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WELL-POSEDNESS OF PROBLEMS |

e Consider the following generic problem
cu=f,
where £ : X —»Y,ue X, f €Y and X, Y are two Banach spaces

o \We say that the above problem is well-posed (according to Hadamard) iff
the following two conditions are satisfied:
— there exists one and only one solution to this problem,
— itis characterized by the following a priori estimate

Jdec>0, VfeY, |ullx <c|fly,

which means that the solution should continuously depend on the data
for the problem

o Note that many meaningful and important problems in physics and
engineering are in fact not well-posed (hence, they are ill-posed)

o It is expected that if the continuous problem is well-posed, such should be its
discrete approximation
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WELL-POSEDNESS OF PROBLEMS ||

Well-posedness in the context of the Lax—Milgram Lemma for a problem
ueV, a(uv)=Iv), weV
with a(v,v) > a|v||?, Yv € V. Consider V* as the dual space of V; then

I(v a(u,v) _ a(u,u
v = sup 10 — sup 280 ALY gy
vev [IVlIv - vev (Vv T [lullv
Thus [jully < %HIHV» (o is known as the coercivity constant )

Conforming and consistent FEM approximations preserve this property, i.e.,
for Vi, € V, the corresponding discrete problem

Un € Vh, a(Un,Vh) =1(Vh), Vvh€Vp
is also well-posed (in the sense of Hadamard).

Can a — 0? What will happen in such case?
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Consider an advection—diffusion problem
—VAU+BOU="f inQ

where v > 0 is the diffusion coefficient and B : Q — R is the advection
velocity

Defining the bilinear form as

a(u,v) = /Q[VDU -Ov +v(BOu)] dx

one can show that ‘O{i' =0 (%) hence v — 0 implies less of coercivity

Such problems, even though they remain formally well-posed, are very
difficult to solve using standard approaches

Coercivity is entirely lost when v = 0, i.e. for first-order PDEs

This a different, more general treatment, is required.
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Consider a generic first-order PDE
u'(x) = f(x), in Q=(0,1)
{u(O) =0
Defining U = {v € H(Q),v(0) = 0}, a possible weak formulation is
ueU, a(u,v)=I(), weV
where a : U xV — R is defined as a(u,v) = [gu'vdxandV = Ly(Q)

Now the solution and trial spaces, U and V respectively, are not the same, so
the Lax—Milgram Lemma does not apply anymore.

Existence and uniqueness of solutions of the above problem is addressed by
the Generalized Lax—Milgram Lemma [a. k. a. the
Ladyzhanskaya—BabuSka—Brebbia (LBB), or Banach—Ne€as—Babuska
(BNB) Theorem]
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GENERALIZED LAX—MILGRAM LEMMA

e Theorem — Let U be Banach space and let V be a reflexive Banach space.
Leta: U xV — Rand f € V*. Then the problem

ueU, a(u,v)=I(), WweVv
is well-posed iff
- Ja >0, infucy SUPyey m >a (the inf-sup condition)
- WeV,(MueU, a(u,v)=0) = (v=0)
Moreover, we have |juljy < %HfHV*: vVfeVv*
e Proof (outling) — from Banach’s closed—range theorem ||Aul|yv+ > a[ul|u;

then
A
() _ g 200
VIV vev [IVIlv

[IAufv- = sup > allully
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o Now return to the original problem, i.e.,
ueU, a(u,v)=I(), WweVv
with a(u,v) = fou'vdx,U = {ve H}(Q),v(0) =0} andV = L»(Q)

e To examine well-posedness, consider the Generalized Lax—Milgram Lemma

1
a(u,v) . Jo (u)?dx
inf sup = inf
Vel yep (@) Ul Vi, veb [uflpe

Using now the Poincaré inequality, i.e., c||v||L, < ||Ov||L,, Vv € H&(O,l), we
can show that

JH(u)2dx \/’
u U HUHHl ueU f u2+ 2dX

e Hence our problem, with the choice of the spaces U and V, is well-posed
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For the discrete problem to be well-posed, the inf-sup condition must also
hold in the discrete sense

For our example 1D first—order equation, consider the corresponding discrete
problem
Up €Up, a(Un,Vh) = (f,Vh)L,, VVh € Up,

where Up = {un € C%(Q); Unljx x.,] € P1, un(0) =0}

It can be shown that

cth < inf sup a(Un, Vh)

— " < cyh
Un€Un vy Uy [|Unllz [[VhllL,

Hence, as h — 0, we have a = ¢1h — 0 and loss of coercivity occurs

This will not happen when the discrete problem has the form
Up € Un, a(un,Vh) = (f,Vn)L,, VVh € Vi,

where Up, is defined as above and Vi = {Vn| x.,] € Po}
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LEAST-SQUARES APPROACH
e Itis often possible to convert a given problem to a form that can be treated
using the Galerkin approach;

To illustrate this approach consider an arbitrary problem in RN AU = F,
where A is a square invertible matrix with no special properties; the
corresponding weak formulation will be

UeRN, (AUAV)N = (FA )N, W eRN,

where (-,-) is an inner product in RN; Note that this problem is equivalent to
ATAU = ATF, where the matrix AT A is now symmetric and
positive—definite

Consider the functional 7 (V) = %(AV,AV)N — (F,AV)N. The above problem
can be therefore recast as the following optimization problem

findU e RN ST s(U)= inf 5(V)
VERN
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LEAST-SQUARES APPROACH
e Since ||AV —F|% = 7(V) + ||F ||, minimization of 7 (V) is equivalent to
minimization of ||AV — F ||, hence the name the least squares method

e In the context of the problem
u'(x) = f(x), in Q=(0,1)
{u(O) =0
the corresponding weak formulation will be
uey, d&(u,v)=(f,v),, WeU

where d(u,v) = (U,Vv), and U = {v € H1(Q),v(0) = 0}, Note that this is
formally equivalent to

u’(x) = f'(x), in Q=(0,1)

u(0)=0, u'(1)=f(1)

o Note that the matrix AT A, even though symmetric and positive definite, has a
condition number much higher that A
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e The Stokes Problem often arises in incompressible fluid mechanics ; given
Q c RY, consider the system of PDE for the unknowns (u, p)

—Au+0Op=f inQ,
O-u=0 inQ, |
u=0 onodQ

whereu: Q —RY p: Q—Randf: Q — R

e Problems encountered in reality are usually time—dependent (%—‘t’) and
nonlinear [(u-O)u] — the Navier—Stokes system

e The unknowns (u, p) have different properties (in terms of smoothness) and
special care must be exercised when constructing the appropriate Finite
Element interpolations; two approaches are commonly used:

— mixed formulations
— constrained formulations
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MIXED FORMULATION

Introduce test functions v € [H&(Q)]4 and
4 € Lyg)(Q) ={we L2(Q); [qwdQ = 0}; multiplying the first equation by
v and the second by g, integrating over Q and integrating by parts we obtain

/Du:Dde—/ pD‘de:/f-de,
Q Q Q
/qD-udQ:O
Q

Given f € [H=1(Q)]9, the following mixed formulation of the weak form is
obtained

find u e [HF(Q)]%, p € Ly (Q), ST {

where a(u,v) = fo Ou: OvdQ and b(v, p) = [o pO-vdQ

This weak problem can be shown to be well-posed (unique and bounded
solutions exist)

a(u,v) +b(v, p) = f(v), W € [H3(Q)]
b(u,q) =0 Vg € Ly0)(Q)
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MIXED FORMULATION

e Using the discrete approximations of the function spaces Xy, C [H(}(Q)]d and
Mh C L) (), we obtain the following discrete problem

a(un,Vh) +b(vh, pn) = f(vh), YVh € Xp

find up € Xy, pn € My, ST {

b(un,gn) =0 Vah € M

e The discrete problem is well-posed iff the spaces X}, and My, are compatible,
i.e., the following condition is satisfied

: 0-vpdQ
IBr>0, inf sup Jo @ vndQ =
aheMnveX, [[ahllLs [[Vhlle

Ideally, the spaces X, and My, should be chosen so that the inf-sup constant
Bh be independent from h (uniformly bounded from below)




Finite Element Method

Finite Element Method

FEM FOR THE STOKES PROBLEM |V
MIXED FORMULATION

If the inf-sup condition is satisfied, an extension of Céa’s lemma gives the
following error estimates:

u—u <cCqp inf [ju—v Con inf —
[[u—un|ljae < 1hvhe><hH hljHae + 2hqhth||p UhllL;

— <cCzy inf [ju—v Cgn Inf —
IP=phllL, < csn inf [[u—Vvaljzo + 4hqhth”p Ahll,,

where (u, p) is the exact solution of the continuous Stokes problem, and

B4 By,

Bh
Cshzclh@ C4h:1+M+CZh@
Bn’ Bn Bn’

cih=(1+

where o and 3, are the coercivity constants of the bilinear forms
a(u,v) = [oOu:OvdQand b(v,p) = o pO-udQ

Note that if B, — 0 when h — 0, this behavior is more damaging for the rate
of convergence of pressure p than that of velocity u
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MIXED FORMULATION

e Examples of bad (i.e., violating the inf-sup condition) combinations of the
spaces Xp and Mp,:

- Q1/To
-1/ T
- T/ To
e Examples of good (i.e., satisfying the inf-sup condition) combinations of
the spaces X, and Mp,:

— T1-bubble / Ty (the “T1—bubble” finite element is characterized by an
additional node at the barycenter of the element)

- T /Ty

o Note that the finite element spaces Ty, k > 0, are also denoted Py




