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INTRODUCTION

e Whatis NUMERICAL ANALYSIS?

— Development of COMPUTATIONAL ALGORITHMS for solutions of
problems in algebra and analysis

— Use of methods of MATHEMATICAL ANALYSIS to determine a priori
properties of these algorithms such as:
*x ACCURACY,
* STABILITY,
* CONVERGENCE

— Application of these algorithms to solve actual problems arising in
practice
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PART |

Finite Differences
A Review
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DIFFERENTIATION VIA FINITE DIFFERENCES
BAasics? (1)

e ASSUMPTIONS:

— f . Q — R s asmooth function, i.e. is continuously differentiable
sufficiently many times,

— the domain Q = [a,b] is discretized with a uniform grid
{X1 =a,...,Xn = b}, such that Xj ;1 — Xj = hj = h (extensions to
nonuniform grids are straightforward)

e PROBLEM — given the nodal values of the function f, i.e., f j = f(xj),
j =1,...,N approximate the nodal values of the function derivative
(xj) = f'(xj), j=1,...,N

4Details can be found in any standard textbook on elementary numerical analysis, e.g.,
K. Atkinson and W. Han, “Elementary Numerical Analysis”, Wiley, (2004).




MATH745 — Fall 2005

DIFFERENTIATION VIA FINITE DIFFERENCES
BAasics (1)

e The simplest approach — Derivation of finite difference formulae via
TAYLOR—SERIES EXPANSIONS

(Xj+1—Xj)2
2!

fj//_|_('

fioa = fj+ (Xjr1 =) fj +

2 3
:f,-+hfj’+h—fj”+h—

n
St

e Rearrange the expansion

fiia—f h fiia—
Y s S L Y AN b S
f —L_ S+ —L+o(h),

where O(h®) denotes the contribution from all terms with powers of h
greater or equal a (here a = 1).

e Neglecting O(h), we obtain a FIRST ORDER FORWARD—DIFFERENCE

FORMULA :
of \ _ fjv1— 1T
&x/);  h




MATH745 — Fall 2005

DIFFERENTIATION VIA FINITE DIFFERENCES
BAasics (I11)

Backward difference formula is obtained by expanding f;_1 about x; and
proceeding as before:

fi —fi_ h of fi —fi_
r_ =1 ey oYy 1 -1
fi x 2f,+... — (6)()]_ -

Neglected term with the lowest power of h is the LEADING—ORDER
APPROXIMATION ERROR, i.e., Err = | f/(xj) — (%)_ ‘ ~ Ch¢
j

The exponent a of h in the leading—order error represents the ORDER OF
ACCURACY OF THE METHOD — it tells how quickly the approximation
error vanishes when the resolution is refined

The actual value of the approximation error depends on the constant C
characterizing the function f

In the examples above Err = —g fj”, hence the methods are FIRST-ORDER
ACCURATE
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DIFFERENTIATION VIA FINITE DIFFERENCES
HIGHER—ORDER FORMULA (I)

e Consider two expansions: 5 3

h h
fi,1=fj+hfj+ 5 fj”+€fj’”+...

h? hs
fioo=fi—hfi+ =1 —=f"+...

Subtracting the second from the first:

h3
fj+1 — fj_l = thj/ + — fjm —+...

3

Central Difference Formula

fioa—fi1 h? of fir1—fj_
p_ il | A 7/ oy A+t -1
fi x 3 fi'’+... = (5X>j oh

. . 2 .
The leading—order error is % fj’”, thus the method is SECOND—ORDER
ACCURATE

Manipulating four different Taylor series expansions one can obtain a

fourth—order central difference formula :
<5f) ~ —f2+8fj 1 —8fj1+fj2 h?

ofy _ LT
5 ) 12h ) =351
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DIFFERENTIATION VIA FINITE DIFFERENCES
APPROXIMATION OF THE SECOND DERIVATIVE

e Consider two expansions: , .

h h
fiig= f,—+hfj’+?fj”+€fj’”+...
h? h3

e Adding the two expansions

4

h* .
fir1+ fjo1=2f +h2f/ + AR

e Central difference formula for the second derivative:

f]+1_2fj+fj—1_h_2fjv_|_ N <52f) B fj+1—2fj—|-fj_1

h2 12 ' 2 P h2

I/
fj =

. . 2 i .
e The leading—order error is % fJ!V, thus the method is SECOND—ORDER
ACCURATE
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN ALTERNATIVE APPROACH (1)

e An alternative derivation of a finite—difference scheme:

— Find an N—th order accurate interpolating function p(x) which
interpolates the function f(x) at the nodes xj, j =1,...,N, i.e., such that
p(xj) = f(xj), j=1,...,N

— Differentiate the interpolating function p(x) and evaluate at the nodes to
obtain an approximation of the derivative p’'(x;) ~ f'(xj), j=1,...,N

e Example:

— for j =2,...,N—1, let the interpolant have the form of a quadratic
polynomial p;(x) on [Xj_1,Xj+1] (Lagrange interpolating polynomial)
X— Xj ) (X— X
pi ) = XXl

2X — Xi — X; i i 2X — Xi_1 — Xj
plj (X) — ( J H—l) fj—l"" 4 ( 2Jh21 ]) fj—l—l

—(X=Xj—1)(X=Xj41) . (X=Xj-1)(X—X])

fJ —|‘ 2h2 fj_|_]_

2h?

— Evaluating at x = X;j we obtain f'(xj) ~ p(xj) = f”lz_hfjl

(i.e., second—order accurate center—difference formula)




MATH745 — Fall 2005 10

DIFFERENTIATION VIA FINITE DIFFERENCES
AN ALTERNATIVE APPROACH (1)

Generalization to higher—orders straightforward

Example:

— for j =3,...,N—2, one can use a fourth—order polynomial as interpolant
pj (X) on [Xj_2,Xj42]

— Differentiating with respect to x and evaluating at X = X we arrive at the
fourth—order accurate finite—difference formula

_
12h ) Brr=35f

8%

(5f) B —fj o +8fj 1 —8fj_1+fj2 h?

]
Order of accuracy of the finite—difference formula is one less than the order
of the interpolating polynomial

The set of grid points needed to evaluate a finite—difference formula is called
STENCIL

In general, higher—order formulas have larger stencils
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DIFFERENTIATION VIA FINITE DIFFERENCES
TAYLOR TABLE (1)

e A general method for choosing the coefficients of a finite difference formula
to ensure the highest possible order of accuracy

o Example: consider a one—sided finite difference formula z%zoaprp,
where the coefficients ap, p=0,1,2 are to be determined.

e Form an expression for the approximation error

2
/ o
fi—> apfjrp=e¢

p=0

and expand it about X; in the powers of h

11
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DIFFERENTIATION VIA FINITE DIFFERENCES
TAYLOR TABLE (II)

e Expansions can be collected in a Taylor table

f f £y

0 1 0
—ap 0 0

—a1 —azh

2
—a2 —a2(2h) —82@

— the leftmost column contains the terms present in the expression for the
approximation error

— the corresponding rows (multiplied by the top row) represent the terms obtained
from expansions about X;

— columns represent terms with the same order in h — sums of columns are the
contributions to the approximation error with the given order in h

e The coefficients ap, p=0,1,2 can now be chosen to cancel the
contributions to the approximation error with the lowest powers of h

12
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DIFFERENTIATION VIA FINITE DIFFERENCES
TAYLOR TABLE (111)

e Setting the coefficients of the first three terms to zero:
( —p—a—a=0
1—aih—ax(2h)=0

_ah_z_a(Zh)Z_
(" TRy T

0

e The resulting formula:

X P 2h

e The approximation error — determined the evaluating the first column with

non—zero coefficient:
h® (Zh)3 m h°
PR mo_ D g
( a 5 a g )fJ 3 ]

The formula is thus SECOND—ORDER ACCURATE
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (I)

e Quick review of FUNCTIONAL ANALYSIS background
— NORMED SPACES X: J||- || : X — R such that Vx,y € X

1]l =0,

[yl < X+ [yl
|X|=0<=x=0

Banach spaces
vector spaces: finite—dimensional (RV) vs. infinite—dimensional (Ip)

function spaces (on Q C RN): Lebesgue spaces Lp(Q), Sobolev spaces
WPA(Q)
— Hilbert spaces: inner products, orthogonality & projections, bases, etc.

— Linear Operators: operator norms, functionals, Riesz’ Theorem

14
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (I1)

e Assume that f and f’ belong to a function space X; DIFFERENTIATION
%( : f — f’ can then be regarded as a LINEAR OPERATOR %( ' X — X

e When f and f’ are approximated by their nodal values as f = [fy fo ... fn]T
and f' = [f f5 ... f{]T, then the differential operator $ can be
approximated by a DIFFERENTIATION MATRIX A € RN*N sych that f/ = Af
; How can we determine this matrix?

e Assume for simplicity that the domain Q is periodic, i.e., fg = fy and
f1 = fno1; then differentiation with the second—order center difference
formula can be represented as the following matrix—vector product

[ 1] [ —51 [f1]

15
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (I11)

Using the fourth—order center difference formula we would obtain a
pentadiagonal system =- increased order of accuracy entails increased
bandwidth of the differentiation matrix A

A isa TOEPLITZ MATRIX , since is has constant entries along the the
diagonals; in fact, it a also a CIRCULANT MATRIX with entries &
depending only on (i — j)(modN)

Note that the matrix A defined above is SINGULAR (has a zero eigenvalue
A = 0) — Why?

This property is in fact inherited from the original “continuous” operator (—%—(
which is also singular and has a zero eigenvalue

A singular matrix A does not have an inverse (at least, now in the classical
sense); what can we do to get around this difficulty?

16
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (1V)

e Matrix singularity < linearly dependent rows < the LHS vector does not
contain enough information to determine UNIQUELY the RHS vector

e MATRIX DESINGULARIZATION — incorporating additional information into
the matrix, so that its argument (the RHS vector) can be determined uniquely

e Example — desingularization of the second—order center difference
differentiation matrix:

In a center difference formula, even and odd nodes are decoupled

knowing f{, j =1,...,Nand f1, one can recover fj, j =3,5,... (i.e., the
odd nodes) only = f> must also be provided

hence, the zero eigenvalue has multiplicity two

when desingularizing the differentiation matrix one must modify at least
two rows (see, e.g., sing diff nat 0L m )
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (V)

e What is WRONG with the differentiation operator?

e The differentiation operator %( IS UNBOUNDED !
One usually cannot find a constant C € R independent of f, such that

Ho%(f(x)HX <C[fllx, Vtex

For instance, f(x) = €K%, so that |C| =k — oo for k — o ...

e Unfortunately, finite—dimensional emulations of the differentiation operator
(the DIFFERENTIATION MATRICES) inherit this property

o OPERATOR NORM for matrices

AX, A ATA
JAIB = max [[Ax|3 = max AXAX) _ gy (6 A7 AX)

_ T 2
Ix]|=1 X (X,X) Xy mex(ATA) = O(A)

Thus, the 2—norm of a matrix is given by the square root of its largest
SINGULAR VALUE Omax(A)
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DIFFERENTIATION VIA FINITE DIFFERENCES
AN OPERATOR PERSPECTIVE (VI)

e As can be rigorously proved in many specific cases, ||Al|2 grows without

bound as N — oo (or, h— 0) = this is a reflection of the unbounded nature of
the underlying co—dim operator

e The loss of precision when solving the system Ax = b is characterized by the

CONDITION NUMBER (with respect to inversion) Kp(A) = ||A|pl|A7Lp

 for p=2, kp(h) = Zmlt)

— when the condition number is “large”, the matrix is said to be
ILL—CONDITIONED — solution of the system Ax = b is prone to
round—off errors

— if Ais singular, Kp(A) = +oo

19



MATH745 — Fall 2005

DIFFERENTIATION VIA FINITE DIFFERENCES
SUBTRACTIVE CANCELLATION ERRORS

e SUBTRACTIVE CANCELLATION ERRORS — when comparing two numbers
which are almost the same using finite—precision arithmetic , the relative
round—off error is proportional to the inverse of the difference between the
two numbers

Thus, if the difference between the two numbers is decreased by an order of
magnitude, the relative accuracy with which this difference may be calculated
using finite—precision arithmetic is also decreased by an order of magnitude.

Problems with finite difference formulae when h — 0 — loss of precision
due to finite—precision arithmetic( SUBTRACTIVE CANCELLATION ), e.g., for
double precision:

1.0000000000012345 — 1.0~1.2e— 12 (2.8% error)
1.0000000000001234 — 1.0~21.0e— 13 (19.0% error)

20
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DIFFERENTIATION VIA FINITE DIFFERENCES
COMPLEX STEP DERIVATIVE®

Consider the complex extension f(z), where z= x-+ iy, of f(x) and compute
the complex Taylor series expansion
W, .h

f(xj+ih) = fj +ihf] — ?fj”—lgfj’”—kO(h“)

Take imaginary part and divide by h

O(f(x; +1ih h?
fj/: ( (X:’]—l—l ))"'_Efj'///"'_o(hs) . <

Bf) _ O(f(x +ih))
j

OX h

Note that the scheme is second order accurate — where is conservation of
complexity?

The method doesn’t suffer from cancellation errors, is easy to implement and
quite useful

4J. N. Lyness and C. B.Moler, “Numerical differentiation of analytical functions’, SAM J. Numer
Anal 4, 202-210, (1967)
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DIFFERENTIATION VIA FINITE DIFFERENCES
PADE APPROXIMATION (1)

e GENERAL IDEA — include in the finite—difference formula not only the
function values , but also the values of the FUNCTION DERIVATIVE at the
adjacent nodes, e.g.:

1
b1t 4+t +bifl,1— ¥ apfjip=¢

p=-1

e Construct the Taylor table using the following expansions:
2 3 h4

h h
fir1= f,-+hfj’+?fj”+ 5 fjerﬁ

h> )

(iv) LI
f +120fJ

j +...

2 3

h v M
= AN S T e T g

NOTE — need an expansion for the derivative and a higher order expansion
for the function (more coefficient to determine)

22
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DIFFERENTIATION VIA FINITE DIFFERENCES

PADE APPROXIMATION (I1)
e The Taylor table

fl fr

b_1f!_, b_y b_1(~h)
fl 1 0

by f! by bih

(-

—a_lfj_l —a_1 —a_l(—h) —ad_1
—agf; —ag 0 0

h2
—a1 fj+1 —a1 —alh

e The algebraic system:

0 0 —1
1 1 h
~h h —h?/2
/2 h?2/2  n3/6
|—h%/6 h3/6 —h%/24
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DIFFERENTIATION VIA FINITE DIFFERENCES
PADE APPROXIMATION (111)

e The Padé€ approximation:

1<6f) +<6f) +1(51‘) 3<f 1)
— | — — — | — = = Uj+1— 1j-1
4\ /)., \d/; 4\&/,_; 4h*"’ .

] 4
Leading—order error I fj(v) ( FOURTH—ORDER ACCURATE )

e The approximation is NONLOCAL , in that it requires derivatives at the
adjacent nodes which are also unknowns; Thus all derivatives must be

determined at once via the solution of the following algebraic system
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DIFFERENTIATION VIA FINITE DIFFERENCES
PADE APPROXIMATION (1V)

e Closing the system at ENDPOINTS (Where neighbors are not available) —
use a lower—order one—sided (i.e., forward or backward) finite—difference

formula

e The vector of derivatives can thus be obtained via solution of the following
algebraic system

IB%f’:gAf — f’:gIB%lAf

where

— Bisatri—diagonal matrix with b ; =1 and bjj_1 =bjj11 = 7,
I=1,...,N

— A Is a second—order accurate differentiation matrix




MATH745 — Fall 2005

DIFFERENTIATION VIA FINITE DIFFERENCES
MODIFIED WAVENUMBER ANALYSIS (1)

How do finite differences perform at different WAVELENGTHS ?

Finite—Difference formulae applied to THE FOURIER MODE f(x) = & with
the (exact) derivative f/(x) = ike/
Central-Difference formula:
(Bf) C fj— o KX gk g o - sin(hk)
]

& T o I = h fj:Ik/fj,

. sin(hk
where the modified wavenumber k' £ —§1—)

Comparison of the modified wavenumber k/ with the actual wavenumber k
shows how numerical differentiation errors affect different Fourier
components of a given function
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DIFFERENTIATION VIA FINITE DIFFERENCES
MODIFIED WAVENUMBER ANALYSIS (11)

e Fourth-order central difference formula

Of —fjio+8fj 1 —8fj_1+fjo ikh  _—ikh\ £ 1 en o-ikehy f
(6x) 12h ~ 3h G (@—e )1~ 135 (¢ )i

4 1 .
% sin(hk) — &h sn(th)] fj =ik'f;

where the modified wavenumber k' £ [ 4 sin(hk) — g sin(2hk)]
e Fourth—order Padé scheme:

1' g + g _|_} g —i(f — f; )
4\5x ), \d); 4\d/),_, 4n om0

1
where (g;)m — iK1 = iKeknf; and (g)j_l — iK1 — jKe Tk

Thus:
Ik’ (ielkh—l—l—i— ie—lkh> j= 4 (e|kh —|kh) fj
3sin(hk)
2h+ hcos(hk)

ik (1+ % cos(kh)) fi =i % sin(hk) f; = K 2




