Finite Element Method

WELL—-POSEDNESS OF PROBLEMS |

e Consider the following generic problem
Lu=",

where £ : X =Y, ue X, f €Y and X,Y are two Banach spaces

e \\e say that the above problem is well-posed (according to Hadamard) iff
the following two conditions are satisfied:
— there exists one and only one solution to this problem,

— it is characterized by the following a priori estimate

Jc >0, VfeY, |ulx <c|fly,

which means that the solution should continuously depend on the data
for the problem

e Note that many meaningful and important problems in physics and
engineering are in fact not well-posed (hence, they are ill-posed)

e It is expected that if the continuous problem is well-posed, such should be its

discrete approximation
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WELL-POSEDNESS OF PROBLEMS |1

e \Well-posedness in the context of the Lax—Milgram Lemma for a problem
ueV, a(uv)=I(Vv), WeV

with a(v,v) > al|v||?, Vv € V. Consider V* as the dual space of VV; then

[ (v a(u.v
v = sup 10 — sup 2%Y
vev IVIV  vev IV]lv

Thus |ju|ly < %HI\V* (a is known as the coercivity constant )

e Conforming and consistent FEM approximations preserve this property, i.e.,
for Vi, € V, the corresponding discrete problem

Un € Vh, a(un,Vh) =1(vh), Yvh € Vh
Is also well-posed (in the sense of Hadamard).

e Can a — 0? What will happen in such case?
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WELL-POSEDNESS OF PROBLEMS |11

Consider an advection—diffusion problem
—VAU+BOU=f InQ

where v > 0 is the diffusion coefficient and B : Q — RY is the advection
velocity

Defining the bilinear form as

a(u,v) — /Q VOU - OV -+ v(BOu)] dx

one can show that %’ =0 (%) hence v — 0 implies less of coercivity

Such problems, even though they remain formally well-posed, are very
difficult to solve using standard approaches

Coercivity is entirely lost when v = 0, i.e. for first—order PDEs

This a different, more general treatment, is required.




Finite Element Method

FEM FOR FIRST-ORDER PDES |

Consider a generic first-order PDE

u'(x) = f(x), in Q=(0,1)
{u(O)O

Defining U = {v € H(Q),v(0) = 0}, a possible weak formulation is

ueU, a(uv)=I(v), WeV
wherea : U xV — R is defined as a(u,v) = [oUu'vdxandV = Ly(Q)

Now the solution and trial spaces, U and V respectively, are not the same, so
the Lax—Milgram Lemma does not apply anymore.

Existence and uniqueness of solutions of the above problem is addressed by
the Generalized Lax—Milgram Lemma [a. k. a. the
Ladyzhanskaya—BabuSka—Brebbia (LBB), or Banach—NecCas—Babuska
(BNB) Theorem]
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FEM FOR FIRST-ORDER PDES I
GENERALIZED LAX—MILGRAM LEMMA

e Theorem — Let U be Banach space and letV be a reflexive Banach space.
Leta : UxV — Rand f €V*. Then the problem

ueU, a(u,v)=I(v), WeV

Is well-posed iff

(uv)

. a
— Ja > 0, infyey Supyey Tullu VIV

- weV,(VueU, a(u,v)=0) = (v=0)

Moreover, we have |jully < 3 || f|jv+, Vf € V*

> o (the inf-sup condition)

e Proof (outline) — from Banach’s closed-range theorem ||Au||v+ > al|ullu;
then

Au,v a(u,v
||AUIHv»s=sU|o< >=8up( )

> o||ufly
vev HVHV veV HVHV
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FEM FOR FIRST-ORDER PDESs |11

e Now return to the original problem, i.e.,
ueU, a(u,v)=I(v), WeV
with a(u,v) = [u'vdx, U = {ve H}(Q),v(0) =0} and V = L,(Q)
e To examine well-posedness, consider the Generalized Lax—Milgram Lemma

. a(u,v) _ \/fol(u’)zdx
inf  sup = inf
UeU ye,(q) IUllme Vi, veu fJufpe

Using now the Poincaré inequality, i.e., c||v||L, < ||0v]|L,, ¥ € H3(0,1), we
can show that

\/fol(u’)zdx:. JoH(u)2dx .2

L T T2+ (2dx — V 3
H Jo us + (u’)4dx

e Hence our problem, with the choice of the spaces U and V, is well-posed
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FEM FOR FIRST-ORDER PDES |V

For the discrete problem to be well-posed, the inf—-sup condition must also
hold in the discrete sense

For our example 1D first—order equation, consider the corresponding discrete
problem

Un € Up, a(up,Vn) = (f,vh)L,, YVh € Up,
where U, = {up € C%(Q); un|px x,, € P1. Un(0) =0}

It can be shown that

_ a(up,V
cith < inf sup (Un, Vh) < c2h
Un€Uh vi,eUy, [[Unl[H2 [IVh[L,

Hence, as h — 0, we have a = c¢1h — 0 and loss of coercivity occurs

This will not happen when the discrete problem has the form
Up € Un, a(un,Vh) = (f,Vh)L,, YWh € Vh,

where Uy, is defined as above and Vi = {Vn|x x.,] € Po}
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FEM FOR FIRST-ORDER PDEsSV
LEAST-SQUARES APPROACH

e It is often possible to convert a given problem to a form that can be treated
using the Galerkin approach;

To illustrate this approach consider an arbitrary problem in RN AU = F,
where A is a square invertible matrix with no special properties; the
corresponding weak formulation will be

UecRN, (AU,AV)N=(FAV)N, W eRN

where (-,-) is an inner product in RN; Note that this problem is equivalent to
ATAU = ATF, where the matrix ATA is now symmetric and
positive—definite

Consider the functional 7 (V) = %(AV,AV)N — (F,AV)N. The above problem
can be therefore recast as the following optimization problem

findU e RN ST s(U)= inf 7(V)
VeRN
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FEM FOR FIRST-ORDER PDES VI
LEAST-SQUARES APPROACH
e Since |AV —F||g =7(V)+ %||F| 2, minimization of 7 (V) is equivalent to
minimization of ||AV — F |3, hence the name the least squares method

e In the context of the problem
u'(x) = f(x), in Q=(0,1)
u(0)=~0

the corresponding weak formulation will be
ueU, &(u,v)=(f,V),, WweU

where d(u,v) = (U/,v'), and U = {v € H1(Q),v(0) = 0}, Note that this is
formally equivalent to

u”(x) = f'(x), in Q=(0,1)
{u(O) =0, U(1)=f(1)

o Note that the matrix AT A, even though symmetric and positive definite, has a
condition number much higher that A
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FEM FOR THE STOKES PROBLEM |

e The Stokes Problem often arises in incompressible fluid mechanics ; given
Q c RY, consider the system of PDE for the unknowns (u, p)

(—Au+0Op=Tf inQ,
0-u=0 inQ, |
u=0 onodQ

\

whereu: Q >R p: Q- Randf: Q — Rd

e Problems encountered in reality are usually time—dependent (%—‘tj) and
nonlinear [(u- O)u] — the Navier—Stokes system

e The unknowns (u, p) have different properties (in terms of smoothness) and
special care must be exercised when constructing the appropriate Finite
Element interpolations; two approaches are commonly used:

— mixed formulations

— constrained formulations
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FEM FOR THE STOKES PROBLEM 11
MIXED FORMULATION

e Introduce test functions v € [H&(Q)]d and
g € Ly (Q) ={w e L2(Q); [owdQ = 0}; multiplying the first equation by
v and the second by g, integrating over Q and integrating by parts we obtain

/Du:Dde—/ pD-de:/f-de,
Q Q Q
/qD-udQ:O
Q

e Givenfe [H1(Q)]4, the following mixed formulation of the weak form is
obtained

find u € [H3(Q)]%, p € Lyo)(Q), ST {

b(u,q)
where a(u,v) = [o Ou: OvdQ and b(v,p) = [o pU-vdQ

e This weak problem can be shown to be well-posed (unique and bounded
solutions exist)
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FEM FOR THE STOKES PROBLEM |11
MIXED FORMULATION

e Using the discrete approximations of the function spaces Xy, C [H&(Q)]d and
Mh C La(0)(Q), we obtain the following discrete problem

a(Un,Vh) +b(Vh, pn) = f(Vh), Yvh € X4
b(un,gn) =0 V0h € Mh

find up € X, ph € My, ST {

e The discrete problem is well-posed iff the spaces Xy and My, are compatible,
.e., the following condition is satisfied

_ -vhdQ
B, >0, inf sup Ja.dnD-Vh
hEMn v, e, [|GhlL[[Vh[H

> Bh

Ideally, the spaces X}, and My, should be chosen so that the inf-sup constant
Br be independent from h (uniformly bounded from below)
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FEM FOR THE STOKES PROBLEM |V
MIXED FORMULATION

e If the inf-sup condition is satisfied, an extension of Céa’s lemma gives the
following error estimates:

u—u <cCqp Inf |lu—v Cop INf —
Ju—unl/e < 1hvhexh|| hlljHae + thhelvlh”p ahllL,;

— <cCzy Inf [[u—Vv Cqn INf —
Ip=Phll, < Can Inf fJu=Vnl[gaja+ Can inf [Ip—anllL,,
where (u, p) is the exact solution of the continuous Stokes problem, and

a+g)  om=

El
Cih= (14—
1h (+0(

ey bl R
Csh—ClhBh, Cgh =1+ + Copy

Bn Bn’

where a and 3, are the coercivity constants of the bilinear forms
a(u,v) = [oOu:OvdQand b(v,p) = Jo pU-udQ

e Note that if 3, — 0 when h — 0, this behavior is more damaging for the rate

of convergence of pressure p than that of velocity u
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FEM FOR THE STOKES PROBLEM V
MIXED FORMULATION

e Examples of bad (i.e., violating the inf—sup condition) combinations of the
spaces X and M:

- Q1/To
- T1/ T
- T1/To
e Examples of good (i.e., satisfying the inf—sup condition) combinations of
the spaces Xp and Mp:

— Tq—bubble / T1 (the “T,—bubble” finite element is characterized by an
additional node at the barycenter of the element)

- To/ Ty

e Note that the finite element spaces Ty, k > 0, are also denoted Py
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