

PART III

Weak Formulation of Elliptic Boundary Value Problems

A MODEL BOUNDARY VALUE PROBLEM I

- Assume that Ω is an open bounded set in \mathbb{R}^d and its boundary $\Gamma = \partial\Omega$ is Lipschitz continuous
- Consider an example [Boundary Value Problem](#) (the Poisson equation)

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma, \end{cases}$$

- Given $f \in C(\Omega)$, a [classical solution](#) of the above problem is a function $u \in C^2(\Omega) \cap C(\overline{\Omega})$ which satisfies the above equation and the boundary conditions [pointwise](#)
- Note that existence of such classical solutions for more general problems is hard to show
- Introduction of [weak solutions](#) allow one to remove some of the high smoothness requirements

A MODEL BOUNDARY VALUE PROBLEM II

- Multiply the equation by a **smooth test function** $v \in C_0^\infty(\Omega)$ and integrate over the domain Ω , then use integration by parts

$$-\int_{\Omega} \Delta u v dx = \underbrace{\int_{\Omega} \nabla u \cdot \nabla v dx}_{\star} = \int_{\Omega} f v dx$$

Note that the boundary term $\oint_{\Gamma} \frac{\partial u}{\partial n} v d\sigma = 0$, since $v \equiv 0$ on Γ .

- The equation (\star) makes sense for much weaker assumptions:
 - $C_0^\infty(\Omega)$ is dense in $H_0^1(\Omega)$, so as the test function we can take any $v \in H_0^1(\Omega)$
 - For the RHS it is enough to assume that $f \in H^{-1}(\Omega) = (H_0^1(\Omega))'$
- Thus, the **weak formulation** of the boundary value problem becomes

$$u \in H_0^1(\Omega), \quad \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx, \quad \forall v \in H_0^1(\Omega)$$

A MODEL BOUNDARY VALUE PROBLEM III

- Relation between classical and weak solutions:
 - classical solutions are also weak solutions
 - the converse is not true, unless extra regularity is added
- Set $V = H_0^1(\Omega)$ and define:
 - a **bilinear form** $a(\cdot, \cdot) : V \times V \rightarrow \mathbb{R}$ such that

$$a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx, \quad u, v \in V$$

- a linear functional $l : V \rightarrow \mathbb{R}$ such that

$$l(v) = \int_{\Omega} f v \, dx, \quad v \in V$$

- Then the weak formulation of the problem is to find $u \in V$ such that

$$a(u, v) = l(v), \quad \forall v \in V$$

A MODEL BOUNDARY VALUE PROBLEM IV

- Define the following differential operator A associated with the boundary value problem as

$$A : H_0^1(\Omega) \rightarrow H^{-1}(\Omega), \quad \langle Au, v \rangle = a(u, v), \quad \forall u, v \in H_0^1(\Omega),$$

where $\langle \cdot, \cdot \rangle$ denotes the **duality pairing** between $H_0^1(\Omega)$ and $H^{-1}(\Omega)$, i.e., $l(v) = \langle l, v \rangle$ for $l \in H^{-1}(\Omega)$ and $v \in H_0^1(\Omega)$

- Then the weak formulation of the boundary value problem can be rewritten as a linear operator equation in a **dual space**

$$Au = l, \quad \text{in } H^{-1}(\Omega)$$

- Thus, the formalism of weak formulation allows one to convert a differential equation to an equality of functionals
- Note that the weak formulation does not explicitly state the boundary conditions (they are incorporated into the definition of the function spaces)
- Weak formulations directly lead to **Galerkin-type** numerical methods

LAX–MILGRAM LEMMA I

- Theorem — There exists a one-to-one correspondence between linear continuous operators $A : V \rightarrow V'$ and continuous bilinear forms $a : V \times V \rightarrow \mathbb{R}$ given by the formula

$$\langle Au, v \rangle = a(u, v), \quad \forall u, v \in V$$

Consequently, properties of **elliptic boundary value problems** defined with A can be studied using the properties of the bilinear form a

- Definition — The operator A (resp. the bilinear form a) is said to be **V –elliptic** iff $\langle Av, v \rangle \geq \alpha \|v\|_V^2, \forall v \in V$ (resp. $a(v, v) \geq \alpha \|v\|_V^2, \forall v \in V$)
- Theorem — Assume that K is a non–empty closed subspace of the Hilbert space V , $a : V \times V \rightarrow \mathbb{R}$ is bilinear, **symmetric**, bounded and V –elliptic, $l \in V'$. Let

$$E(v) = \frac{1}{2}a(v, v) - l(v), \quad v \in V$$

Then there exists a unique $u \in K$ such that $E(u) = \inf_{v \in K} E(v)$ which is also the unique solution of the equation

$$u \in K, \quad a(u, v) = l(v), \quad \forall v \in K$$

LAX–MILGRAM LEMMA II

- Note that, in practice, the bilinear form $a(\cdot, \cdot)$ may not necessarily be symmetric; The Lax–Milgram Lemma is essential for proving existence and uniqueness of certain operator equations
- Lax–Milgram Lemma - Assume V is a Hilbert space, $a(\cdot, \cdot)$ is a bounded, V –elliptic bilinear form on V and $l \in V'$. Then there is a unique solution of the problem

$$u \in V, \quad a(u, v) = l(v), \quad \forall v \in V$$

- Illustration — consider the case $V = \mathbb{R}$ and a simple linear equation with the corresponding weak formulation

$$\begin{array}{ll} x \in \mathbb{R}, & ax = l, \\ x \in \mathbb{R}, & axy = ly, \quad \forall y \in \mathbb{R} \end{array}$$

To ensure existence of solutions we need:

- $0 < a < \infty$, i.e., the bilinear form $a(x, y) = axy$ must be continuous and \mathbb{R} –elliptic,
- $|l| < \infty$, i.e., the linear functional $l(y) = ly$ must be bounded

A MODEL BOUNDARY VALUE PROBLEM V NON-HOMOGENEOUS DIRICHLET BCs

- Consider the problem

$$\begin{cases} -\Delta u = f, & \text{in } \Omega, \\ u = g, & \text{on } \Gamma, \end{cases}$$
- Assume that $g \in H^{1/2}(\Gamma)$; since (by the [Trace Theorem](#)) $\gamma(H^1(\Omega)) = H^{1/2}(\Gamma)$, we have the existence of a function $G \in H^1(\Omega)$ such that $\gamma G = g$
- Thus, we can set $\textcolor{red}{u = w + G}$, where w solves the problem with homogeneous Dirichlet boundary conditions

$$\begin{cases} -\Delta w = f + \Delta G, & \text{in } \Omega, \\ w = 0, & \text{on } \Gamma, \end{cases}$$

- The corresponding weak formulation is

$$w \in H_0^1(\Omega), \quad \int_{\Omega} \nabla w \cdot \nabla v \, dx = \int_{\Omega} (f v - \nabla G \cdot \nabla v) \, dx, \quad \forall v \in H_0^1(\Omega)$$

Existence of a solution follows from the Lax–Milgram Lemma.

A MODEL BOUNDARY VALUE PROBLEM VI NON-HOMOGENEOUS NEUMANN BCs

- Consider the Helmholtz equation (the corresponding Poisson equation has nonunique solutions)

$$\begin{cases} -\Delta u + u = f, & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = g, & \text{on } \Gamma, \end{cases}$$

Note that the classical solution, if exists, $u \in C^2(\Omega) \cap C^1(\bar{\Omega})$

- The weak formulation is

$$u \in H^1(\Omega), \quad \int_{\Omega} (\nabla v \cdot \nabla v + uv) dx = \int_{\Omega} fv dx + \oint_{\Gamma} gv d\sigma, \quad \forall v \in H^1(\Omega)$$

- Assuming $V = H^1(\Omega)$ and

$$a(u, v) = \int_{\Omega} (\nabla v \cdot \nabla v + uv) dx,$$

$$l(v) = \int_{\Omega} fv dx + \oint_{\Gamma} gv d\sigma$$

we can apply the Lax–Milgram lemma which guarantees existence of the weak solutions.

A MODEL BOUNDARY VALUE PROBLEM VII GENERAL ELLIPTIC PROBLEMS

- Consider a general elliptic boundary value problem

$$\begin{cases} -\partial_j(A_{ij}\partial_i u) + B_i\partial_i u + Cu = f, & \text{in } \Omega, \\ u = 0, & \text{on } \Gamma_D, \\ R_{ij}(\partial_i u)n_j = g, & \text{on } \Gamma_N, \end{cases}$$

where the boundary $\Gamma = \bar{\Gamma}_D \cup \bar{\Gamma}_N$ with $\Gamma_D \cap \Gamma_N = \emptyset$

- The following assumptions are made regarding the data:
 - $A_{ij}, B_j, C \in L^\infty(\Omega)$
 - $\exists \theta > 0 : A_{ij}\xi_i\xi_j \geq \theta|\xi|^2, \forall \xi \in \mathbb{R}^d$, a.e. in Ω
 - $f \in L^2(\Omega), g \in L^2(\Gamma_N)$

A MODEL BOUNDARY VALUE PROBLEM VIII GENERAL ELLIPTIC PROBLEMS

- The weak formulation is obtained by setting $V = H_{\Gamma_D}^1(\Omega)$ and

$$a(u, v) = \int_{\Omega} (A_{ij} \partial_i u \partial_j v + B_i (\partial_i u) v + C u v) dx,$$

$$l(v) = \int_{\Omega} f v dx + \oint_{\Gamma_N} g v d\sigma$$

- Existence of weak solutions again follows from the application of the Lax–Milgram Lemma

THE GALERKIN METHOD I

- The Galerkin Method provides a natural framework for finding finite-dimensional approximation of weak solutions of elliptic boundary value problems
- Assume that $a(\cdot, \cdot)$ is
 - bounded (i.e., $|a(u, v)| \leq M\|u\|_V\|v\|_V$, $\forall u, v \in V$), and
 - V -elliptic (i.e., $a(v, v) \geq c_0\|v\|_V^2$, $\forall v \in V$)
- Given an N -dimensional subspace $V_N \subseteq V$, consider the problem

$$u_N \in V_N, \quad a(u_N, v) = l(v), \quad \forall v \in V_N$$

- With the above assumptions, Lax–Milgram Lemma guarantees existence of an unique solution u_N

THE GALERKIN METHOD II

- How to find u_N in practice?
- Consider a set of basis functions $\{\phi\}_{i=1}^N$ such that $V_N = \text{span}\{\phi\}_{i=1}^N$ and set

$$u_N = \sum_{j=1}^N \xi_j \phi_j$$

In terms of v take the basis functions $\phi_i, i = 1, \dots, N$

- The weak formulation becomes equivalent to a linear algebraic system

$$A\xi = \mathbf{b},$$

where:

- $\xi = (\xi_j) \in \mathbb{R}^N$ is the vector of unknown coefficients,
- $A = (a(\phi_i, \phi_j)) \in \mathbb{R}^{N \times N}$ is the **stiffness matrix**
- $\mathbf{b} = (l(\phi_i)) \in \mathbb{R}^N$ is the **load vector**
- Approximate solutions with increasing accuracy can be calculated by considering a sequence of nested spaces $V_{N_1} \subseteq V_{N_2} \subseteq \dots \subseteq V$

THE GALERKIN METHOD III

- The **Ritz–Galerkin Method** can be used when the bilinear form $a(\cdot, \cdot)$ is symmetric, i.e., $a(u, v) = a(v, u), \forall u, v \in V$
- Evidently, the original problem is equivalent to the minimization problem

$$u \in V, \quad E(u) = \inf_{v \in V} E(v),$$

where the **energy functional** is $E(v) = \frac{1}{2}a(v, v) - l(v)$.

- Note that by considering the directional (Gâteaux) differential of $E(v)$ we obtain

$$E'(u; u') = a(u, u') - l(u') = 0$$

as the necessary condition for optimality

- In the finite-dimensional setting $V_N \subseteq V$ we have

$$u_N \in V_N, \quad E(u_N) = \inf_{v \in V_N} E(v),$$

which can be solved using standard minimization techniques.

- When $a(\cdot, \cdot)$ is symmetric, the Galerkin and Ritz–Galerkin methods are equivalent.

THE GALERKIN METHOD IV

- As regards [error estimation](#) in the Galerkin method, the key result is [Céa's inequality](#)
- Lemma — Assume V is a Hilbert space, $V_N \subseteq V$ is a subspace, $a(\cdot, \cdot)$ is a bounded, V -elliptic bilinear on V , and $l \in V'$. Let $u \in V$ be the solution of the problem

$$u \in V, \quad a(u, v) = l(v), \quad \forall v \in V$$

and $u_N \in V_N$ be the Galerkin approximation defined in

$$u_N \in V_N, \quad a(u_N, v) = l(v), \quad \forall v \in V_N$$

Then there exists a constant C such that

$$\|u - u_N\|_V \leq C \inf_{v \in V_N} \|u - v\|_V$$

THE GALERKIN METHOD V

- *Proof of Céa's Lemma —*
 - Subtracting the equation for u_N from that for u and taking $v \in V_N$ we get

$$a(u - u_N, v) = 0, \forall v \in V_N$$
 - Using this relation together with V -ellipticity and boundedness of $a(\cdot, \cdot)$ we get

$$\begin{aligned}
 C_0 \|u - u_N\|_V^2 &\leq a(u - u_N, u - u_N) \\
 &= a(u - u_N, u - v) \leq M \|u - u_N\|_V \|u - v\|_V
 \end{aligned}$$

Thus $\|u - u_N\|_V \leq C \|u - v\|_V$ for any arbitrary $v \in V_N$

■

- Therefore, to estimate the error of the Galerkin solution, it is sufficient to estimate the approximation error $\inf_{v \in V_N} \|u - v\|_V$
- When $a(\cdot, \cdot)$ is symmetric, it defines an inner product on V whose associated norm $\|v\|_a = \sqrt{a(v, v)}$ is equivalent to $\|v\|_V$. With respect to this new inner product the error of the Galerkin solution $u - u_N$ is orthogonal to V_N

THE GALERKIN METHOD VI

- Consequences of Céa's Lemma for convergence analysis
- Proposition — Make the assumptions stated in Céa's Lemma. Assume additionally that $V_{N_1} \subseteq V_{N_2} \subseteq \dots$ is a sequence of subspaces of V with the property

$$\overline{\bigcup_{i \geq 1} V_{N_i}} = V$$

The the Galerkin method converges, i.e.,

$$\|u - u_{N_i}\|_V \longrightarrow 0, \quad \text{as } i \rightarrow \infty$$

- *Proof* — By the above (density) assumption we can find a sequence $u_i \in V_{N_i}$, $i \geq 1$ such that

$$\|u - u_i\|_V \longrightarrow 0, \quad \text{as } i \rightarrow \infty$$

Applying Céa's inequality we have

$$\|u - u_{N_i}\|_V \leq C \|u - u_i\|_V$$

■

THE PETROV–GALERKIN METHOD I

- Sometimes the solution u and the test function v may belong to different Hilbert spaces, respectively, U and V
- Given $a : U \times V \rightarrow \mathbb{R}$ and $l \in V'$, the boundary value problem may have the following weak form

$$u \in U \quad a(u, v) = l(v), \quad \forall v \in V$$

Existence of solutions of this problem is addressed by the [generalized Lax–Milgram Lemma](#)

- Such problem can be solved approximately using the [Petrov–Galerkin](#) method given by

$$u_N \in U_N \quad a(u_N, v_N) = l(v_N), \quad \forall v_N \in V_N,$$

where $U_N \subseteq U$, $V_N \subseteq V$, and $\dim(U_N) = \dim(V_N) = N$.

- The Petrov–Galerkin method can be proven to be convergent, if certain compatibility conditions for the spaces U_N and V_N are satisfied (the Babuška–Brezzi conditions)