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FINITE ELEMENT METHOD |

e Computational properties of the method are largely determined by the
properties of the algebraic system matrix A, in particular

— For general sets of basis functions, the system matrix A will be full and
may have prohibitively large condition number

— Choosing the basis functions with small supports and without significant
overlaps results in sparse system matrices which are easier to assemble
and cheaper to solve (usually 0 (N?), instead of 0 (N3), operations)

e The Finite Element Method is a combination of:
— The Galerkin approach, and
— piecewise images of polynomials as the basis function

e Accuracy can be refined by:
— refining the mesh ( h—refinement )
— increasing the order of the interpolating polynomials ( p-refinement )
— doing both at the same time ( hp-refinement )
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FINITE ELEMENT METHOD Il
SIMPLE 1D EXAMPLE

e Consider the following Boundary Value Problem
—u"+u=1, inQ,
{ u(0) =0, u'(1)=b,
where f € L»(0,1) andb e R

e Let
V =H{(0,1) = {ve HY(0,1), | v(0) =0}

The weak formulation is

1 1
uev, /O(u’v’+uv)dx:/O fvdx+bv(l), weVv

o Existence of an unique solution is guaranteed by the Lax—Milgram Lemma
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FINITE ELEMENT METHOD III
SIMPLE 1D EXAMPLE

e Partition the domain I = [0,1] into N partsas 0 =xXg < X1 < --- <XN =1
— The points x;, 0 <i < N are called nodes,
— The subintervals I; = [xj_1,Xi], 1 <i <N are called elements
Denote hj = x; —xj_1 and the mesh parameter h = maxj<j<n hi.
e Approximate solution will be sought in the space
Vh = {vh €V | vp|; € Pi(li), 1 <i<N}; note that, given the properties of
the Sobolev space H(1), we also have v, € C(T)
e For the basis functions we choose
(X=xi—1)/hi, X1 <X <X,
@(x) =< iz —Xx)/hiy1, X <X<Xiyq, fori=1,...,N—1
0, otherwise

(X=xn-1)/hN, XN—1 <X < XN, _
. fori=N
otherwise
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FINITE ELEMENT METHOD IV
SIMPLE 1D EXAMPLE

o Note that thus defined basis functions are linearly independent and we have
Vh =span{@, 1 <i<N}; their weak derivatives exist and are defined
almost everywhere (equal to constants)

e The Finite Element Method thus becomes:
1 1

Un € V, /(ugv§1+uhvh)dx:/ fundx+4bvp(1), Wvh €V
0 0

which, using the representation up = SN ; uj@j, can be transformed to the
linear system

N 1 1
Zuj/ (q{qu+(ﬁ(pj)dx:/ f@qdx+b@(l), 1<i<N
i= 0 0

e This system can be rewritten as Au = b, where
- u=(ug,... 7uN)T is the vector of unknown coefficients,

(1 1 1 T,
- b= <fo f@dx,..., [o fon—1dx, [o fon dx+b) is the load vector

FINITE ELEMENT METHOD V
SIMPLE 1D EXAMPLE

e Entries of the stiffness matrix can be calculated as Ajj; = fol((p{qu + @) dx;
Using the formulae

we obtain for the stiffness matrix
F+f) G+
B+ (B+2

—

A
Wi ol
+ +
Tl Tl
7

~—
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FINITE ELEMENT METHOD VI
HIGHER—ORDER ELEMENTS

e Consider our original Boundary Value Problem; we will now use piecewise
quadratic functions with the finite element space

Vh = {vh € C(I) | vp|); is quadratic, vi(0) = 0}

e Denoting the mid—points of the subintervals as Xi_1/2 = % 1<i<N,
we have the following sets of basis functions:
— associated with the nodes xj, 1 <i<N-1
2(x=xi-1)(Xx=Xi_1/2)/nf, X € [xi_1,x],
@) =9 2011 =X (Xip12 =) /Mg, X € XXz,

0, otherwise

— associated with the nodes xy

2(x—Xn-1) (X—XN_1/2) /DR, X € [Xn—1,XN],
ON(X) = .
0, otherwise

FINITE ELEMENT METHOD VII
HIGHER—ORDER ELEMENTS
e Cont’d
— associated with the Xi_1/2, 1<i<N
Wi 1) = 4% —x)(x—Xi—1)/hf, X € [xi_1,%i],
=1/24% = 0, otherwise
e Thus, the finite element space can be represented as
Vh = span{@, Y;_1/2, |1 <1< N} and we can write
N N
Un= > Uj@j+ ) Uj_12Wi-1/2
=1 =1
e The Finite Element System is therefore
a(un, @) = (@), 1<i<N, My1u+ M0 = by,
. , or .
a(Un,Wi—1/2) =l1(Wi_12), 1<i<N, Maz1u + D220 = by,

where U= [ug,...,un]" and G = [uyp,...,Un_1/2]
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FINITE ELEMENT METHOD VIII
HIGHER—ORDER ELEMENTS

o Note that
- Mp =]
- Mz =]
— D22 =[a(Wj_1/2,Wi_1/2)INxN is a positive-definite diagonal matrix

a(@j,@)Nxn Is a tridiagonal matrix,
a(Wj_1/2,@)InxN is a twodiagonal matrix and Mgy = M,

e Thus, we can easily re—express 0 as 0 = Dgzl(bz — M21u) leading to
Mu = b,
where
- M=M1;— M12D§21M21 is a tridiagonal matrix
- b=b; —MyD,; by

e The procedure of eliminating 0 is known as condensation ; note that the size
and structure of the resulting algebraic system remains the same!
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FINITE ELEMENT METHOD IX
NON—CONFORMING METHOD

e Consider the following fourth—order boundary value problem
V) pu= f, inQ,
u'(0)=0, u'(1)=u(1)=0,

AssumingV = H§(07 1), the weak formulation is

1
uev, /u” ”dx:/ fvdx, Wev
0

e Inthe conforming case Vi CV, hence the V}, must be (at least) C1
continuous; at every interior node we thus have two continuity conditions
(i.e., for the function and its derivative); therefore, the order of the
interpolating polynomial must be p > 3

Finite Element Method

FINITE ELEMENT METHOD X
NON—CONFORMING METHOD

e The choice p = 3 offers the minimum number of required adjustable
coefficients (4); in this case we have

Vh = {vh € CY(T) | vn|i, € P3(li), 1 <i< N, vp(x) = Vh(x) = 0atx = 0,1}
with the basis functions
@(xj) =8, @(xj) =0,
gi(xj) =0, @( (xj) = &ij,
o In order to avoid the computational complexity of such conforming

elements, one may use non-conforming elements, e.g., require C global
continuity instead of C1, i.e.,

Vh = {vh € C(T) |vn|i; € P2(li), 1 < i< N, Vh(X) = v},(x) =0atx = 0,1}

e Note that in the non—conforming case we have V,,  V; nevertheless, in
certain cases convergence of such approximations can still be assured
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FINITE ELEMENT METHOD XI
REFERENCE ELEMENT TECHNIQUE
Consider again a conforming approach (with p = 3) to the solution of the
fourth—order boundary value problem state earlier

Introduce the reference element Ip = [0,1] and a bijective mapping between
lpand lj, 1 <i < N defined as

Fiilo— i, (&) =xi—1+hig
Over the reference element Iy we construct the cubic shape functions :
®o(8) = (L+28)(1- )%, ®1(8) = (3-28)€%,
Wo(&) = &(1-8)%, Wi(8) = —(1-§)&?
Note that they satisfy by construction the interpolation conditions
0(0)
1(0)
©)
1(0) =
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FINITE ELEMENT METHOD XI|I
REFERENCE ELEMENT TECHNIQUE

Based on the shape functions defined on the reference element I, we can
easily construct the basis functions with the aid of the mappings {F }iN:13

®1(F (X)), x€l, Wi (F1(0),  xel,

Po(FL1(X), X€liyr, » WiX) =< hizaWo(R 1(X), X € lija,

0, otherwise 0, otherwise

Computation of the entries of the stiffness matrix and the load vector is now
performed in the reference space, e.g.,

a1 :/li(q/_l)((ﬁ/)dxz/|0(¢o)”h(2(¢1)”hi*2hid§

The use of the reference element technique is essential both for deriving
error estimates and for efficient implementation, especially in
higher—dimensional cases

FINITE ELEMENT METHOD XIII
ESSENTIAL STEPS

e Essential steps need for solution of a boundary value problem with a Finite
Element Method

1. weak formulation of the boundary value problem

2. partition (“triangulation”) of the solution domain into subdomains
(“elements™)

3. definition of a finite element space associated with this partition,
. construction of basis functions spanning the finite element space

. assembly and solution of the finite element system
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FINITE ELEMENT METHOD XIV
TRIANGULATION

e Triangulation is a partition 7}, = {K} of the domain Q into a finite number
of subsets K, called elements , with the following properties:

- UKE’Th K=Q,

— each K is closed with a nonempty interior K and a Lipschitz continuous
boundary

— for distinct K1, Ky € 7h, K1 Kz = 0

— for distinct K1, Ko € 71, K1 (K2 is either empty, or a common vertex, or
a common side of K; and Ky (the regularity condition )

e We will now focus mostly on the 2D case (generalization to 3D is
straight—forward, but may get technically complicated)

o We will assume that the domain Q is a polygon , so it can be partitioned into
straight—sided triangles and quadrilaterals (otherwise, curvilinear elements
need to be used)

e 3D domains can be partitioned into tetrahedral, hexahedral, pentahedral, etc.,
elements

FINITE ELEMENT METHOD XV
TRIANGULATION

The finite elements will be collectively denoted K, whereas the reference
element will be denoted K, so that we will have the bijective mapping
K = Fx (K); the function Fg is
— linear when K is a triangle (e.g., an equilateral one),
— bilinear when K is a quadrilateral
For an arbitrary K we denote:
— hx =diam(K) = max{||[x —y|| | x,y € K},
— px — the diameter of the largest circle (sphere) inscribed in K

Analogous quantities h and p will be defined can be defined for the reference
element K

The quantity hk described the size of K

The ratio g—’; measure the “flatness” of the element K
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FINITE ELEMENT METHOD XVI
TRIANGULATION — UNSTRUCTURED GRIDS

Structured grid , or mesh , is a grid in which every node, apart from the
boundary nodes, has the same set of neighbors, i.e., the topology of the grid
is the same in all parts of the domain

The advantage of the Finite Element Method is that it does not need
structured grids which are hard to generate in complex geometries

An unstructured grid is simply a “cloud” of points which are appropriately
numbered and connected; the resulting “finite elements” are often referred to
as simplices

In many case grid generation is as important and difficult as solution of the
problem itself; hence grid generation is an autonomous area of research
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FINITE ELEMENT METHOD XVII
DELAUNAY TRIANGULATION

e Delaunay triangulation is a viable possibility for unstructured grid
generation, since it ensures that the resulting finite element are characterized
by a moderate aspect ration; this is in turn important from the point of view
of interpolation errors ( Empty Circumcircle Property )

o Definition — A triangulation 7 is said to be Delaunay if, for every element
K € 7, the interior of the circumscribed sphere does not contain any vertex
of the triangulation

e Properties of Delaunay triangulation:

— All the simplices of a Delaunay triangulation contain the center of the
circumscribed sphere

— The empty circumcircle property is satisfied of every two simplices
having a face in common

— In 2D all the angles of a Delaunay triangulation are acute
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FINITE ELEMENT METHOD XVIII
DELAUNAY TRIANGULATION

e Properties of Delaunay triangulation (cont’d):

— Among all possible triangulations, the Delaunay triangulation 7
maximizes the smallest interior angles of the simplices (denoted a(7))
and minimizes the largest radius of the circumcircle (denoted r(7))

— The Delaunay triangulation is closely related to \oronoi diagrams
(a.k.a. Dirichlet tessellation ) in which every point on a plane is assigned
a convex polygon such that this point is closer to the center of the
polygon than any other point; Delaunay triangulations and Voronoi
diagrams are dual in the graph-theoretic sense

e Delaunay triangulations can be generated in different ways, e.g., using the
Bowyer-Watson algorithm
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FINITE ELEMENT METHOD XIX
POLYNOMIAL SPACES ON REF’'CE ELEMENTS
o With the aid of the mapping Fx, function spaces can be constructed on

general elements from those constructed on the reference elements; thus we
introduce a polynomial space X on K
As a 2D example, consider an equilateral triangle K with the vertices

A1(—1,0), A(1,0) and A3(0,/3); we can now introduce the functions
(referred to as barycentric coordinates associated with the triangle K)

s oo 1 N B 5o 1 - 4) 5 e %
M) =z (1-%X—— ), X)) =z (1+%X——= ], M3(X)=—,
0 =3 (1% %) ha® = (14 %- %) halR= %
Note that these linear functions satisfy Ai(A}) = &
Barycentric coordinates are convenient for representation of polynomials,

e.g., any function ¥ € Py(K) is determined by three parameters
(V= a1X1 + 02X + a3) and can be represented as
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FINITE ELEMENT METHOD XX
POLYNOMIAL SPACES ON REF’CE ELEMENTS

e A quadratic function V € P,(K) is determined by six parameters, i.e.,
U = B1%2 + BoRaRz + BaX3 + Paky + BsRz + Pe, therefore six interpolation
conditions are required

e Introduce side mid-points as Aij=3(Ai+Aj),1<i<j<3

e Any function V € P»(K) is uniquely determined by its values at the vertices
{Ai}?zl and the side mid—points {Aij }1<i<j<3 and has a representation
3 N 3 ~ 3 AN ~
V(X) = Z\V(Ai))\i (R) (2N (X)—1)+ Z A0(AN (KA (X)
i= 1<i<j<3
Note that:
- Xk(i)(zka(i) —1),1 <k < 3isaquadratic function equal to 1 at A and
to 0 at all other vertices and side mid—points,
- 45\i (2)5\1 (%), 1 <i< j<3isaquadratic function equal to 1 at Aij and to
0 at all other vertices and side mid—points
It is possible to use derivatives, or other quantities, to construct the
interpolation conditions
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FINITE ELEMENT METHOD XXI
AFFINE—EQUIVALENT FINITE ELEMENTS
When Q is a polygonal domain partitioned into straight-sided triangles and
quadrilaterals K, then every elements K is an image of the reference element
K under an invertible affine mapping Fi : K — K of the form
F(X) = TR+ bk,
where Tk is an invertible 2 x 2 mapping and bk is a translation vector.
For every element we define the function space Xk by the formula
Xk =X oFct={v|v=VoFct Ve X}
Fx being affine, the degree of the spaces Xk and X is the same. Moreover, we
have v(x) = ¥(X), ¥x € K, & € K, with x = F (%)

Using the nodes on K we can introduce the corresponding nodes on K as
X =Fcx), i=1,...,1

and the associated functions on K as
@ =qoFt i=1,...1
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FINITE ELEMENT METHOD XXII
AFFINE—EQUIVALENT FINITE ELEMENTS

o Note that the functions {¢f}!_, have the property that
o (X) = &,
hence they form a set of local polynomials basis functions on K

o Estimates of interpolation errors will depend on the properties of the affine
transformation Tk, for which we have the following result

hK 1 F]
Tkl < =, [T < —
Tl < ImM< o
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FINITE ELEMENT METHOD XXIII
FINITE ELEMENT SPACES

e For second-order boundary value problems we need Vi, ¢ H1(Q); we may
thus set Vy, = X}, where

Xp = {vh € C(Q) |Vn|Kk € Xk, Yk € Th}
Function in X, thus have to be continuous across element boundaries

o We can define the following interpolation operators:

— On the reference element K: 11 : C(K) — X, MV =3!_¥(X)@
with the interpolation conditions V(%) = V(%) i=1,...,1

— Onany actual element K: Mk : C(K) — Xk, Mkv = 3!_;v(x¥)g
with the interpolation conditions Mk v(x) =v(xK),i=1,...,1

e The two interpolation operators are related as v = (Mkv) o Fyg 1_ I‘I/K\v ,
relation that is essential for error analysis.
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FINITE ELEMENT METHOD XXIV
QUADRATURES
e When solving the approximate problem in the form
find up € Vi, an(up,vh) = fa(vh) Wh €Vj
we need to evaluate integrals
ah(uh,vh):/QAh(x,uh,vh)dx., fr(Vh) :/QFh(x,vh)der/rGh(x,vh)dx,

where Ay, F, and Gy, are operators. In most practical situations these
integrals cannot be evaluated analytically and approximate approaches need
to be used.

Quadrature is a method to evaluate an integral approximately.

Gaussian Quadrature seeks to obtain the best numerical estimate of an
integral by picking optimal points x;, i = 1,...,N at which to evaluate the
function f(x).

The fundamental theorem of Gaussian quadrature states that the optimal
abscissas of the N-point Gaussian quadrature formulas are precisely the roots
of the orthogonal polynomial for the same interval and weighting function
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FINITE ELEMENT METHOD XXV
QUADRATURES

e Definition — Let K be a non-empty, Lipschitz, compact subset of R9. Let
Ig > 1 be an integer. A quadrature on K with lg points consists of

— Asset of Iq real numbers {cy, ... ,(qq} called quadrature weights
— Asetof Ig points {&1,... ,E|q} in K called GauB points or quadrature
nodes

The largest integer k such that Vp € Py, [k p(x)dx = z:“:l(q p(&) is called
the quadrature order and is denoted by kq

As regards 1D bounded intervals, the most frequently used quadratures are
based on Legendre polynomials which are defined on the interval (0,1) as
k(1) = k. dtk (t2 —1)K, k > 0. Note that they are orthogonal on (0,1) with the
weight W = 1.
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FINITE ELEMENT METHOD XXVI
QUADRATURES
e Theorem — Let Ig > 1, denote by 517 E| the Iq roots of the Legendre

polynomial z;,(x) and set wy = fo |‘|J . Etr E’ - dt. Then
j#1

{&1,.. . & 0, 00 Fisa quadrature of order kq = 2lq—1on [0,1]
Proof — Let {£1,... ,L|q} be the set of Lagrange polynomials associated
with the GauB points {&1,...,&,}. Then wy = f01L| t)dt, 1 <1< lgq
— when p(x) is a polynomial of degree less than lg, we integrate both sides
of the identity p(t) = z:q:l p(& )L (t)dx, vt € [0,1] and deduce that the
quadrature is exact for p(x)

when the polynomial p(x) has degree less than 2l we write it in the form
p(x) = q(x)Z1,(X) +r(x), where both q(x) and r(x) are polynomials of
degree less than Ig; owing to orthogonality of the Legendre polynomials,

we conclude N N | I
q q
p(t)dt:/ rdt= S @r(E) =y wp@E)
0 1=1 =1

since the points & are also roots of El,
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FINITE ELEMENT METHOD XXVII
QUADRATURES

e The GauB points and the weights are available in closed form only for low
order quadratures; for higher order quadratures they have to be determined
approximately, but are readily available in tables

Generalization to 2D and 3D is straightforward; the Gaul? points and weights
are again available in tables

When assembling FEM matrices, the following type need to be evaluated
/ @(x)dx = / @(x) dx
Q KE Th

Since the mapping Fx : K — K is smooth, the change of variables x = Fi (X)
yields

/(p dx—/(pFK ) det(Jx (X)) d,

where Jk (X) = aFK( Xis the Jacobian matrix of Fk at X.
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FINITE ELEMENT METHOD XXVIII
QUADRATURES

e Thus, the integrals can be evaluated over the reference elements; using a
quadrature with lq GauB points and weights on K we obtain

lq

Iq
[ o00dx= Y e det(Ok (&)0(Fc (1)) = 3 a@ic):
=1 =1

where we set wyk = o det(Jk (£))) and &k = Fk ()

e It can be shown that the quadrature {€1k ..., &Kk, WK - .., Wk } €Njoy
similar properties regarding accuracy as the quadratures defined on K




