Sobolev Spaces

PART I

Review of Sobolev Spaces
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Sobolev Spaces

SOBOLEV SPACES — WEAK DERIVATIVES |

Given RY, define a multi-index o as an ordered collection of integers
a=(ay,...,0q), such that its length is given by |a| = zﬁ':lo(i

If vis an m-times differentiable function, then for any a with |a| < mthe
derivative can be expressed as

~0l%v(x)
oox(teeoxye

D%(x)

integration by parts formula — given an open domain Q C R¢ and
ve CM(Q), e CF(Q) with ja| <m

/ v(x)D%(x) dx = (—1)!° / DV(x)@(x) dx
Q Q
Definition — given v,w € L1(Q), wis called a weak a—th derivative of v iff

| vixptegax= (-1l [ weogtodx, veeCy(Q)
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SOBOLEV SPACES — WEAK DERIVATIVES ||

A weak derivative, if it exists, is defined up to a set of measure zero

In the previous formula, if ve C™M(Q), then for each a with |a| < mthe
classical partial derivative D% is also the weak a-th partial derivative of v;
usually the same symbol is used to denote the two kinds of derivative

Thus, the weak derivative can be regarded as an extension of the classical
derivative to functions which are not differentiable in the classical sense.

Examples:

— The absolute value function v(x) = |x| is continuous at x = 0, but not
differentiable in the classical sense. Nevertheless, its first—order weak
derivative exists and is given by (cg € R is arbitrary)

(1, x>0,
—1.x<0,

 Co; Xx=0.




Sobolev Spaces

SOBOLEV SPACES — WEAK DERIVATIVES |1
e Examples (cont’d):
— Functions with jump discontinuities, e.g.,
(—1,—-1<x<0,
V(X) = { Co, X=0,
\L O<x< 1l

are not weakly differentiable
— More generally, assume that v € C|a, b| is piecewise continuously

differentiable, i.e., there exists a partition of the interval
a=Xy < X1+ <Xn=bsuchthat ve Cl[x_1,%], 1 <i<n. Then the
first—order weak derivative of v is

n

V(x),  xelJ(i-1,%),
W(X) = i=1

arbitrary, x=x;, ,1<i<n.
Note that the second—order weak derivative does not exist.

e \Weak derivative share many properties with classical derivatives, such as
linearity, chain rule, differentiation of products, etc.

30



Sobolev Spaces 31

SOBOLEV SPACES — DOMAIN BOUNDARIES |

e Sobolev spaces require some regularity of the boundary 0Q of the domain Q

e Definition — Let Q be open and bounded in RY and let VV denote a function
space on R9—1, We say that Q is of class V is for each point xg € 9Q there
exists an r > 0 and a function g € V such that upon transformation of the
coordinate system if necessary, we have

QﬂB(xo,r) = {x € B(Xo,r)|Xg > 9(x1,...,X4-1)},

where B(Xg,r) denoted the d-dimensional ball centered at xo with radius r.
In particular, when V consists of:

— Lipschitz continuous functions, we say Q is a Lipschitz domain,
— CKfunctions, we say Q is a Ck domain,
— CKY (0 < a < 1) functions, we say Q is a Holder boundary of class C*©

e Most domains arising in physical and engineering applications are Lipschitz
(may have sharp corners, but not cusps).
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SOBOLEV SPACES — INTEGER ORDER |

e Definition — Let k be a non—negative integer, p € [1,0]. The Sobolev space
WKP(Q) is the set of all the functions v such that for each multi-index a with
la| <k, the a-th weak derivative D% exists and D%v € LP(Q). The norm in
the space WKP(Q) is defined as

¢ 1/p
< ZkDaVEp(Q)> , 1< p<oo,
a<

Max DGV ) — 00
\ \alng L (Q)> P

IVlwkr(q) = ¢

When p = 2, we write H¥(Q) = W*2(Q). Obviously, we have
H(Q) = L*(Q)

e The Sobolev space WXP(Q) is a Banach space, while HX(Q) is a Hilbert
space with the inner product given by

(U, V) = /Q |Z DYU(X)Dv(x)dx, u,ve HX(Q)
al<k
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SOBOLEV SPACES — REAL ORDER |

e It is possible to extend the definition of Sobolev spaces to ant real order
(including negative)

e Definition — Assume that p € [1,0) and let s= k+ o with k > 0 an integer
and o € (0,1). Then we define the Sobolev space

[D%v(x) —Dv(y)
Ix—yljotd/p

WS’p(Q):{veWk’p(QH cLP(Qx Q), Va : | :k}

with the norm

1/p
Dv(x) — D%v(y)|P
= dxd
IVlwse(q) (VW"»F’(Q) +|0(Z=k/QXQ Ix—y|[opd xdy

e When p=2, H3(Q) =WS2(Q) is a Hilbert space with the inner product

_ (D%u(x) — D%u(y))(D%v(x) — D%v(y))
(UV)sa = (u,v)|<,Q+|o(Zk/QXQ X y|Zord dxdy
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SOBOLEV SPACES — REAL ORDER |1

o Definition — Let s> 0. We define W, "(Q) to be the closure of the space
Co(Q) inWSP(Q). When p = 2, we have a Hilbert space H3(Q) :WS’Z(Q)

e Lets>0and p e [1,) and denote its conjugate exponent p’ by the relation
L+ 2 = 1. Then we define WP (Q) to be the dual space of Wg'?(Q). In

particular, H=S(Q) = W—52(Q)

o Example —any | € H1(Q) is a bounded linear functional on H3(Q); the
norm of | s given by (note the connection with the operator norm)

| (v
M = sup Y
verz(@) IVIa (@)
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SOBOLEV SPACES — EMBEDDING THEOREMS |

e LetV and W be two Banach spaces with V CW. We say the space V is
continuously embedded in W and write V — W, if

IViw < c|vv, WeV

IfV — W, the function in V are more smooth than the remaining functions in
W.

e There are several embedding theorem ; below we cite one of them.

Let Q C RY be a non—empty open bounded Lipschitz domain. Then the following
statements are valid:

1 ifk< §, thenW*P(Q) — L9(Q) for any g < p*, where =+ = £ — £,

)
)

for any q < oo,

3. itk> 9, thenWkP(Q) — C1512(Q), where

(| d d d
—|+1——, If — # integer,
[p] P I37,é =

. d .
any positive number < 1, — = integer
\
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SOBOLEV SPACES — EMBEDDING THEOREMS ||

e How to understand embedding theorems ??7?

e Consider the theorem cited above; what it essentially says is the following:
— the larger the product kp, the smoother the functions from the space
WEP(Q),

— there is a critical value d (the dimension of the domain Q) for this
product such that if kp > d, then a WK P(Q) function (and some of its
derivatives) are actually continuous

— when kp < d, aWkP(Q) function belongs to LP" (Q) for an exponent p*
larger than p
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SOBOLEV SPACES — TRACES |

e Sobolev spaces are defined through the LP(Q) spaces. Hence, Sobolev
functions may not be well-defined on the domain boundary 9Q, since it has
zero measure in RY

e Itis possible to define a trace operator v, so that yv represents a generalized
boundary value of v (it coincides with v|3q if vis a function continuous up to
the boundary)

e Theorem — Assume Q is an open, bounded Lipschitz domain in RY and
1 < p < . Then there exists a continuous linear operator
v : WHP(Q) — LP(Q) such that:

— W= Vg ifvEWLP(Q)NC(Q),

— for some constant C > 0, [|W||ra0) < C[IVlwzp(q), ¥V € WLP(Q),

— The mapping y : WP(Q) — LP(Q) is compact
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SOBOLEV SPACES — FOURIER TRANSFORMS |

e When Q =RY, itis possible to construct Sobolev spaces HX(Q) using

Fourier transforms which for v e L1(IRY) are defined as

1 —iX- — 1 IX-
F(V)(y) = 22 /R ) vx)el Y dx, 7 v)(y) = i /R ) v(x)e™Y) dx

Note that by the Parseval’s theorem we have that
—1
[F Vlizway = [|F ~Vl[L2re) = [[VI|L2(Re)

e Theorem — A function v € L2(RY) belongs to HK(RY) iff
(1+]y[©)F v e L2(RY). More over, there exist ¢1, ¢, > 0 such that

Ca ||V ey < [[(1+ |Y\k)TVH|_2(Rd) < C2|IV|| K (ra)

Thus [|(1+[y|*) # V|| 2(re) defines an equivalent norm on H¥(RY)

e Note that by replacing k with an s € R we can conveniently define Sobolev
spaces of non-integer order

e Replacing RY with a periodic domain [0,2119 leads to remarkable
simplifications




