PART 11

Review of Sobolev Spaces
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SOBOLEV SPACES — WEAK DERIVATIVES |

Given RY, define a multi-index o as an ordered collection of integers
o =(0a1,...,0q), such that its length is given by |a| = zid:lo(i

If vis an m-times differentiable function, then for any a with |o| < mthe
derivative can be expressed as
0/%v(x)

o —
DV(X) = ——; “axg"

integration by parts formula — given an open domain Q C RY and
veC™(Q), pe C7(Q) with [a] <m

/Qv(x)Da(p(x)dx:El)‘“‘/gD“v(x)(p(x)dx

Definition — given v,w € LY(Q), wis called a weak o—th derivative of v iff

[ oD e ax= (-1 [ wioegax, vee CF(@)
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A weak derivative, if it exists, is defined up to a set of measure zero

In the previous formula, if ve C™(Q), then for each a with |a| < mthe

usually the same symbol is used to denote the two kinds of derivative

Thus, the weak derivative can be regarded as an extension of the classical
derivative to functions which are not differentiable in the classical sense.

Examples:

— The absolute value function v(x) = |x| is continuous at x = 0, but not
differentiable in the classical sense. Nevertheless, its first—order weak
derivative exists and is given by (cg € R is arbitrary)

1, x>0,
W(X) -1x<0,

Co, x=0.

classical partial derivative D%V is also the weak a-th partial derivative of v;
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e Examples (cont’d):
— Functions with jump discontinuities, e.g.,
-1 -1<x<0,
V(X) Co, Xx=0,
1, O<x<1l
are not weakly differentiable

— More generally, assume that v € C[a, b] is piecewise continuously
differentiable, i.e., there exists a partition of the interval
a=Xg < X1--- < Xy =bsuch that ve Cl[x_1,%], 1 <i < n. Then the
first—order weak derivative of v is
n

V(X), xe [Jxi-1.%),
w(x) = i—1

arbitrary, x=x;, ,1<i<n.
Note that the second—order weak derivative does not exist.
e Weak derivative share many properties with classical derivatives, such as
linearity, chain rule, differentiation of products, etc.
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o Definition — Let k be a non—negative integer, p € [1,00]. The Sobolev space
WXP(Q) is the set of all the functions v such that for each multi-index a with
|a| <k, the a—th weak derivative D%V exists and D% € LP(Q). The norm in
the space WK-P(Q) is defined as

e Sobolev spaces require some regularity of the boundary dQ of the domain Q

e Definition — Let Q be open and bounded in R9 and let VV denote a function
space on R9-1, We say that dQ is of class V is for each point xq € Q there
exists an r > 0 and a function g € V such that upon transformation of the D% e 1<p<ow
coordinate system if necessary, we have Vlhwer = & LP(Q) = )

Q[B(xo,r) = {x € B(xo,r)[xd > 9(xL,...,%d-1)}, mi)'((HDGVHL”(Qw p=oo

When p = 2, we write H¥(Q) = WK2(Q). Obviously, we have
HO(Q) =L*(Q)

e The Sobolev space W*P(Q) is a Banach space, while HX(Q) is a Hilbert
space with the inner product given by

where B(Xo, r) denoted the d—dimensional ball centered at xg with radius r.
In particular, when V consists of:

— Lipschitz continuous functions, we say Q is a Lipschitz domain,
— CKfunctions, we say Q is aC* domain,
- Ccka, (0 < a <1) functions, we say Q is a Holder boundary of class cka
o Most domains arising in physical and engineering applications are Lipschitz (U V)i = /Q Du(x)D(x)dx, u,veH Q)
(may have sharp corners, but not cusps). lal<k
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e Itis possible to extend the definition of Sobolev spaces to ant real order
(including negative)
o Definition — Let s> 0. We define W5 P(Q) to be the closure of the space

o Definition — Assume that p € [1,00) and let s= k+ o with k> 0 an integer ”
C&(Q) inWSP(Q). When p = 2, we have a Hilbert space H§(Q) = W*(Q)

and o € (0,1). Then we define the Sobolev space

eLP(QxQ), Va

Lets> 0 and p € [1, %) and denote its conjugate exponent p’ by the relation
W&'p(Q): {VEWk’p(Q) ‘ ‘G| _ k} p [ ) jug p p oy

IDVv(x) — DVv(y)|
[x —y||o+d/p 1 F = 1. Then we define WP (Q) to be the dual space of W;P(Q). In

with the norm partlcular, H™S(Q) =WS2(Q)
|D%v(x Ay(y)] /p Example —any | € H*l(Q) is a bounded linear functional on H&(Q); the
[Vllwse (@) = HVHWKP Z /QXQ X — y||op+d dxdy norm of | s given by (note the connection with the operator norm)
. . i . I(v)
e When p=2, H3(Q) =WS2(Q) is a Hilbert space with the inner product Mu-1q) = sup ——"—

verz(@) IVl (@)
_ (D%u(x) — D%u(y))(D%v(x) — Dv(y))
(UV)sq=(UVka+ q%k/czxg x_y|+a dxdy
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e LetV and W be two Banach spaces with Vv C W. We say the space V is
continuously embedded in W and write V < W, if

[Viw <c|lvllv, YweV
If V — W, the function in V are more smooth than the remaining functions in
W.

e There are several embedding theorem ; below we cite one of them.
Let Q C RY be a non—empty open bounded Lipschitz domain. Then the following
statements are valid:
L ifk< 9, then WkP(Q) — LY(Q) for any q < p*, where - = % —
2. ifk= g, thenWkP(Q) — LI(Q) for any q < o,
3. ifk> 8, thenWkP(Q) — C*151-2P(Q), where

d d d
Rl B R if = £ integer,
M p p” M

- d .
any positive number < 1, 0= integer
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e How to understand embedding theorems ???

e Consider the theorem cited above; what it essentially says is the following:

— the larger the product kp, the smoother the functions from the space
WKP(Q),

— there is a critical value d (the dimension of the domain Q) for this
product such that if kp > d, then a WKP(Q) function (and some of its
derivatives) are actually continuous

— when kp < d, aWkP(Q) function belongs to LP" (Q) for an exponent p*
larger than p
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e Sobolev spaces are defined through the LP(Q) spaces. Hence, Sobolev
functions may not be well-defined on the domain boundary 0Q, since it has
zero measure in RY

It is possible to define a trace operator v, so that yv represents a generalized
boundary value of v (it coincides with v|4q if v is a function continuous up to
the boundary)

Theorem — Assume Q is an open, bounded Lipschitz domain in RY and
1 < p < . Then there exists a continuous linear operator
y: WHP(Q) — LP(Q) such that:

- W=V]yq if ve WEP(Q)NC(Q),

— for some constant C > 0, ||Wl[Lr(a) < C||VIlwir(q), YV E WiP(Q),

— The mapping y : WhP(Q) — LP(Q) is compact
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e When Q = RY, it is possible to construct Sobolev spaces Hk(Q) using
Fourier transforms which for v e LY(RY) are defined as

FV)(y) = WA@ v(x)el YV dx,  F L(v)(y) = W/Rd v(x)eY) dx
Note that by the Parseval’s theorem we have that
17 Vilizrey = |17~ Vlli2gre) = [IVIlL2(ge)
Theorem — A function v € L?(RY) belongs to HK(RY) iff
(L+y[})# v e L2(RY). More over, there exist c1,c, > 0 such that
CalIVllpere) < /(L + Y1) F Vil2gray < CallV] 1k ey
Thus ||(1+ |y[%) # V|| 2(re) defines an equivalent norm on HX(RY)

Note that by replacing k with an s € R we can conveniently define Sobolev
spaces of non-integer order

Replacing RY with a periodic domain [O,er]d leads to remarkable
simplifications




