Weak Formulations

PART 111

Weak Formulation of Elliptic Boundary Value
Problems
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Weak Formulations

A MODEL BOUNDARY VALUE PROBLEM |

Assume that Q is an open bounded set in RY and its boundary I = 0Q is
Lipschitz continuous

Consider an example Boundary Value Problem (the Poisson equation)

{Au f, InQ,

u=0, onl,

Given f € C(Q), a classical solution of the above problem is a function
u e C?(Q)NC(Q) which satisfies the above equation and the boundary
conditions pointwise

Note that existence of such classical solutions for more general problems is
hard to show ....

Introduction of weak solutions allow one to remove some of the high
smoothness requirements
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A MODEL BOUNDARY VALUE PROBLEM ||

e Multiply th equation by a smooth test function v € C35(Q) and integrate
over the domain Q, then use integration by parts

—/Auvdx:/ Du-Dvdx:/ fvdx
Q JQ Q J
*

Note that the boundary term ¢ %vdo =0,sincev=0onT.

e The equation () makes sense for much weaker assumptions:

— CZ(Q) is dense in H}(Q), so as the test function we can take any
veEH3(Q)
— For the RHS it is enough to assume that f € H1(Q) = (H3(Q))’

e Thus, the weak formulation of the boundary value problem becomes

ueHQ), /QDu-Dvdx:/vadx, YW e H3 (Q)
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A MODEL BOUNDARY VALUE PROBLEM |11

e Relation between classical and weak solutions:

— classical solutions are also weak solutions

— the converse is not true, unless extra regularity is added
e SetV =H(Q) and define:

— a bilinear form a(-,-) : V xV — R such that

a(u,v):/ COu-0Ovdx, u,veV
Q

— alinear functional | : V — R such that
|(v) :/ fvdx, veV
Q
e Then the weak formulation of the problem is to find u € V such that

a(u,v)=I(v), WweV
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A MODEL BOUNDARY VALUE PROBLEM IV

Define the following differential operator A associated with the boundary
value problem as

A:HIQ) —HYQ), (Auv)=a(u,v), Yu,veHQ),

where (-,-) denotes the duality pairing between H3(Q) and H~1(Q), i.e.,
I(v) = (I,v) for | e H71(Q) and v € H}(Q)

Then the weak formulation of the boundary value problem can be rewritten
as a linear operator equation in a dual space

Au=1, inH Q)
Thus, the formalism of weak formulation allows one to convert a differential
equation to an equality of functionals

Note that the weak formulation does not explicitly state the boundary
conditions (they are incorporated into the definition of the function spaces)

Weak formulations directly lead to Galerkin—type numerical methods
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LAX—MILGRAM LEMMA |

e Theorem — There exists a one—to—one correspondence between linear
continuous operators A : V — V' and continuous bilinear forms
a .V xV — R given by the formula

(Au,v) =a(u,v), Yu,vevV

Consequently, properties of elliptic boundary value problems defined with A
can be studied using the properties of the bilinear form a

Definition — The operator A (resp. the bilinear form a) is said to be
V—-elliptic iff (Av,v) > al|v[|g, Yv €V (resp. a(v,v) > al|v|[&, Wv € V)

Theorem — Assume that K is a non—empty closed subspace of the Hilbert
spaceV,a : V xV — R is bilinear, symmetric, bounded and V—elliptic,
| cV’. Let

E(v) = %a(v,v) —1I(v), veVv

Then there exists a unique u € K such that E(u) = infyck E(v) which is also
the unique solution of the equation

ueK, a(u,v)=I(v), WekK
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LAX—MILGRAM LEMMA I

e Note that, in practice, the bilinear form a(-,-) may not necessarily be
symmetric; The Lax—Milgram Lemma is essential for proving existence and
unigqueness of certain operator equations

e Lax—Milgram Lemma - Assume V is a Hilbert space, a(-,-) is a bounded,
V —elliptic bilinear formonV and | € V’. Then there is a unique solution of
the problem
ueV, a(uv)=I(v), WeV

e lllustration — consider the case V = R and a simple linear equation with the
corresponding weak formulation
X eR, ax =,

XeR, axy = ly, VwelR

To ensure existence of solutions we need:

— 0<a< o, i.e, the bilinear form a(x,y) = axy must be continuous and
R—elliptic,

— |lI] < oo, i.e., the linear functional I(y) = ly must be bounded
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A MODEL BOUNDARY VALUE PROBLEM V
NON-HOMOGENEOUS DIRICHLET BCs

Consider the problem { —Au="f, inQ,

u=g, onl,

Assume that g € H1/2(F); since (by the Trace Theorem)
y(HY(Q)) = HY/2(I"), we have the existence of a function G € H1(Q) such

that yG =g

Thus, we can set u=w+ G, where w solves the problem with homogeneous
Dirichlet boundary conditions

{AW f+AG, iInQ,

w =20, onl,
The corresponding weak formulation is
w e H3 (Q), / Ow - Ovdx :/ (fv—DOG-Dv)dx, W eH3Q)
Q Q

Existence of a solution follows from the Lax—Milgram Lemma.
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A MODEL BOUNDARY VALUE PROBLEM VI
NON-HOMOGENEOUS NEUMANN BCS
e Consider the Helmholtz equation (the corresponding Poisson equation has
nonunique solutions) { —Au+u="f, inQ,

ou
I =qg, onl,

Note that the classical solution, if exists, u € C2(Q)NCL(Q)

e The weak formulation is

(Dv-Deruv)dx:/Qfvdx+7{gvdo, e HY(Q)
r

ueHY(Q). /

Q

e AssumingV =H1(Q) and
a(u,v):/(Dv-Dv+uv)dx,

Q
|(v) :/ fvdx+%gvdo
Q r

we can apply the Lax—Milgram lemma which guarantees existence of the
weak solutions.
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A MODEL BOUNDARY VALUE PROBLEM VI
GENERAL ELLIPTIC PROBLEMS

e Consider a general elliptic boundary value problem
(—0j(Ajjoiu) +Bjoju+Cu=f, inQ,

u=0, onlp,

Rij(diu)nj =g, only,

\

where the boundary T =TTp Ny WithTp Iy =0

e The following assumptions are made regarding the data:
- Aij,Bj,C e L¥(Q)
- 30>0: Ajj&&; > 0E]%, VEcRY ae. inQ
—- fel?(Q),gel?(n)

48



Weak Formulations 49

A MODEL BOUNDARY VALUE PROBLEM VIII
GENERAL ELLIPTIC PROBLEMS

e The weak formulation is obtained by settingV = HrlD (Q) and

a(u,v) = /Q(Ai jojudjv+ Bj(0ju)v+Cuv)dx,

|(v) :/ fvdx+ ¢ gvdo
Q N

e Existence of weak solutions again follows from the application of the
Lax—Milgram Lemma
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THE GALERKIN METHOD |

The Galerkin Method provides a natural framework for finding
finite—dimensional approximation of weak solutions of elliptic boundary
value problems

Assume that a(-,-) is

— bounded (i.e., |a(u,v) < M|u|lv||v]v, Yu,v € V), and

— V-elliptic (i.e., a(v,v) > col|v[|&, YV € V)

Given an N—dimensional subspace Vy C V, consider the problem
UN €VN, a(un,V)=1(v), WYWweVy

With the above assumptions, Lax—Milgram Lemma guarantees existence of
an unigue solution uy
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THE GALERKIN METHOD Il

How to find uy in practice?

Consider a set of basis functions {@} ; such that Vi = span{@} ; and set

N
UN= D &j®;
=1

In terms of v take the basis functions ¢, i=1,...,N

The weak formulation becomes equivalent to a linear algebraic system
A =D,

where:
— & = (&;) € RN is the vector of unknown coefficients,
- A= (a(@,q))) e RN*Nisthe stiffness matrix
— b= (lI(¢)) e RN is the load vector

Approximate solutions with increasing accuracy can be calculated by
considering a sequence of nested spaces Vy, CVn, € --- CV
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THE GALERKIN METHOD Il

The Ritz—Galerkin Method can be used when the bilinear form a(,-) is
symmetric, i.e., a(u,v) = a(v,u), Yu,v € V

Evidently, the original problem is equivalent to the minimization problem

uev, E(u)=infE(v),

where the energy functional isE(v) = %a(v, V) —I(v).

Note that by considering the directional (Gateaux) differential of E(v) we

obtain E'(u;u) =a(u,u’)—I(u)=0

as the necessary condition for optimality

In the finite—dimensional setting Vi CV we have
Un €VN, E(un) = inf E(v),

vEWN

which can be solved using standard minimization techniques.

When a(-,-) is symmetric, the Galerkin and Ritz—Galerkin methods are
equivalent.
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THE GALERKIN METHOD IV

e Asregards error estimation in the Galerkin method, the key result is Ceéa’s
Inequality

e Lemma— AssumeV is a Hilbert space, VN CV is a subspace, a(-,-) is a
bounded, V—elliptic bilinear onV, and | €V'. Let u €V be the solution of
the problem

ueV, a(u,v)=I(v), WweV
and uy € VN be the Galerkin approximation defined in
UN €VN, a(un,Vv)=1(v), WWeVy

Then there exists a constant C such that

u—u <C inf [lu—v
Ju—unflv <C inf flu—v]y
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THE GALERKIN METHOD V

e Proof of Céa’s Lemma —
— Subtracting the equation for uy from that for u and taking v € Vi we get
a(u—un,v) =0, Y e Vy
— Using this relation together with V—ellipticity and boundedness of a(-, -)
we get

Collu—un|l& < a(u—un,u—un)

=a(u—un,u—v) < Mlu—un|v|ju—vlv
Thus |[u—un||v <C|lu—v||y for any arbitrary v e Vy

e Therefore, to estimate the error of the Galerkin solution, it is sufficient to
estimate the approximation error infyey,, ||u—V||v

e When a(-,-) is symmetric, it defines an inner product on V whose associated
norm ||v||a = y/a(v,Vv) is equivalent to ||v||v. With respect to this new inner
product the error of the Galerkin solution u — uy is orthogonal to Vy
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THE GALERKIN METHOD VI

e Consequences of Céa’s Lemma for convergence analysis

e Proposition — Make the assumptions stated in Céa’s Lemma. Assume
additionally that Vi, C Vn, C --- is a sequence of subspaces of V with the

property
W =V
i>1

The the Galerkin method converges, i.e.,

lu—un|v — 0, as 1— o

e Proof — By the above (density) assumption we can find a sequence u;j € Vy;,
| > 1 such that

Ju—uilly — 0, as i—w

Applying Céa’s inequality we have

lu—unflv < Cllu—uillv
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THE PETROV-GALERKIN METHOD |

Sometimes the solution u and the test function v may belong to different
Hilbert spaces, respectively, U and V

Givena : U xV — Rand | €V’ the boundary value problem may have the
following weak form

ueU a(uv)=I(v), WweV

Existence of solutions of this problem is addressed by the generalized
Lax—Milgram Lemma

Such problem can be solved approximately using the Petrov—Galerkin
method given by

un €Uy a(un,vn) =1(vn), YVN € VN,

where Uy CU, VN CV, and dim(Uy) = dim(VyN) = N.

The Petrov—Galerkin method can be proven to be convergent, if certain
compatibility conditions for the spaces Uy and Vy are satisfied (the
BabusSla—Brezzi conditions)
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