57

Approximation Theory

PART III

Review of (Abstract) Approximation Theory

Although this may seem a paradox, all exact science is dominated by the idea of approximation. — Bertrand Russell (1872–1970)

INNER PRODUCTS, UNITARY SPACES, HILBERT SPACES

- Consider a real or complex linear space V; A SCALAR PRODUCT is real or complex number (*x*, *y*) associated with the elements *x*, *y* ∈ V with the following properties:
 - (x,x) is real, $(x,x) \ge 0$, (x,x) = 0 only if x = 0,
 - $(x, y) = \overline{(y, x)},$
 - $(\alpha_1 x_1 + \alpha_2 x_2, y) = \alpha_1(x_1, y) + \alpha_2(x_2, y)$
- A normed space V is said to be UNITARY if its norm and scalar product are connected via the following relation: $||x|| = (x,x)^{1/2}$
- A complete unitary space **H** is called a **HILBERT SPACE**

Approximation Theory

59

ORTHOGONALITY

- Two elements x and y of a Hilbert space V are said to be mutually ORTHOGONAL $(x \perp y)$ if (x, y) = 0. A countable set of elements $x_1, x_2, \dots, x_k, \dots$ is said to be ORTHONORMAL (or to form AN ORTHONORMAL SYSTEMS) if $(x_i, x_j) = \delta_{ij}$
- The following properties hold:
 - $-x \perp 0$ for all $x \in \mathbf{V}$
 - $x \perp x$ only if x = 0
 - if $x \perp \mathbf{A}$, i.e., $x \perp y$ for all $y \in \mathbf{A} \subseteq \mathbf{V}$, then *x* is also orthogonal to the linear hull $\mathcal{L}(\mathbf{A})$
 - if $x \perp y_n$ (n = 1, 2, ...) and $y_n \rightarrow y$, then $x \perp y$
 - if **A** is dense in **V** and $x \perp \mathbf{A}$, then x = 0
- SCHMIDT ORTHOGONALIZATION Let **A** be a set of countably many linearly independent elements $x_1, x_2, ..., x_k, ...$ of a Hilbert space **H**. Then there is an orthonormal system $\mathbf{F} = \{e_i \in \mathbf{V} : (e_i, e_j) = \delta_{ij}\}$, such that the linear hulls of $\mathbf{A}_k = \{x_j : j = 1, ..., k\}$ and $\mathbf{F}_k = \{e_j : j = 1, ..., k\}$ are the same for all *k*.

Approximation Theory

APPROXIMATION IN HILBERT SPACES (I)

• Let $\{e_1, e_2, ...\}$ be an orthonormal system in a Hilbert space **H** and let \mathbf{H}_k be the linear hull of $\{e_1, ..., e_k\}$. Then for every $x \in \mathbf{H}$ the element $a = \sum_{j=1}^k (x, e_j) e_j \in \mathbf{H}_k$ has the property that $||x - a|| \le ||x - y||$ for all $y \in \mathbf{H}_k$. The numbers (x, e_j) are called THE FOURIER COEFFICIENTS relative to the orthonormal system $\{e_1, e_2, ...\}$. Furthermore, from $||x - a||^2 \ge 0$ follows the BESSEL INEQUALITY :

$$\sum_{j=1}^{k} |(x, e_j)|^2 \le (x, x)$$

• If A is a given set in a Hilbert space H, then

$$\mathbf{A}^{\perp} = \{ x : (x, a) = 0 \text{ for all } a \in \mathbf{A} \}$$

is a closed linear subspace of \mathbf{H} . It is, therefore, itself a Hilbert space and is called THE ORTHOGONAL COMPLEMENT OF \mathbf{A}

60

61

APPROXIMATION IN HILBERT SPACES (II)

If H₁ is a closed linear subspace of a Hilbert space H and H₂ is its orthogonal complement, then every x ∈ H can be uniquely represented in the form

$$x = x_1 + x_2, \ (x_1 \in \mathbf{H}_1, x_2 \in \mathbf{H}_2)$$

One writes $\mathbf{H} = \mathbf{H}_1 \oplus \mathbf{H}_2$ and calls \mathbf{H} an orthogonal sum of \mathbf{H}_1 and \mathbf{H}_2 . Since

$$\|x - x_1\| = \rho(x, \mathbf{H}_1) = \inf_{\substack{y_1 \in \mathbf{H}_1}} \{\|x - y_1\|\},\$$

$$\|x - x_2\| = \rho(x, \mathbf{H}_2) = \inf_{\substack{y_2 \in \mathbf{H}_2}} \{\|x - y_2\|\},\$$

one calls x_1 and x_2 the ORTHOGONAL PROJECTIONS of x on \mathbf{H}_1 and \mathbf{H}_2 , respectively.

Approximation Theory

63

APPROXIMATION IN HILBERT SPACES (IV)

• Statement of a GENERAL APPROXIMATION PROBLEM IN A HILBERT SPACE **H** — consider a fixed element $f \in \mathbf{H}$ and $\mathbf{G_n} \subseteq \mathbf{H}$ which is a finite–dimensional subspace of **H** (with the same norm). Want to find an element $\hat{g} \in \mathbf{G_n}$ such that

$$D(f, \mathbf{G_n}, \|\cdot\|) \triangleq \inf_{\mathbf{g} \in \mathbf{G_n}} \{\|\mathbf{f} - \mathbf{g}\|\} = \|\mathbf{f} - \mathbf{\hat{g}}\|$$

The element \hat{g} is called THE BEST APPROXIMATION and the number $D(f, \mathbf{G_n}, \|\cdot\|)$ is called THE DEFECT.

- Issues:
 - Does the best approximation \hat{g} exist?
 - Can \hat{g} be uniquely determined?
 - How can \hat{g} be computed?

APPROXIMATION IN HILBERT SPACES (III)

- Let $\{e_1, e_2, ...\}$ be a countable orthonormal system in a Hilbert space **H**. By Bessel inequality, the series $\sum_{j=1}^{\infty} (x, e_j) e_j = \lim_{n \to \infty} \sum_{j=1}^{n} (x, e_j) e_j$ defines an element of **H** for every $x \in \mathbf{H}$. This is called THE FOURIER SERIES OF x
- The partial sum $s_n = \sum_{j=1}^n (x, e_j) e_j$ is the orthogonal projection of x on the subspace $\mathbf{H}_n = \mathcal{L}(\{e_1, \dots, e_n\})$. One has $||s_n||^2 = \sum_{j=1}^n |(x, e_j)|^2$
- If the system $\{e_1, \ldots, e_k, \ldots\}$ is complete in **H**, i.e., $\overline{\mathcal{L}(\{e_1, \ldots, e_k, \ldots\})} = \mathbf{H}$, then the Fourier series for any $x \in \mathbf{H}$ converges to x
- An orthonormal system is said to be **CLOSED** if THE PARCEVAL EQUATION

$$\sum_{j=1}^{\infty} |(x, e_j)|^2 = ||x||^2$$

holds for every $x \in \mathbf{H}$. An orthonormal system is closed IFF it is complete.

• An orthonormal system in a separable Hilbert space is at most countable

Approximation Theory

Approximation Theory

APPROXIMATION IN HILBERT SPACES (V)

The approximation problem in a Hilbert space **H** has a unique solution ĝ for which (ĝ − f, h) = 0 holds for all h ∈ **G**_n. If {e₁,...,e_n} is a basis of **G**_n, then

with

$$\sum_{j=1}^{n} c_{j}^{(n)}(e_{j}, e_{k}) = (f, e_{k}), \quad j = 1, \dots, n$$

 $\hat{g} = \sum_{i=1}^{n} c_j^{(n)} e_j$

and

$$||f - \hat{g}||^2 = (f - \hat{g}, f - \hat{g}) = ||\hat{f}|| - \sum_{j=1}^n c_j^{(n)}(e_j, f)$$

- Thus, the Fourier coefficients c_j⁽ⁿ⁾ j = 1,...,n can be calculated by solving an algebraic system (★) with the Hermitian, positive–definite matrix A_{jk} = (e_j, e_k) (the so called GRAM MATRIX).
- If the basis $\{e_1, \ldots, e_n\}$ is orthogonal, the system becomes decoupled and the Fourier coefficients can be calculated simply as $c_k^{(n)} = (f, e_k)$

64

Approximation in Hilbert spaces (VI) Rates of Convergence

- Assume that c_j , j = 1, 2, ... are the Fourier coefficients related to an approximation of some function $f = \sum_{j=1}^{n} c_j e_j$
- The RATE OF CONVERGENCE of this approximation is:
 - **ALGEBRAIC** with order *k* if for j >> 1

 $\lim_{j \to \infty} |c_j| j^k < \infty, \quad \text{or, equivalently, } \ |c_j| \sim \mathcal{O}[j^{-k}]$

- **EXPONENTIAL OR SPECTRAL** with index *r* if for ANY j > 0

$$\lim_{j\to\infty}|c_j|j^k<\infty, \quad \text{or, equivalently, } \ |c_j|\sim \mathcal{O}\left[\exp(-qj^r)\right], \ r,q\in\mathbb{R}^+$$

spectral convergence can be:

- * SUBGEOMETRIC when r < 1,
- * **GEOMETRIC** when r = 1, and
- * **SUPERGEOMETRIC** otherwise