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PART II

Review of Sobolev Spaces
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SOBOLEV SPACES — WEAK DERIVATIVES I

• Given R
d , define a multi–index α as an ordered collection of integers

α = (α1, . . . ,αd), such that its length is given by |α| = ∑d
i=1 αi

• If v is an m–times differentiable function, then for any α with |α| ≤ m the

derivative can be expressed as

Dαv(x) =
∂|α|v(x)

∂xα1
1 · · ·∂xαd

d

• integration by parts formula — given an open domain Ω ⊆ R
d and

v ∈Cm(Ω), φ ∈C∞
0 (Ω) with |α| ≤ m

Z

Ω
v(x)Dαφ(x)dx = (−1)|α|

Z

Ω
Dαv(x)φ(x)dx

• Definition — given v,w ∈ L1(Ω), w is called a weak α–th derivative of v iff
Z

Ω
v(x)Dαφ(x)dx = (−1)|α|

Z

Ω
w(x)φ(x)dx, ∀φ ∈C∞

0 (Ω)
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SOBOLEV SPACES — WEAK DERIVATIVES II

• A weak derivative, if it exists, is defined up to a set of measure zero

• In the previous formula, if v ∈Cm(Ω), then for each α with |α| ≤ m the

classical partial derivative Dαv is also the weak α–th partial derivative of v;

usually the same symbol is used to denote the two kinds of derivative

• Thus, the weak derivative can be regarded as an extension of the classical

derivative to functions which are not differentiable in the classical sense.

• Examples:

– The absolute value function v(x) = |x| is continuous at x = 0, but not

differentiable in the classical sense. Nevertheless, its first–order weak

derivative exists and is given by (c0 ∈ R is arbitrary)

w(x) =















1, x > 0,

−1,x < 0,

c0, x = 0.
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SOBOLEV SPACES — WEAK DERIVATIVES III
• Examples (cont’d):

– Functions with jump discontinuities, e.g.,

v(x) =















−1,−1 < x < 0,

c0, x = 0,

1, 0 < x < 1.

are not weakly differentiable

– More generally, assume that v ∈C[a,b] is piecewise continuously
differentiable, i.e., there exists a partition of the interval
a = x0 < x1 · · · < xn = b such that v ∈C1[xi−1,xi], 1 ≤ i ≤ n. Then the
first–order weak derivative of v is

w(x) =











v′(x), x ∈
n

[

i=1

(xi−1,xi),

arbitrary, x = xi, ,1 ≤ i ≤ n.

Note that the second–order weak derivative does not exist.

• Weak derivative share many properties with classical derivatives, such as

linearity, chain rule, differentiation of products, etc.
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SOBOLEV SPACES — DOMAIN BOUNDARIES I

• Sobolev spaces require some regularity of the boundary ∂Ω of the domain Ω

• Definition — Let Ω be open and bounded in R
d and let V denote a function

space on R
d−1. We say that ∂Ω is of class V is for each point x0 ∈ ∂Ω there

exists an r > 0 and a function g ∈V such that upon transformation of the

coordinate system if necessary, we have

Ω
\

B(x0,r) = {x ∈ B(x0,r)|xd > g(x1, . . . ,xd−1)},

where B(x0,r) denoted the d–dimensional ball centered at x0 with radius r.

In particular, when V consists of:

– Lipschitz continuous functions, we say Ω is a Lipschitz domain,

– Ck functions, we say Ω is a Ck domain,

– Ck,α, (0 < α ≤ 1) functions, we say Ω is a Hölder boundary of class Ck,α

• Most domains arising in physical and engineering applications are Lipschitz

(may have sharp corners, but not cusps).
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SOBOLEV SPACES — INTEGER ORDER I
• Definition — Let k be a non–negative integer, p ∈ [1,∞]. The Sobolev space

W k,p(Ω) is the set of all the functions v such that for each multi–index α with

|α| ≤ k, the α–th weak derivative Dαv exists and Dαv ∈ Lp(Ω). The norm in

the space W k,p(Ω) is defined as

‖v‖W k,p(Ω) =



















(

∑
|α|≤k

‖Dαv‖p
Lp(Ω)

)1/p

, 1 ≤ p < ∞,

max
|α|≤k

‖Dαv‖L∞(Ω), p = ∞

When p = 2, we write Hk(Ω) = W k,2(Ω). Obviously, we have

H0(Ω) = L2(Ω)

• The Sobolev space W k,p(Ω) is a Banach space, while Hk(Ω) is a Hilbert

space with the inner product given by

(u,v)k =

Z

Ω
∑

|α|≤k

Dαu(x)Dαv(x)dx, u,v ∈ Hk(Ω)
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SOBOLEV SPACES — REAL ORDER I

• It is possible to extend the definition of Sobolev spaces to ant real order

(including negative)

• Definition — Assume that p ∈ [1,∞) and let s = k +σ with k ≥ 0 an integer

and σ ∈ (0,1). Then we define the Sobolev space

W s,p(Ω) =

{

v ∈W k,p(Ω) |
|Dαv(x)−Dαv(y)|

‖x−y‖σ+d/p
∈ Lp(Ω×Ω), ∀α : |α| = k

}

with the norm

‖v‖W s,p(Ω) =

(

‖v‖W k,p(Ω) + ∑
|α|=k

Z

Ω×Ω

|Dαv(x)−Dαv(y)|p

‖x−y‖σp+d dxdy

)1/p

• When p = 2, Hs(Ω) = W s,2(Ω) is a Hilbert space with the inner product

(u,v)s,Ω =(u,v)k,Ω + ∑
|α|=k

Z

Ω×Ω

(Dαu(x)−Dαu(y))(Dαv(x)−Dαv(y))

‖x−y‖2σ+d dxdy
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SOBOLEV SPACES — REAL ORDER II

• Definition — Let s ≥ 0. We define W s,p
0 (Ω) to be the closure of the space

C∞
0 (Ω) in W s,p(Ω). When p = 2, we have a Hilbert space Hs

0(Ω) = W s,2
0 (Ω)

• Let s ≥ 0 and p ∈ [1,∞) and denote its conjugate exponent p′ by the relation
1
p + 1

p′ = 1. Then we define W−s,p′(Ω) to be the dual space of W s,p
0 (Ω). In

particular, H−s(Ω) = W−s,2(Ω)

• Example — any l ∈ H−1(Ω) is a bounded linear functional on H1
0 (Ω); the

norm of l s given by (note the connection with the operator norm)

‖l‖H−1(Ω) = sup
v∈H1

0 (Ω)

l(v)
‖v‖H1

0 (Ω)
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SOBOLEV SPACES — EMBEDDING THEOREMS I
• Let V and W be two Banach spaces with V ⊆W . We say the space V is

continuously embedded in W and write V ↪→W , if

‖v‖W ≤ c‖v‖V , ∀v ∈V

If V ↪→W , the function in V are more smooth than the remaining functions in

W .

• There are several embedding theorem ; below we cite one of them.
Let Ω ⊆ R

d be a non–empty open bounded Lipschitz domain. Then the following
statements are valid:

1. if k < d
p , then W k,p(Ω) ↪→ Lq(Ω) for any q ≤ p∗, where 1

p∗ = 1
p −

d
p ,

2. if k = d
p , then W k,p(Ω) ↪→ Lq(Ω) for any q < ∞,

3. if k > d
p , then W k,p(Ω) ↪→Ck−[ d

p ]−1,β(Ω), where

β =















[

d
p

]

+1−
d
p
, if

d
p
6= integer,

any positive number < 1,
d
p

= integer
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SOBOLEV SPACES — EMBEDDING THEOREMS II

• How to understand embedding theorems ???

• Consider the theorem cited above; what it essentially says is the following:

– the larger the product kp, the smoother the functions from the space

W k,p(Ω),

– there is a critical value d (the dimension of the domain Ω) for this

product such that if kp > d, then a W k,p(Ω) function (and some of its

derivatives) are actually continuous

– when kp < d, a W k,p(Ω) function belongs to Lp∗ (Ω) for an exponent p∗

larger than p
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SOBOLEV SPACES — TRACES I

• Sobolev spaces are defined through the Lp(Ω) spaces. Hence, Sobolev

functions may not be well–defined on the domain boundary ∂Ω, since it has

zero measure in R
d

• It is possible to define a trace operator γ, so that γv represents a generalized

boundary value of v (it coincides with v|∂Ω if v is a function continuous up to

the boundary)

• Theorem — Assume Ω is an open, bounded Lipschitz domain in R
d and

1 ≤ p < ∞. Then there exists a continuous linear operator

γ : W 1,p(Ω) → Lp(Ω) such that:

– γv = v|∂Ω if v ∈W 1,p(Ω)
T

C(Ω),

– for some constant C > 0, ‖γv‖Lp(∂Ω) ≤ c‖v‖W 1,p(Ω), ∀v ∈W 1,p(Ω),

– The mapping γ : W 1,p(Ω) → Lp(Ω) is compact
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SOBOLEV SPACES — FOURIER TRANSFORMS I
• When Ω = R

d , it is possible to construct Sobolev spaces Hk(Ω) using

Fourier transforms which for v ∈ L1(Rd) are defined as

F (v)(y) =
1

(2π)d/2

Z

Rd
v(x)e(−ix·y) dx, F −1(v)(y) =

1

(2π)d/2

Z

Rd
v(x)e(ix·y) dx

Note that by the Parseval’s theorem we have that

‖F v‖L2(Rd) = ‖F −1v‖L2(Rd) = ‖v‖L2(Rd)

• Theorem — A function v ∈ L2(Rd) belongs to Hk(Rd) iff

(1+ |y|k)F v ∈ L2(Rd). More over, there exist c1,c2 > 0 such that

c1‖v‖Hk(Rd) ≤ ‖(1+ |y|k)F v‖L2(Rd) ≤ c2‖v‖Hk(Rd)

Thus ‖(1+ |y|k)F v‖L2(Rd) defines an equivalent norm on Hk(Rd)

• Note that by replacing k with an s ∈ R we can conveniently define Sobolev

spaces of non–integer order

• Replacing R
d with a periodic domain [0,2π]d leads to remarkable

simplifications


