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PART IV

Finite Element Method
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FINITE ELEMENT METHOD I
• Computational properties of the method are largely determined by the

properties of the algebraic system matrix A, in particular

– For general sets of basis functions, the system matrix A will be full and

may have prohibitively large condition number

– Choosing the basis functions with small supports and without significant

overlaps results in sparse system matrices which are easier to assemble

and cheaper to solve (usually O(N2), instead of O(N3), operations)

• The Finite Element Method is a combination of:

– The Galerkin approach, and

– piecewise images of polynomials as the basis function

• Accuracy can be refined by:

– refining the mesh ( h–refinement )

– increasing the order of the interpolating polynomials ( p–refinement )

– doing both at the same time ( hp–refinement )
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FINITE ELEMENT METHOD II
SIMPLE 1D EXAMPLE

• Consider the following Boundary Value Problem
{ −u′′ +u = f , in Ω,

u(0) = 0, u′(1) = b,

where f ∈ L2(0,1) and b ∈ R

• Let

V = H1
(0(0,1) = {v ∈ H1(0,1), | v(0) = 0}

The weak formulation is

u ∈V,
Z 1

0
(u′v′ +uv)dx =

Z 1

0
f vdx+bv(1), ∀v ∈V

• Existence of an unique solution is guaranteed by the Lax–Milgram Lemma
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FINITE ELEMENT METHOD III
SIMPLE 1D EXAMPLE

• Partition the domain I = [0,1] into N parts as 0 = x0 < x1 < · · · < xN = 1

– The points xi, 0 ≤ i ≤ N are called nodes ,

– The subintervals Ii = [xi−1,xi], 1 ≤ i ≤ N are called elements

Denote hi = xi − xi−1 and the mesh parameter h = max1≤i≤N hi.

• Approximate solution will be sought in the space

Vh = {vh ∈V | vh|Ii ∈ P1(Ii), 1 ≤ i ≤ N}; note that, given the properties of

the Sobolev space H1(I), we also have vh ∈C(I)

• For the basis functions we choose

φi(x) =





(x− xi−1)/hi, xi−1 ≤ x ≤ xi,

(xi+1 − x)/hi+1, xi ≤ x ≤ xi+1,

0, otherwise

for i = 1, . . . ,N −1

φN(x) =

{
(x− xN−1)/hN , xN−1 ≤ x ≤ xN ,

0, otherwise
for i = N
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FINITE ELEMENT METHOD IV
SIMPLE 1D EXAMPLE

• Note that thus defined basis functions are linearly independent and we have

Vh = span{φi, 1 ≤ i ≤ N}; their weak derivatives exist and are defined

almost everywhere (equal to constants)

• The Finite Element Method thus becomes:

uh ∈Vh,
Z 1

0
(u′hv′h +uhvh)dx =

Z 1

0
f vh dx+bvh(1), ∀vh ∈Vh

which, using the representation uh = ∑N
i=1 u jφ j, can be transformed to the

linear system

N

∑
i=1

u j

Z 1

0
(φ′iφ

′
j +φiφ j)dx =

Z 1

0
f φi dx+bφi(1), 1 ≤ i ≤ N

• This system can be rewritten as Au = b, where

– u = (u1, . . . ,uN)T is the vector of unknown coefficients,

– b =
(

R 1
0 f φi dx, . . . ,

R 1
0 f φN−1 dx,

R 1
0 f φN dx+b

)T
is the load vector
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FINITE ELEMENT METHOD V
SIMPLE 1D EXAMPLE

• Entries of the stiffness matrix can be calculated as Ai j =
R 1

0 (φ′iφ
′
j +φiφ j)dx;

Using the formulae
Z 1

0
φ′iφ

′
i−1 dx = − 1

h
, 2 ≤ i ≤ N,

Z 1

0
(φ′i)

2 dx =
2
h
, 1 ≤ i ≤ N −1,

Z 1

0
φiφi−1 dx =

h
6
, 2 ≤ i ≤ N,

Z 1

0
(φi)

2 dx =
2h
3

, 1 ≤ i ≤ N −1,

Z 1

0
(φ′N)2 dx =

1
h
,

Z 1

0
(φN)2 dx =

h
3
,

we obtain for the stiffness matrix

A =




( 2h
3 + 2

h ) ( h
6 + 1

h )

( h
6 + 1

h ) ( 2h
3 + 2

h ) ( h
6 + 1

h )

. . .
. . .

. . .

( h
6 + 1

h ) ( 2h
3 + 2

h ) ( h
6 + 1

h )

( h
6 + 1

h ) ( h
3 + 1

h )



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FINITE ELEMENT METHOD VI
HIGHER–ORDER ELEMENTS

• Consider our original Boundary Value Problem; we will now use piecewise

quadratic functions with the finite element space

Vh = {vh ∈C(I) | vh|Ii is quadratic, vh(0) = 0}

• Denoting the mid–points of the subintervals as xi−1/2 = xi−1+xi
2 , 1 ≤ i ≤ N,

we have the following sets of basis functions:

– associated with the nodes xi, 1 ≤ i ≤ N −1

φi(x) =





2(x− xi−1)(x− xi−1/2)/h2
i , x ∈ [xi−1,xi],

2(xi+1 − x)(xi+1/2 − x)/h2
i+1, x ∈ [xi,xi+1],

0, otherwise

– associated with the nodes xN

φN(x) =

{
2(x− xN−1)(x− xN−1/2)/h2

N , x ∈ [xN−1,xN ],

0, otherwise
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FINITE ELEMENT METHOD VII
HIGHER–ORDER ELEMENTS

• Cont’d

– associated with the xi−1/2, 1 ≤ i ≤ N

ψi−1/2(x) =

{
4(xi − x)(x− xi−1)/h2

i , x ∈ [xi−1,xi],

0, otherwise

• Thus, the finite element space can be represented as

Vh = span{φi,ψi−1/2, |1 ≤ i ≤ N} and we can write

uh =
N

∑
j=1

u jφ j +
N

∑
j=1

u j−1/2ψi−1/2

• The Finite Element System is therefore
{

a(uh,φi) = l(φi), 1 ≤ i ≤ N,

a(uh,ψi−1/2) = l(ψi−1/2), 1 ≤ i ≤ N,
, or

{
M11u+M12û = b1,

M21u+D22û = b2,

where u = [u1, . . . ,uN ]T and û = [u1/2, . . . ,uN−1/2]
T
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FINITE ELEMENT METHOD VIII
HIGHER–ORDER ELEMENTS

• Note that

– M11 = [a(φ j,φi)]N×N is a tridiagonal matrix,

– M12 = [a(ψ j−1/2,φi)]N×N is a twodiagonal matrix and M21 = MT
12

– D22 = [a(ψ j−1/2,ψi−1/2)]N×N is a positive–definite diagonal matrix

• Thus, we can easily re–express û as û = D−1
22 (b2 −M21u) leading to

Mu = b,

where

– M = M11 −M12D−1
22 M21 is a tridiagonal matrix

– b = b1 −M12D−1
22 b2

• The procedure of eliminating û is known as condensation ; note that the size

and structure of the resulting algebraic system remains the same!
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FINITE ELEMENT METHOD IX
NON–CONFORMING METHOD

• Consider the following fourth–order boundary value problem




u(IV ) +u = f , in Ω,

u(0) = u′(0) = 0, u′(1) = u′(1) = 0,

Assuming V = H2
0 (0,1), the weak formulation is

u ∈V,

Z 1

0
u′′v′′ dx =

Z 1

0
f vdx, ∀v ∈V

• In the conforming case Vh ⊆V , hence the Vh must be (at least) C1

continuous; at every interior node we thus have two continuity conditions

(i.e., for the function and its derivative); therefore, the order of the

interpolating polynomial must be p ≥ 3
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FINITE ELEMENT METHOD X
NON–CONFORMING METHOD

• The choice p = 3 offers the minimum number of required adjustable

coefficients (4); in this case we have

Vh = {vh ∈C1(I) | vh|Ii ∈ P3(Ii), 1 ≤ i ≤ N, vh(x) = v′h(x) = 0 at x = 0,1}

with the basis functions

φi(x j) = δi j,φ′i(x j) = 0,

ψi(x j) = 0, φ′i(x j) = δi j,

• In order to avoid the computational complexity of such conforming

elements, one may use non–conforming elements, e.g., require C global

continuity instead of C1, i.e.,

Vh = {vh ∈C(I) | vh|Ii ∈ P2(Ii), 1 ≤ i ≤ N, vh(x) = v′h(x) = 0 at x = 0,1}

• Note that in the non–conforming case we have Vh 6⊆V ; nevertheless, in

certain cases convergence of such approximations can still be assured
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FINITE ELEMENT METHOD XI
REFERENCE ELEMENT TECHNIQUE

• Consider again a conforming approach (with p = 3) to the solution of the

fourth–order boundary value problem state earlier

• Introduce the reference element I0 = [0,1] and a bijective mapping between

I0 and Ii, 1 ≤ i ≤ N defined as

Fi : I0 −→ Ii, Fi(ξ) = xi−1 +hiξ

• Over the reference element I0 we construct the cubic shape functions :

Φ0(ξ) = (1+2ξ)(1−ξ)2, Φ1(ξ) = (3−2ξ)ξ2,

Ψ0(ξ) = ξ(1−ξ)2, Ψ1(ξ) = −(1−ξ)ξ2

Note that they satisfy by construction the interpolation conditions

Φ0(0) = 1, Φ0(1) = 0, Φ′
0(0) = 0, Φ′

0(1) = 0,

Φ1(0) = 0, Φ1(1) = 1, Φ′
1(0) = 0, Φ′

1(1) = 0,

Ψ0(0) = 0, Ψ0(1) = 0, Ψ′
0(0) = 1, Ψ′

0(1) = 0,

Ψ1(0) = 0, Ψ1(1) = 0, Ψ′
1(0) = 0, Ψ′

1(1) = 1,
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FINITE ELEMENT METHOD XII
REFERENCE ELEMENT TECHNIQUE

• Based on the shape functions defined on the reference element I0, we can

easily construct the basis functions with the aid of the mappings {Fi}N
i=1:

φi(x) =





Φ1(F
−1
i (x)), x ∈ Ii,

Φ0(F
−1
i+1(x)), x ∈ Ii+1,

0, otherwise

, ψi(x) =





hiΨ1(F
−1
i (x)), x ∈ Ii,

hi+1Ψ0(F
−1
i+1(x)), x ∈ Ii+1,

0, otherwise

• Computation of the entries of the stiffness matrix and the load vector is now

performed in the reference space, e.g.,

ai−1,i =
Z

Ii

(φ′′i−1)(φ
′′
i )dx =

Z

I0

(Φ0)
′′h−2

i (Φ1)
′′h−2

i hi dξ

• The use of the reference element technique is essential both for deriving

error estimates and for efficient implementation, especially in

higher–dimensional cases
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FINITE ELEMENT METHOD XIII
ESSENTIAL STEPS

• Essential steps need for solution of a boundary value problem with a Finite

Element Method

1. weak formulation of the boundary value problem

2. partition (“triangulation”) of the solution domain into subdomains

(“elements”)

3. definition of a finite element space associated with this partition,

4. construction of basis functions spanning the finite element space

5. assembly and solution of the finite element system
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FINITE ELEMENT METHOD XIV
TRIANGULATION

• Triangulation is a partition Th = {K} of the domain Ω into a finite number

of subsets K, called elements , with the following properties:

–
S

K∈Th
K = Ω,

– each K is closed with a nonempty interior K̇ and a Lipschitz continuous

boundary

– for distinct K1,K2 ∈ Th, K̇1
T

K̇2 = /0

– for distinct K1,K2 ∈ Th, K1
T

K2 is either empty, or a common vertex, or

a common side of K1 and K2 (the regularity condition )

• We will now focus mostly on the 2D case (generalization to 3D is

straight–forward, but may get technically complicated)

• We will assume that the domain Ω is a polygon , so it can be partitioned into

straight–sided triangles and quadrilaterals (otherwise, curvilinear elements

need to be used)
• 3D domains can be partitioned into tetrahedral, hexahedral, pentahedral, etc.,

elements
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FINITE ELEMENT METHOD XV
TRIANGULATION

• The finite elements will be collectively denoted K, whereas the reference

element will be denoted K̂, so that we will have the bijective mapping

K = FK(K̂); the function FK is

– linear when K̂ is a triangle (e.g., an equilateral one),

– bilinear when K̂ is a quadrilateral

• For an arbitrary K we denote:

– hK = diam(K) = max{‖x−y‖ |x,y ∈ K},

– ρK — the diameter of the largest circle (sphere) inscribed in K

Analogous quantities ĥ and ρ̂ will be defined can be defined for the reference

element K̂

• The quantity hK described the size of K

• The ratio hK
ρK

measure the “flatness” of the element K
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FINITE ELEMENT METHOD XVI
TRIANGULATION — UNSTRUCTURED GRIDS

• Structured grid , or mesh , is a grid in which every node, apart from the

boundary nodes, has the same set of neighbors, i.e., the topology of the grid

is the same in all parts of the domain

• The advantage of the Finite Element Method is that it does not need

structured grids which are hard to generate in complex geometries

• An unstructured grid is simply a “cloud” of points which are appropriately

numbered and connected; the resulting “finite elements” are often referred to

as simplices

• In many case grid generation is as important and difficult as solution of the

problem itself; hence grid generation is an autonomous area of research
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FINITE ELEMENT METHOD XVII
DELAUNAY TRIANGULATION

• Delaunay triangulation is a viable possibility for unstructured grid

generation, since it ensures that the resulting finite element are characterized

by a moderate aspect ration; this is in turn important from the point of view

of interpolation errors ( Empty Circumcircle Property )

• Definition — A triangulation T is said to be Delaunay if, for every element

K ∈ T , the interior of the circumscribed sphere does not contain any vertex

of the triangulation

• Properties of Delaunay triangulation:

– All the simplices of a Delaunay triangulation contain the center of the

circumscribed sphere

– The empty circumcircle property is satisfied of every two simplices

having a face in common

– In 2D all the angles of a Delaunay triangulation are acute
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FINITE ELEMENT METHOD XVIII
DELAUNAY TRIANGULATION

• Properties of Delaunay triangulation (cont’d):

– Among all possible triangulations, the Delaunay triangulation T
maximizes the smallest interior angles of the simplices (denoted α(T ))

and minimizes the largest radius of the circumcircle (denoted r(T ))

– The Delaunay triangulation is closely related to Voronoi diagrams

(a.k.a. Dirichlet tessellation ) in which every point on a plane is assigned

a convex polygon such that this point is closer to the center of the

polygon than any other point; Delaunay triangulations and Voronoi

diagrams are dual in the graph-theoretic sense

• Delaunay triangulations can be generated in different ways, e.g., using the

Bowyer–Watson algorithm
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FINITE ELEMENT METHOD XIX
POLYNOMIAL SPACES ON REF’CE ELEMENTS
• With the aid of the mapping FK , function spaces can be constructed on

general elements from those constructed on the reference elements; thus we

introduce a polynomial space X̂ on K̂

• As a 2D example, consider an equilateral triangle K̂ with the vertices
Â1(−1,0), Â2(1,0) and Â3(0,

√
3); we can now introduce the functions

(referred to as barycentric coordinates associated with the triangle K̂)

λ̂1(x̂) =
1
2

(
1− x̂1 −

x̂2√
3

)
, λ̂2(x̂) =

1
2

(
1+ x̂1 −

x̂2√
3

)
, λ̂3(x̂) =

x̂2√
3
,

Note that these linear functions satisfy λ̂i(Â j) = δi j

• Barycentric coordinates are convenient for representation of polynomials,

e.g., any function v̂ ∈ P1(K̂) is determined by three parameters

(v̂ = α1x̂1 +α2x̂2 +α3) and can be represented as

v̂(x̂) =
3

∑
i=1

v̂(Âi)λ̂i(x̂)
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FINITE ELEMENT METHOD XX
POLYNOMIAL SPACES ON REF’CE ELEMENTS
• A quadratic function v̂ ∈ P2(K̂) is determined by six parameters, i.e.,

v̂ = β1x̂2
1 +β2x̂1x̂2 +β3x̂2

2 +β4x̂1 +β5x̂2 +β6, therefore six interpolation

conditions are required
• Introduce side mid–points as Âi j = 1

2 (Âi + Â j), 1 ≤ i ≤ j ≤ 3
• Any function v̂ ∈ P2(K̂) is uniquely determined by its values at the vertices

{Âi}3
i=1 and the side mid–points {Âi j}1≤i≤ j≤3 and has a representation

v̂(x̂) =
3

∑
i=1

v̂(Âi)λ̂i(x̂)(2λ̂i(x̂)−1)+ ∑
1≤i≤ j≤3

4v̂(Âi j)λ̂i(x̂)λ̂ j(x̂)

Note that:

– λ̂k(x̂)(2λ̂k(x̂)−1), 1 ≤ k ≤ 3 is a quadratic function equal to 1 at Âk and

to 0 at all other vertices and side mid–points,

– 4λ̂i(x̂)λ̂ j(x̂), 1 ≤ i ≤ j ≤ 3 is a quadratic function equal to 1 at Âi j and to

0 at all other vertices and side mid–points
• It is possible to use derivatives, or other quantities, to construct the

interpolation conditions
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FINITE ELEMENT METHOD XXI
AFFINE–EQUIVALENT FINITE ELEMENTS

• When Ω is a polygonal domain partitioned into straight–sided triangles and

quadrilaterals K, then every elements K is an image of the reference element

K̂ under an invertible affine mapping FK : K̂ → K of the form

FK(x̂) = TKx̂+bK ,

where TK is an invertible 2×2 mapping and bK is a translation vector.

• For every element we define the function space XK by the formula

XK = X̂ ◦F−1
K = {v | v = v̂◦F−1

K , v̂ ∈ X̂}

FK being affine, the degree of the spaces XK and X̂ is the same. Moreover, we

have v(x) = v̂(x̂), ∀x ∈ K, x̂ ∈ K̂, with x = FK(x̂)

• Using the nodes on K̂ we can introduce the corresponding nodes on K as

xK
i = FK(x̂i), i = 1, . . . , I

and the associated functions on K as

φK
i = φ̂i ◦F−1

K , i = 1, . . . , I
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FINITE ELEMENT METHOD XXII
AFFINE–EQUIVALENT FINITE ELEMENTS

• Note that the functions {φK
i }I

i=1 have the property that

φK
i (xK

j ) = δi j,

hence they form a set of local polynomials basis functions on K

• Estimates of interpolation errors will depend on the properties of the affine

transformation TK , for which we have the following result

‖TK‖ ≤
hK

ρ̂
, ‖T−1

K ‖ ≤ ĥ
ρK
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FINITE ELEMENT METHOD XXIII
FINITE ELEMENT SPACES

• For second–order boundary value problems we need Vh ⊂ H1(Ω); we may

thus set Vh = Xh, where

Xh = {vh ∈C(Ω) | vh|K ∈ XK , ∀K ∈ Th}

Function in Xh thus have to be continuous across element boundaries

• We can define the following interpolation operators:

– On the reference element K̂: Π̂ : C(K̂) → X̂ , Π̂v̂ = ∑I
i=1 v̂(x̂)φ̂i

with the interpolation conditions Π̂v̂(x̂i) = v̂(x̂i), i = 1, . . . , I

– On any actual element K: ΠK : C(K) → XK , ΠKv = ∑I
i=1 v(xK)φK

i

with the interpolation conditions ΠKv(xK
i ) = v(xK

i ), i = 1, . . . , I

• The two interpolation operators are related as Π̂v̂ = (ΠKv)◦F−1
K = Π̂Kv ,

relation that is essential for error analysis.
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FINITE ELEMENT METHOD XXIV
QUADRATURES

• When solving the approximate problem in the form
find uh ∈Vh, ah(uh,vh) = fh(vh) ∀vh ∈Vh

we need to evaluate integrals
ah(uh,vh) =

Z

Ω
Ah(x,uh,vh)dx, fh(vh) =

Z

Ω
Fh(x,vh)dx+

Z

Γ
Gh(x,vh)dx,

where Ah, Fh, and Gh are operators. In most practical situations these

integrals cannot be evaluated analytically and approximate approaches need

to be used.

• Quadrature is a method to evaluate an integral approximately.

• Gaussian Quadrature seeks to obtain the best numerical estimate of an

integral by picking optimal points xi, i = 1, . . . ,N at which to evaluate the

function f (x).

• The fundamental theorem of Gaussian quadrature states that the optimal

abscissas of the N-point Gaussian quadrature formulas are precisely the roots

of the orthogonal polynomial for the same interval and weighting function
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FINITE ELEMENT METHOD XXV
QUADRATURES

• Definition — Let K be a non-empty, Lipschitz, compact subset of R
d . Let

lq ≥ 1 be an integer. A quadrature on K with lq points consists of

– A set of lq real numbers {ω1, . . . ,ωlq} called quadrature weights

– A set of lq points {ξ1, . . . ,ξlq} in K called Gauß points or quadrature

nodes

The largest integer k such that ∀p ∈ Pk,
R

K p(x)dx = ∑
lq
l=1 ωl p(ξl) is called

the quadrature order and is denoted by kq

• As regards 1D bounded intervals, the most frequently used quadratures are

based on Legendre polynomials which are defined on the interval (0,1) as

Ek(t) = 1
k!

dk

dtk (t
2 − t)k, k ≥ 0. Note that they are orthogonal on (0,1) with the

weight W = 1.
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FINITE ELEMENT METHOD XXVI
QUADRATURES

• Theorem — Let lq ≥ 1, denote by ξ1, . . . ,ξlq the lq roots of the Legendre

polynomial Elq(x) and set ωl =
R 1

0 ∏
lq
j=1
j 6=l

t−ξ j

ξl−ξ j
dt. Then

{ξ1, . . . ,ξlq ,ω1, . . . ,ωlq} is a quadrature of order kq = 2lq −1 on [0,1]

Proof — Let {L1, . . . ,Llq} be the set of Lagrange polynomials associated

with the Gauß points {ξ1, . . . ,ξlq}. Then ωl =
R 1

0 Ll(t)dt, 1 ≤ l ≤ lq

– when p(x) is a polynomial of degree less than lq, we integrate both sides

of the identity p(t) = ∑
lq
l=1 p(ξl)Ll(t)dx, ∀t ∈ [0,1] and deduce that the

quadrature is exact for p(x)

– when the polynomial p(x) has degree less than 2lq we write it in the form
p(x) = q(x)Elq (x)+ r(x), where both q(x) and r(x) are polynomials of
degree less than lq; owing to orthogonality of the Legendre polynomials,
we conclude

Z 1

0
p(t)dt =

Z 1

0
r(t)dt =

lq

∑
l=1

ωl r(ξl) =
lq

∑
l=1

ωl p(ξl),

since the points ξl are also roots of Elq
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FINITE ELEMENT METHOD XXVII
QUADRATURES

• The Gauß points and the weights are available in closed form only for low

order quadratures; for higher order quadratures they have to be determined

approximately, but are readily available in tables

• Generalization to 2D and 3D is straightforward; the Gauß points and weights

are again available in tables

• When assembling FEM matrices, the following type need to be evaluated
Z

Ω
φ(x)dx = ∑

K∈Th

Z

K
φ(x)dx

Since the mapping FK : K̂ → K is smooth, the change of variables x = FK(x̂)

yields
Z

K
φ(x)dx =

Z

K̂
φ(FK(x̂))det(JK(x̂))dx̂,

where JK(x̂) =
∂FK( x̂)

∂ x̂ is the Jacobian matrix of FK at x̂.
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FINITE ELEMENT METHOD XXVIII
QUADRATURES

• Thus, the integrals can be evaluated over the reference elements; using a

quadrature with lq Gauß points and weights on K̂ we obtain

Z

K
φ(x)dx ≈

lq

∑
l=1

ωl det(JK(ξl))φ(FK(ξl)) =
lq

∑
l=1

ωlKφ(ξlK),

where we set ωlK = ωl det(JK(ξl)) and ξlK = FK(ξl)

• It can be shown that the quadrature {ξ1K , . . . ,ξlqK ,ω1K , . . . ,ωlqK} enjoy

similar properties regarding accuracy as the quadratures defined on K


