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WELL–POSEDNESS OF PROBLEMS I
• Consider the following generic problem

Lu = f ,

where L : X → Y , u ∈ X , f ∈ Y and X , Y are two Banach spaces

• We say that the above problem is well-posed (according to Hadamard) iff

the following two conditions are satisfied:

– there exists one and only one solution to this problem,

– it is characterized by the following a priori estimate

∃c > 0, ∀ f ∈ Y, ‖u‖X ≤ c‖ f‖Y ,

which means that the solution should continuously depend on the data

for the problem

• Note that many meaningful and important problems in physics and

engineering are in fact not well–posed (hence, they are ill–posed)

• It is expected that if the continuous problem is well–posed, such should be its

discrete approximation
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WELL–POSEDNESS OF PROBLEMS II

• Well–posedness in the context of the Lax–Milgram Lemma for a problem

u ∈V, a(u,v) = l(v), ∀v ∈V

with a(v,v) ≥ α‖v‖2, ∀v ∈V . Consider V ∗ as the dual space of V ; then

‖l‖V ∗ = sup
v∈V

l(v)
‖v‖V

= sup
v∈V

a(u,v)
‖v‖V

≥
a(u,u)

‖u‖V
≥ α‖u‖V

Thus ‖u‖V ≤ 1
α‖l‖V ∗ (α is known as the coercivity constant )

• Conforming and consistent FEM approximations preserve this property, i.e.,

for Vh ∈V , the corresponding discrete problem

uh ∈Vh, a(uh,vh) = l(vh), ∀vh ∈Vh

is also well–posed (in the sense of Hadamard).

• Can α → 0? What will happen in such case?
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WELL–POSEDNESS OF PROBLEMS III

• Consider an advection–diffusion problem

−ν∆u+β∇u = f in Ω

where ν > 0 is the diffusion coefficient and β : Ω → R
d is the advection

velocity

• Defining the bilinear form as

a(u,v) =

Z

Ω
[ν∇u ·∇v+ v(β∇u)]dx

one can show that |a|
α = O

(

‖β‖L∞
ν

)

, hence ν → 0 implies less of coercivity

• Such problems, even though they remain formally well–posed, are very

difficult to solve using standard approaches

• Coercivity is entirely lost when ν = 0, i.e. for first–order PDEs

• This a different, more general treatment, is required.
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FEM FOR FIRST–ORDER PDES I

• Consider a generic first–order PDE
{

u′(x) = f (x), in Ω = (0,1)

u(0) = 0

• Defining U = {v ∈ H1(Ω),v(0) = 0}, a possible weak formulation is

u ∈U, a(u,v) = l(v), ∀v ∈V

where a : U ×V → R is defined as a(u,v) =
R

Ω u′vdx and V = L2(Ω)

• Now the solution and trial spaces, U and V respectively, are not the same, so

the Lax–Milgram Lemma does not apply anymore.

• Existence and uniqueness of solutions of the above problem is addressed by

the Generalized Lax–Milgram Lemma [a. k. a. the

Ladyzhanskaya–Babuška–Brebbia (LBB), or Banach–Nečas–Babuška

(BNB) Theorem]
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FEM FOR FIRST–ORDER PDES II
GENERALIZED LAX–MILGRAM LEMMA

• Theorem — Let U be Banach space and let V be a reflexive Banach space.

Let a : U ×V → R and f ∈V ∗. Then the problem

u ∈U, a(u,v) = l(v), ∀v ∈V

is well–posed iff

– ∃α > 0, infu∈U supv∈V
a(u,v)

‖u‖U‖v‖V
≥ α (the inf–sup condition)

– ∀v ∈V , (∀u ∈U, a(u,v) = 0) ⇒ (v = 0)

Moreover, we have ‖u‖U ≤ 1
α‖ f‖V ∗ , ∀ f ∈V ∗

• Proof (outline) — from Banach’s closed–range theorem ‖Au‖V ∗ ≥ α‖u‖U ;

then

‖Au‖V ∗ = sup
v∈V

〈Au,v〉
‖v‖V

= sup
v∈V

a(u,v)
‖v‖V

≥ α‖u‖U
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FEM FOR FIRST–ORDER PDES III

• Now return to the original problem, i.e.,

u ∈U, a(u,v) = l(v), ∀v ∈V

with a(u,v) =
R

Ω u′vdx, U = {v ∈ H1(Ω),v(0) = 0} and V = L2(Ω)

• To examine well–posedness, consider the Generalized Lax–Milgram Lemma

inf
u∈U

sup
v∈L2(Ω)

a(u,v)
‖u‖H1‖v‖L2

= inf
u∈U

√

R 1
0 (u′)2 dx

‖u‖H1

Using now the Poincaré inequality, i.e., c‖v‖L2 ≤ ‖∇v‖L2 , ∀v ∈ H1
0 (0,1), we

can show that

inf
u∈U

√

R 1
0 (u′)2 dx

‖u‖H1
= inf

u∈U

√

√

√

√

R 1
0 (u′)2 dx

R 1
0 u2 +(u′)2 dx

≥

√

2
3

• Hence our problem, with the choice of the spaces U and V , is well–posed
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FEM FOR FIRST–ORDER PDES IV
• For the discrete problem to be well-posed, the inf–sup condition must also

hold in the discrete sense

• For our example 1D first–order equation, consider the corresponding discrete

problem

uh ∈Uh, a(uh,vh) = ( f ,vh)L2 , ∀vh ∈Uh,

where Uh = {uh ∈C0(Ω);uh|[xi,xi+1] ∈ P1, uh(0) = 0}

• It can be shown that

c1h ≤ inf
uh∈Uh

sup
vh∈Uh

a(uh,vh)

‖uh‖H1‖vh‖L2

≤ c2h

Hence, as h → 0, we have α = c1h → 0 and loss of coercivity occurs

• This will not happen when the discrete problem has the form

uh ∈Uh, a(uh,vh) = ( f ,vh)L2 , ∀vh ∈Vh,

where Uh is defined as above and Vh = {vh|[xi,xi+1] ∈ P0}
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FEM FOR FIRST–ORDER PDES V
LEAST–SQUARES APPROACH

• It is often possible to convert a given problem to a form that can be treated

using the Galerkin approach;

• To illustrate this approach consider an arbitrary problem in R
N AU = F ,

where A is a square invertible matrix with no special properties; the

corresponding weak formulation will be

U ∈ R
N
, (AU,AV )N = (F,AV )N , ∀V ∈ R

N
,

where (·, ·) is an inner product in R
N ; Note that this problem is equivalent to

AT AU = AT F , where the matrix AT A is now symmetric and

positive–definite

• Consider the functional J (V ) = 1
2 (AV,AV )N − (F,AV)N . The above problem

can be therefore recast as the following optimization problem

find U ∈ R
N ST J (U) = inf

V∈RN
J (V )
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FEM FOR FIRST–ORDER PDES VI
LEAST–SQUARES APPROACH

• Since ‖AV −F‖2
N = J (V )+ 1

2‖F‖2
N , minimization of J (V ) is equivalent to

minimization of ‖AV −F‖2
N , hence the name the least squares method

• In the context of the problem
{

u′(x) = f (x), in Ω = (0,1)

u(0) = 0

the corresponding weak formulation will be

u ∈U, ã(u,v) = ( f ,v′)L2 , ∀v ∈U

where ã(u,v) = (u′,v′)L2 and U = {v ∈ H1(Ω),v(0) = 0}, Note that this is

formally equivalent to
{

u′′(x) = f ′(x), in Ω = (0,1)

u(0) = 0, u′(1) = f (1)

• Note that the matrix AT A, even though symmetric and positive definite, has a

condition number much higher that A
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FEM FOR THE STOKES PROBLEM I

• The Stokes Problem often arises in incompressible fluid mechanics ; given

Ω ⊂ R
d , consider the system of PDE for the unknowns (u, p)















−∆u+∇p = f in Ω,

∇ ·u = 0 in Ω,

u = 0 on ∂Ω

,

where u : Ω → R
d , p : Ω → R and f : Ω → R

d

• Problems encountered in reality are usually time–dependent ( ∂u
∂t ) and

nonlinear [(u ·∇)u] — the Navier–Stokes system

• The unknowns (u, p) have different properties (in terms of smoothness) and

special care must be exercised when constructing the appropriate Finite

Element interpolations; two approaches are commonly used:

– mixed formulations

– constrained formulations
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FEM FOR THE STOKES PROBLEM II
MIXED FORMULATION

• Introduce test functions v ∈ [H1
0 (Ω)]d and

q ∈ L2(0)(Ω) = {w ∈ L2(Ω);
R

Ω wdΩ = 0}; multiplying the first equation by

v and the second by q, integrating over Ω and integrating by parts we obtain
Z

Ω
∇u : ∇vdΩ−

Z

Ω
p∇ ·vdΩ =

Z

Ω
f ·vdΩ,

Z

Ω
q∇ ·udΩ = 0

• Given f ∈ [H−1(Ω)]d , the following mixed formulation of the weak form is

obtained

find u∈ [H1
0 (Ω)]d , p∈ L2(0)(Ω), ST

{

a(u,v)+b(v, p) = f (v), ∀v ∈ [H1
0 (Ω)]d

b(u,q) = 0 ∀q ∈ L2(0)(Ω)

where a(u,v) =
R

Ω ∇u : ∇vdΩ and b(v, p) =
R

Ω p∇ ·vdΩ

• This weak problem can be shown to be well–posed (unique and bounded

solutions exist)
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FEM FOR THE STOKES PROBLEM III
MIXED FORMULATION

• Using the discrete approximations of the function spaces Xh ⊂ [H1
0 (Ω)]d and

Mh ⊂ L2(0)(Ω), we obtain the following discrete problem

find uh ∈ Xh, ph ∈ Mh, ST

{

a(uh,vh)+b(vh, ph) = f (vh), ∀vh ∈ Xh

b(uh,qh) = 0 ∀qh ∈ Mh

• The discrete problem is well–posed iff the spaces Xh and Mh are compatible,

i.e., the following condition is satisfied

∃βh > 0, inf
qh∈Mh

sup
vh∈Xh

R

Ω qh∇ ·vh dΩ
‖qh‖L2‖vh‖H1

≥ βh

Ideally, the spaces Xh and Mh should be chosen so that the inf–sup constant

βh be independent from h (uniformly bounded from below)
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FEM FOR THE STOKES PROBLEM IV
MIXED FORMULATION

• If the inf–sup condition is satisfied, an extension of Céa’s lemma gives the

following error estimates:

‖u−uh‖[H1 ]d ≤ c1h inf
vh∈Xh

‖u−vh‖[H1 ]d + c2h inf
qh∈Mh

‖p−qh‖L2 ,

‖p− ph‖L2 ≤ c3h inf
vh∈Xh

‖u−vh‖[H1 ]d + c4h inf
qh∈Mh

‖p−qh‖L2 ,

where (u, p) is the exact solution of the continuous Stokes problem, and

c1h = (1+
|a|
α

)(1+
|b|
βh

), c2h =
|b|
α

,

c3h = c1h
|a|
βh

, c4h = 1+
|b|
βh

+ c2h
|a|
βh

,

where α and βh are the coercivity constants of the bilinear forms

a(u,v) =
R

Ω ∇u : ∇vdΩ and b(v, p) =
R

Ω p∇ ·udΩ

• Note that if βh → 0 when h → 0, this behavior is more damaging for the rate

of convergence of pressure p than that of velocity u
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FEM FOR THE STOKES PROBLEM V
MIXED FORMULATION

• Examples of bad (i.e., violating the inf–sup condition) combinations of the

spaces Xh and Mh:

– Q1 / T0

– T1 / T1

– T1 / T0

• Examples of good (i.e., satisfying the inf–sup condition) combinations of

the spaces Xh and Mh:

– T1–bubble / T1 (the “T1–bubble” finite element is characterized by an

additional node at the barycenter of the element)

– T2 / T1

• Note that the finite element spaces Tk, k > 0, are also denoted Pk


