
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e Givenu eV, itsinterpolant up = 3" ;ajv; inVy is defined by the

interpolation conditions .
Liun=Liu, 1<i<n

e The coefficients {a;}[; can be found from the linear system

Livi cee Livn o1 Liu

Lavi -+ Lnpvn| |an Lau
which has a unique solution of the functionals L4, ..., L are linearly
independent over Vp,.
e Specific examples of interpolation:
Lagrange polynomial interpolation
Hermite polynomial interpolation
Piecewise polynomia interpolation
trigonometric interpolation
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e Let:
— f : [a,b] — K be a continuous function defined on a finite closed interval
[a,b], so that one can choose V =CJa, b]
— A:a<xg<xg<--- <xp<b beapartition of the interval [a,b]
— Vn41 be given by 2y, the space of polynomials of degree less then or
equal ton
o Defining the interpolation linear functionals as Lif = f(x;), 0 <i <n, we
obtain the following conditions for the Lagrange polynomial interpolant of
degree n
pn(xi) = f(xi), 0<i<n, ppé€Py
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LAGRANGE POLYNOMIAL INTERPOLATION I
EXISTENCE OF SOLUTIONS AND UNIQUENESS

e Choosing the set of basis functions for #n as vj(x) = xJ, 0 <i < n, we obtain
Livj in the form of the Vandermonde matrix :

1 X 3

X1 X3

1 %1 X%,
1 X X2

The determinant of this matrix can be shown to be
n
det(Ljvj) = I_I(Xj —Xj) #0.
>l
Hence, there exists a unique Lagrange interpolation polynomial.

e Caveat — Note that the Vandermonde matrix is extremely ill—conditioned!
This mean that in the resulting algebraic system is hard to solve accurately
and therefore in practice other methods are preferred.

LAGRANGE POLYNOMIAL INTERPOLATION Il

e An alternative approach — Lagrange’s formula for the interpolation
polynomial: n
Pnl0) = 3 14 ()
1=

where {@ }{' , are the Lagrange basis functions defined as
X=X

a0 =T]5="

J#
Note that {qi }["_, satisfy the interpolation condition
0, i#],
Li=j

@ (xj) = &ij —{

and constitute a basis for the space 2.

Solution obtained directly (i.e., without solving an algebraic system); Note
that for homogeneous data the interpolant is zero which by the above
theorem ensures uniqueness of the solution (this is often a very convenient
way of proving existence and uniqueness).
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LAGRANGE POLYNOMIAL INTERPOLATION IV
ERROR ESTIMATES

e Theorem — Assume f € C("1[a, b]. Then there exists a & between
min(xi,X) and max(x;, ) such that the local interpolation error is

(nﬁh—’—(i))l £ (&), where on( ):.7 (X —Xi)

fF(X) = pn(x) =

e Proof:

— The result is obvious for x =x;, 0 <i <n,

— Suppose x # X, 0 < i< n, and denote E(x) = f(X) — pn(X) .
Consider the function: g(t)=E(t)— Q“:((;)) E(x)
We note that g(t) has (n+2) distinct roots: t =xandt =x;, 0 <i<n.
By the Mean Value Theorem, ¢'(t) has (n+ 1) distinct roots. Repeatedly
applying the Mean Value Theorem to derivatives of g we conclude that
g™ (t) has a root & € (min(x;,x),max(x;,x)). Thus

(n+1)!

g™ Y1) = F" (&) - E()=0

LAGRANGE POLYNOMIAL INTERPOLATION V
REMARKS

e Runge Phenomenon — Examination of the interpolation error formula
shows that there may be points x* in the interval [a,b] such that

lim [f(x*) = pn(X")| = e,

nN—oo

meaning that the sequence of the approximation polynomials pn(x) does not
uniformly converge to f!

Such situation often arises close to the endpoints of the interpolation interval
[a,b].

This difficulty can be mitigated by performing interpolation on sets of
non—uniformly spaced grid points — for instance, zeros of Chebyshev
polynomials
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General idea — use the values of both f(x) and f/(x) as interpolation
conditions

Assume that f € Cl[a, bjand let A :a<x; <--- <Xn<b be a partition of
the interval [a,b]

The Hermite interpolation polynomial pon_1 € P2n_1 is chosen to satisfy
the conditions

Pan-1(%) = F(X), Pan1(xi)=f'(xi), 1<i<n

More generally, given a set of integers {m;}I_, and f € CM{[a, b], where
M = max; (m;), the Hermite interpolation problem can be stated as follows —
findan py € 2N, N = 311, (mj +1) — 1 such that

p“)(xi): f(j>(Xi), 0<j<m, 1<i<n

Similar results concerning existence and uniqueness of solutions and the
corresponding error bounds can be proven as for the Lagrange interpolation.

PIECEWISE POLYNOMIAL INTERPOLATION |

e Assume that f € C[a,b] and let A : a <xg < x1 <--- < xp < b be a partition
of the interval [a,b]; denote hj = X;j —xj_1, 1 <i<nand h=maxi<i<nhi.

The piecewise linear interpolant is defined as follows:
— foreachi=1,...,n I'IAf| |s linear,
- fori=0,1,...,n, I'IAf(xl) = f(x.)

Is is easy to see that the following unique linear interpolation polynomial
exists:
Xj —

Maf(0) = 22 f(x;_q) + 11

hi h f(xi), Xxe& [Xi-1,xi]

Suppose that f € C2[a,b]; local interpolation error can be assessed using the
estimate derived previously, i.e.

h2
f(x)—MNaf(x)| < —
xren[gx]l () =Maf(x)] < 3 Xrg[gfé]\ "(x)]

What about global error (i.e., in the integral sense)?
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PIECEWISE POLYNOMIAL INTERPOLATION ||
o Instead of f € C?[a,b], assume now that f € H?(a,b)
e Consider the interpolation error in the L, sense

b
2 2
Hf(x)*nAf(X)HLZ(a‘b):/a 1£(X) = Ma f(x)[2dx = Zl/ 1100~ Ma (0

e Introduce a function f € H2(0,1) with its linear interpolant
nfE) =fo)1-8+f(1s 0<g<1
e By Taylor’ stheorem

Y7(t)dt, then

1f&) -NfE) = EfF -0 M) dt+1-8 fstf 1) di| <EQL-8)| fg " (8)dg]
and therefore (by Cauchy’s theorem)

A 1.
/\f ~AfE)RdE<c [ |7 (®)Pde

for some ¢ independent of .

PIECEWISE POLYNOMIAL INTERPOLATION |11

e On the other hand

/X‘ 1£(X) = Maf ()[2dx = hj /l\f(Xifl—l—hiE)—I:If(Xifl—i—hiE)\sz

<ch|/ ‘d2f chj512+ha ‘ i

Xi
gch?/o |f”(xi,1+hiz)\2dz:chf‘/ £ (x) |2 dx

Xi—1

e Therefore
100 Maf (00 [22ae) = Z/ = Maf(0dx < e 7 aga).

or 1) = Maf () [[L2g@p) < h?[[ "l L2(ap)

e A similar argument shows that

1700 = (Maf (0 Pa(ap) < C1hll T llz(ap
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When considering periodic functions, an important class of of interpolating
functions is given by trigonometric polynomials

n
Z aj cos(jx) +bjsin(jx)]

When |an| + |bn| # 0 pn(X) is said to be of order n.
The polynomial can equivalently be written as
2n
Z Cje'JX Z Cj =z z CknZ¥,
j==-n j==n k=0

where ag = Co, aj = ¢j +C_j, bj =i(cj —c_j), and z=eX. Note similarity
of the last expression to the algebraic polynomials described before.
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Consider a periodic domain [0, 21m) with the following partition

A 0<x0<x1§ - <Xon < 21, Where xj = jh, j=0,1,...,2nand
h= 2n+l

Given the numbers {b; }1220 and introducing the complex nodes zj = e’

(j=0,1,...,2n), the trigonometric interpolation problem can be stated as
follows

2n K
z Ck-nzy =2bj, j=0,1,....2n
K=0

Existence and uniqueness of a solution to this problem can be proven by
reducing it to the solution of the complex Lagrange interpolation problem.
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e The best approximation problem consists in choosing the member of a
restricted class of functions that provides the best representation of the given
function f when the approximation error is measured in a prescribed norm;
Solution of this problem depends on:

— properties of the function f
— properties of the set of approximating functions
— properties of the norm quantifying the approximation error

e More precisely, given a normed vector space V with some u € V and a set
K CV, we are interested in solution of the following minimization problem

inf [|u—v||
veK

o Remark — recall analogy with the classical theorem by WeierstraR:

— Theorem — a real—valued continuous function f : R —Rona
bounded closed interval [a,b] (—e < a < b < o) has a maximum and a
minimum.
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o Depending on the setting, existence of a best approximation is addressed by
the following two theorems:

— Theorem — Assume K CV is a convex and closed finite—dimensional
subset of a normed space V. Then there is an element G € K such that
[u—1a]| = infuek [u—V]|

— Theorem — Assume K is a finite—dimensional subspace of a normed
space V. Then there is an element 4 € K such that
[u—1a]| = infyek [u—V]|

LetV =LP(a,b) and K = 2y, the space of all the polynomials of degree less
then or equal to n. Associated with the space V, we may use LP(a,b) norms
with 1 < p < co. The above results ensure that for any f € LP(a,b) there
exists a polynomial f, € 2, such that

1T = Talle@p = Jnf [If = dnliLean)

For different values of p we have different best approximations. When
p = oo, fhiscalled a best uniform approximation of f.
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When V isan inner—product (Hilbert) space, the norm || - | is induced by the
associated inner product; this significantly simplifies solution of an
approximation problem.

Definition — Let V be a linear space and V; and V, subspaces of V. We say
thatV is adirect sum of V1 and V, and write V = V71 & V5 is any element
v €V can be uniquely decomposed as

V=Vi+Vy, Vi€V], VoeEVo.

Furthermore, if V is an inner—product space and (v1,vz) = 0 for any vq € Vg
and vo € Vo, then V is called the orthogonal direct sum of V; and Vo

Proposition — Let V be a linear space. ThenV =V, &V, iff there is a linear
operator P : V — V with P2 = P such that in the above decomposition
vi=Pvandvo = (I —P)v,and also V1 =P(V) and Vo = (I = P)(V).

Note thatV =P(V) & (I —P)(V)
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If V isa Banach space , P is called the projection operator

IfV isa Hilbertspace andV =P(V)® (I —P)(V) is an orthogonal direct
sum , the P is called the orthogonal projection operator

Is is easy to see that if a projection operator is orthogonal , then
(Pv,(1 —=P)w) =0, YW,weV

In other words, when v = w we note that the best approximation in P(V) of
an element v € V and the approximation error are orthogonal !

Example — LetV = CJa, b], V1 = P, be the space of polynomials of degree
less than or equal tonand let A : a <Xxg < x1 < --- < Xp < b be a partition of
the interval [a,b]. For v € C[a,b], we define Pv € 2y, to be the Lagrange
interpolant of v corresponding to the partition A, i.e., Pv satisfies the
interpolation conditions Pv(xj) = v(x;), 0 < i < n. The interpolant Pv is
uniquely determined, hence thus defined operator P is a projector (although
not an orthogonal one). Analogous statements can be made for piecewise
polynomial interpolation.
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e LetV, be an n—dimensional subspace of a Hilbert space V. Suppose
{ug,...,un} be an orthogonal basis of Vy,. For any v € V, the formula

n

Pv= .;(ui,v)ui

defines an orthogonal projection fromV onto V.

e How to find orthogonal systems in function (e.g., polynomial) spaces? —
Perform Schmidt orthogonalization procedure on the system {1,x,...,x"}

e Various families of ORTHOGONAL POLYNOMIALS are obtained depending
on the choice of:
— the domain [a,b] over which the polynomials are defined, and

— the weight w characterizing the inner product (u,v) = f;’wuvdx used for
Schmidt orthogonalization
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e Polynomials defined on the interval [—1,1]
— Legendre polynomials (w=1)

[2k+1 1 d* ,
P(x) = Tﬂﬂ(x -1, k=0,1,2,...

— Jacobi polynomials (w = (1 —x)%(1+x)P)
k
k

IO (%) = Ck(le)’“(lJrX)’Bc% [(1-x**1+x)PH k=0,12,...,

where Cy is a very complicated constant
; _ 1
— Chebyshev polynomials (w = m)

Tn(x) = cos(k arccos(x)), k=0,1,2,...,

Note that Chebyshev polynomials are obtained from Jacobi polynomials
fora=p=-1/2
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ORTHOGONAL PoLYNOMIALS I e Each of the aforementioned families of orthogonal polynomials forms the

set of eigenvectors for the following Sturm—Liouville problem

d d
e Polynomials defined on the periodic interval [—Tt 14 ix {p(x)d*ﬂ +[a(x) +Ar(x)]y=0

Trigonometric polynomials (w = 1)

. ary(a) +ay'(a) =0
S(x) =" k=0,1,2,... b1y(b) + bzy (b) =0

e Polynomials defined on the interval [0, +oo] for appropriately selected domain [a,b] and coefficients p, g, r, a1, az, by and
Laguerre polynomials (w =e~%) b,.

k . A . .
Le(X) = 1« d_(e—xxk)? k=0,1,2,... o As regards estimates of approximation errors in the different bases, consult

KT dxK . . .
— for trigonometric polynomials:

e Polynomials defined on the interval [—co, +-o0] http://ww.math.mcmaster .ca/~bprotas/MATH745/spectr_01.pdf,
Hermite polynomials (w = 1)
pages 70—72
(1)K 2 d¥

2 _ inlar
Famie el ¥ k=0,1,2,... for Chebyshev polynomials:

http://www._math.mcmaster.ca/ bprotas/MATH745/spectr_03.pdf
page 111

Hk(X) =




