Spectral Methods Spectral Methods

METHOD OF WEIGHTED RESIDUALS (1)
PART IV

e SPECTRAL METHODS belong to the broader category of WEIGHTED

RESIDUAL METHODS, for which approximations are defined in terms of
Spectral Methods series expansions, such that a measure of the error knows as the RESIDUAL
is set to be zero in some approximate sense

e In general, an approximation uy (X) to u(x) is constructed using a set of basis
functions ¢i(x), k=0,...,N (note that ¢ (x) need not be ORTHOGONAL )
un() 2 S Gedi(x), a<x<b, Iy={1,...,N
e ADDITIONAL REFERENCES: N kEZ'N ), asxsh, dv={ }

— R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002), e Residual for two central problems:

— B. Mercier, An introduction to the numerical analysis of spectral methods, — APPROXIMATION of a function u:

Springer (1989),
— C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in
Fluid Dynamics, Springer (1988). — APPROXIMATE SOLUTION of a (differential) equation Lu— f =0:

RNn(X) =u—un

Rn(X) = Luy — f
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METHOD OF WEIGHTED RESIDUALS (1)

e In general, the residual Ry in canceled in the following sense:
b - .
(Ru, W, = [ w.RuGidx =0, i€y,
Ja

where ;i (X), i € Iy are the TRIAL (TEST) FUNCTIONS and w : [a,b] — R*
are the WEIGHTS

o Spectral Method is obtained by: METHOD OF WEIGHTED RESIDUALS (111)

— selecting the BASIS FUNCTIONS ¢y to form an ORTHOGONAL system
under the weight w: o Note that the residual Ry vanishes
(¢i,0K)w = Sk, i,kely and
— selecting the trial functions to coincide with the basis functions:
Wk =0k, k€l

with the weights w, =w ( SPECTRAL GALERKIN APPROACH ), Or
— selecting the trial functions as
Wi =3(X—Xk), X« € (a,b),
where Xy are chosen in a non—arbitrary manner, and the weights are
W, =1 ( COLLOCATION, “PSEUDO-SPECTRAL” APPROACH )

— in the mean sense specified by the weight w in the Galerkin approach

— pointwise at the points x in the collocation approach
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APPROXIMATION OF FUNCTIONS (I) —
GALERKIN METHOD
Assume that the basis functions {¢k}E:l form an orthogonal set
Define the residual N

Ra(X) U U — U % d
N(X)=u—un=u k;“kd)k

Cancellation of the residual in the mean sense (with the weight w)

N

b ~ T .
(RN,¢i)W=/a <u_kZOUK¢k) diwdx=0, i=0,...,N

(7) denotes complex conjugation (cf. definition of the inner product)

Orthogonality of the basis / trial functions thus allows us to determine the
coefficients (y by evaluating the expressions

b
ok:/ udpxwdx, k=0,...,N
a

Note that, for this problem, the Galerkin approach is equivalent to the LEAST
SQUARES METHOD .
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APPROXIMATION OF FUNCTIONS (1) —
COLLOCATION METHOD

o Define the residual N

R U —u_ NG
N(X)=u—un=u kZOUKq)k

e PoINTWISE cancellation of the residual
N

gakq)k(xi) = U(Xi)a IZO,,N

k=
Determination of the coefficients (y thus requires solution of an algebraic
system. Existence and uniqueness of solutions requires that det{¢y(x;)} # 0
(condition on the choice of the collocation points x; and the basis functions

dk)

For certain basis pairs of basis functions ¢y and collocation points xj the
above system can be easily inverted and therefore determination of Gy may
be reduced to evaluation of simple expressions

For this problem, the collocation method thus coincides with an
INTERPOLATION TECHNIQUE based on the set of points {x;}
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APPROXIMATION OF PDESs (I) —
GALERKIN METHOD

e Consider a generic PDE problem
Lu—f=0 a<x<b
Bu=g- x=a

Biu=04 X=Db,

where L is a linear, second-order differential operator, and B_ and B,
represent appropriate boundary conditions (Dirichlet, Neumann, or Robin)

Reduce the problem to an equivalent HOMOGENEOUS formulation via a
“lifting” technique, i.e., substitute u = G+ v, where 0 is an arbitrary function
satisfying the boundary conditions above and the new (homogeneous)
problem for v is
Lv—h=0 a<x<b

B_v=0 X=a

Bv=0 x=bh,
whereh = f — L0
The reason for this transformation is that the basis functions ¢ (usually)

satisfy homogeneous boundary conditions.
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APPROXIMATION OF PDESs (I1) —
GALERKIN METHOD

e The residual N

Rn(X) = Lvny —h, where vy = Zuvkq)k(x)
k=i
satisfies (“by construction”) the boundary conditions
e Cancellation of the residual in the mean (cf. THE WEAK FORMULATION )
(RN7¢i)W: (LVN 7h7¢i)W7 i= Oa"'7N
Thus

N
> (Lo, i)w = (h,di)w, i=0,....N,
K=o

where the scalar product (L¢y, ¢i)w can be accurately evaluated using
properties of the basis functions ¢; and (h, §;)w = hi

e An (N+1)x (N+1) algebraic system is obtained with the matrix
determined by
— the properties of the basis functions {¢k}E:1
— the properties of the operator £
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APPROXIMATION OF PDEs (I11) —
COLLOCATION METHOD

e The residual (corresponding to the original inhomogeneous problem)
N

Rn(X) = Luy— f, where uy = ZJﬁkq)k(X)
k=i

e Pointwise cancellation of the residual, including the boundary nodes:
Lun(x) = F(x) i=1,...,N-1
B_un (%) = 9-
ByUn(XN) = G4,
This results in an (N 4-1) x (N 4 1) algebraic system. Note that depending
on the properties of the basis {¢o,...,pn}, this system may be singular.

Sometimes an alternative formulation is useful, where the nodal values
un(xj) i=0,...,N, rather than the expansion coefficients iy, k=0,...,N
are unknown. The advantage is a convenient form of the expression for the

derivative ® N o
uy’(6) =y di un(x;),
N 1 jZO ij ]

where d(P) is a p—TH ORDER DIFFERENTIATION MATRIX .
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ORTHONORMAL SYSTEMS (1) —
CONSTRUCTION

e THEOREM — Let H be a separable Hilbert space and 7" a compact
Hermitian operator. Then, there exists a sequence {An}nen and {Wn}nen
such that

1. MeR,
2. the family {Wn}nen forms A COMPLETE BASISin H
3. {IWn = )\an fOr a" ne N

e Systems of orthogonal functions are therefore related to spectra of certain
operators, hence the name SPECTRAL METHODS
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ORTHONORMAL SYSTEMS (Il) —
EXAMPLE # 1

Let 7 : Lp(0,1) — L2(0, ) be defined for all f € L,(0,m) by 7T f = u, where
u is the solution of the Dirichlet problem

—u"'=f
{U(O) =u(m=0
Compactness of 7" follows from the Lax—Milgram lemma and compact
embeddedness of H(0, ) in L, (0, ).
EIGENVALUES AND EIGENVECTORS

A= 1 and Wi = v2sin(kx) for k>1

k2
Thus, each function u € L»(0, ) can be represented as

W) = V2 S GW(x),

&1

where G = (U,Wi)L, = ¥ [Tu(x)sin(kx) dx .

Uniform (pointwise) convergence is not guaranteed (only in L, sense)!
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ORTHONORMAL SYSTEMS (I11) —
EXAMPLE # 2

Let T : Lo(0,1) — L2(0, 1) be defined for all f € Ly(0,m) by 7 f = u, where
u is the solution of the Neumann problem

—u"+u=f
{ u(0)=u(m=0
Compactness of 7" follows from the Lax—Milgram lemma and compact
embeddedness of HY(0, ) in L»(0, ).
EIGENVALUES AND EIGENVECTORS

A and Wo(x) = 1, Wy = v/2cos(kx) for k> 1

T1+K2
Thus, each function u € L, (0, 1) can be represented as

u(x) =v2 k;Oka(X),

where Gy = (u,Wi)L, = @ Jotu(x) cos(kx) dx .

Uniform (pointwise) convergence is not guaranteed (only in L, sense)!
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ORTHONORMAL SYSTEMS (1V) —
EXAMPLE # 3

Expansion in SINE SERIES good for functions vanishing on the boundaries

Expansion in COSINE SERIES good for functions with first derivatives
vanishing on the boundaries

Combining sine and cosine expansions we obtain the FOURIER SERIES
EXPANSION with the basis functions (in L (—Tt, 1))

Wi (x) =™, for k>0
Wy form a Hilbert basis with better properties then sine or cosine series alone.

FOURIER SERIES Vs. FOURIER TRANSFORM —
— FOURIER TRANSFORM : F1 1 La(R) — La(R),

Flu](k) = / “ebyxydx, keR
— FOURIER SERIES: F2 1 Lo(0,2m) — Iy, (i.e., bounded to discrete)

2 )
i = Folul(K) = /0 e u(x)dx, k=0,1,2,...
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ORTHONORMAL SYSTEMS (V) —
POLYNOMIAL APPROXIMATION

e WEIERSTRASS APPROXIMATION THEOREM — To any function f(x) that
is continuous in [a, b] and to any real number € > 0 there corresponds a
polynomial P(x) such that [|P(x) — f(X)|lc(ap) <& i.. the set of
polynomials is DENSE in the Banach space C(a,b)

(C(a,b) is the Banach space with the norm || f||c(a by = MaXye[ap | f(X)]

e Thus the power functions X< k=0,1,... represent a natural basis in C(a,b)

e QUESTION — Is this set of basis functions useful?
NoO! — SEE BELOW
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ORTHONORMAL SYSTEMS (VI) —
EXAMPLE

e Find the polynomial Py (of order N) that best approximates a function
f € Ly(a,b) [note that we will need the structure of a Hilbert space, hence
we go to Ly (a,b), but C(a,b) C La(a,b)], i.e.

1100 Ancorax< [ 150 ~Pupoox

where Pn (X) = 50+§1X+52X2+"'+5NXN

e Using the formula zﬂ-\‘zoéj (ej,e) = (f,ex), j=0,...,N, where g, = x¥

< b ket b i
a X dx:/ x)f(x)dx
k; k/a a ®
N K+j+1 _ qk+j+1 b .
R = [ X f00ox
o kK+j+1 a

e The resulting algebraic problem is extremely ILL—CONDITIONED, e.g. for
a=0andb=1 !

A =51
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ORTHONORMAL SYSTEMS (VII) —
POLYNOMIAL APPROXIMATION

e Much better behaved approximation problems are obtained with the use of
ORTHOGONAL BASIS FUNCTIONS

e Such systems of orthogonal basis functions are derived by applying the
SCHMIDT ORTHOGONALIZATION PROCEDURE to the system {1,x,...,xN}

e Various families of ORTHOGONAL POLYNOMIALS are obtained depending
on the choice of:
— the domain [a, b] over which the polynomials are defined, and

— the weight w characterizing the inner product (-, -)w used for
orthogonalization
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ORTHONORMAL SYSTEMS (VIII) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on the interval [—1,1]
— LEGENDRE POLYNOMIALS (W =1)

_ fk+1 1 oK

2 k —
TWN(X —1), k—0,1,2,...

Pi(x)

— JACOBI POLYNOMIALS (W = (1—X)%(1+x)P)
k
3P () =ck(l—x>-°(1+x>—%[(1—x>°+k(1+x>ﬁ+k] k=0,1,2,...,
where Cy is a very complicated constant

_ __1
CHEBYSHEV POLYNOMIALS (W = m)
Tn(x) = cos(k arccos(x)), k=0,1,2,...,

Note that Chebyshev polynomials are obtained from Jacobi polynomials
fora=p=-1/2
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ORTHONORMAL SYSTEMS (I1X) —
ORTHOGONAL POLYNOMIALS

e Polynomials defined on the PERIODIC interval [Tt T
TRIGONOMETRIC POLYNOMIALS (W =1)

Se(x) =e*™ k=0,1,2,...

e Polynomials defined on the interval [0, +oo]
LAGUERRE POLYNOMIALS (W =¢"%)

L(x)—lexd—k(e‘xxk) k=0,1,2
YT dxk i b
e Polynomials defined on the interval [—oco, +oo]

HERMITE POLYNOMIALS (W = 1)

(_1)k x2 d*

I e S Gl e O _
Pyt gr® o k=02

Hk(X) =
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ORTHONORMAL SYSTEMS (X) —
ORTHOGONAL POLYNOMIALS

e What is the relationship between ORTHOGONAL POLYNOMIALS and
eigenfunctions of a COMPACT HERMITIAN OPERATOR (cf. Theorem on
page 75)?

e Each of the aforementioned families of ORTHOGONAL POLYNOMIALS forms
the set of eigenvectors for the following STURM—LIOUVILLE PROBLEM

d dy
5 [0

]Hq(x)w( Jly=0

ary(a)+azy'(a) =0
bay(b) +bay'(b) =0

for appropriately selected domain [a, b] and coefficients p, g, r, a1, az, by, by.
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FOURIER SERIES (I) — CALCULATION OF
FOURIER COEFFICIENTS

TRUNCATED FOURIER SERIES:

w) =y Ge'™®
k22N

The series involves 2N + 1 complex coefficients of the form (weight w = 1):
ﬂkzi/nue_ikxdx k= -N,...,N
2.'_[ - ) b

The expansion is redundant for real-valued u — the property of CONJUGATE
SYMMETRY (_j = U , which reduces the number of complex coefficients to
N + 1; furthermore, O(0p) = O for real u, thus one has 2N + 1 REAL
coefficients; in the real case one can work with positive frequencies only!

Equivalent real representation:

un(x) =aog+ % [ax cos(kx) + by sin(kx)],
K=1

where ag = U, ax = 20 (dk) and bx = 20(0y).
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FOURIER SERIES (I1) — UNIFORM
CONVERGENCE

e Consider a function u that is continuous, periodic (with the period 21) and
differentiable; note the following two facts:
— The Fourier coefficients are always less than the average of u

S i s ™ a i/ﬂ
| k| _‘annu(x)e dx| < M(u) = o 7n|u(x)\dx

- Ifv= ¥ =u® then 0, = (n\%

e Then, using integration by parts, we have

o= 2 M uoeax— £ fup @] _ L
Ok = 2T{/ﬁﬂu(x)e dx= o {u(x) Skl 2T[/ u
e Repeating integration by parts p times

N 1 m e o M@u®)
—(_1\P— P (x) — < ="
= (~1) 21T/_nu 00 S @ = 100 <
Therefore, the more regular is the function u, the more rapidly its Fourier
coefficients tend to zero as |n| — o

FOURIER SERIES (I11) — UNIFORM
CONVERGENCE

M U” L R M U”
‘Uk‘ < |((2) B z |uke'k"\ <Up+ (2 )
‘ ‘ KEZ n#£0 n

The latter series converges ABSOLUTELY

Thus, if uis TWICE CONTINUOUSLY DIFFERENTIABLE and its first
derivative is CONTINUOUS AND PERIODIC with period 2T, then its Fourier
series Uy = PyU CONVERGES UNIFORMLY to u for |[N| — o

SPECTRAL CONVERGENCE —if @ € Cg (-1, 1), then for all o > 0 there
exists a positive constant Cy such that \(M < % i.e., for a function with an
infinite number of smooth derivatives, the Fourier coefficients vanish faster
than algebraically
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FOURIER SERIES (V) — RATES OF
CONVERGENCE

e RATE OF DECAY of Fourier transform of a function f : R — R is determined
by its SMOOTHNESS ; functions defined on a bounded (periodic) domain are
a special case

e THEOREM [a collection of several related results, see also Trefethen (2000)] — Let
u € Lo(R) have Fourier transform a.

— Ifuhas p—1 continuous derivatives in L(IR) for some p > 0 and a p-th
derivative of bounded variation, then G(k) = O(|k|~P~1) as |k| — oo,
If u has infinitely many continuous derivatives in L2(R), then G(k) = O(|k|~™) as
|k| — oo for EVERY m > 0 (the converse also holds)

If there exist a,c > 0 such that u can be extended to an ANALYTIC function in the
complex strip |0(z)| < a with |Ju(- +iy)|| < c uniformly for all y € (—a,a), where
lu(- +1iy)]| is the Lo norm along the horizontal line 0(z) =y, then ua € Lo(R),
where u (k) = e@kli(k) (the converse also holds)

If u can be extended to an ENTIRE function (i.e., analytic throughout the complex
plane) and there exists a > 0 such that |u(z)| = 0(e®?) as |z| — w for all complex
values z € C, the ( has compact support contained in [—a, aJ; that is (k) = 0 for
all |k| > a (the converse also holds)

FOURIER SERIES (V) — RADII OF
CONVERGENCE

e DARBOUX’SPRINCIPLE [see Boyd (2001)] — for all types of spectral
expansions (and for ordinary power series), both the domain of convergence
in the complex plane and the rate of convergence are controlled by the
location and strength of the GRAVEST SINGULARITY in the complex plane
(“singularities” in this context denote poles, fractional powers, logarithms
and discontinuities of f(z) or its derivatives)

Thus, given a function f : [0,21] — R, the rate of convergence of its Fourier
series is determined by the properties of its COMPLEX EXTENSION
F:C—cCi

e Shapes of regions of convergence:
— Taylor series — circular disk extending up to the nearest singularity
— Fourier (and Hermite) series — horizontal strip extending vertically up to the
nearest singularity
— Chebyshev series — ellipse with foci at x = £1 and extending up to the nearest
singularity
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FOURIER SERIES (VI) —
PERIODIC SOBOLEV SPACES

o Let H{,(I) be a PERIODIC SOBOLEV SPACE, i.e.,
Ho(D) = {u: u@ e Ly(1),a=0,...,r},
where | = (—1t,1) is a periodic interval. The space C7 (1) is dense in Hy(1)

e The following two norms can be shown to be EQUIVALENT in H{):

1/2
[lul =[ (1+k2)r|ﬁklz}

; 1/2
ulllr = [Z C?IU(")IZ}
a=0
Note that the first definition is naturally generalized for the case when r is non-integer!

e The PROJECTION OPERATOR Py commutes with the derivative in the
distribution sense:

(Pyu)@ = ; (i) GiWy = Pru(@
[KSN
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FOURIER SERIES (VII) —
APPROXIMATION ERROR ESTIMATES IN Hy(1)

e Letr,s € R with 0 <s <r; then we have:
|u—Pnulls < (L+N2)°Z |lulr, for ueHL(1)
Proof:

lu—Prulf = Z (L+K)T 0 ? < (1 +NZ)* z (1+K3)"|awl?
|K[>N [KI>N
< (L+N?)>"|ulf?

e Thus, accuracy of the approximation Pyu is better when u is SMOOTHER;
more precisely, for u € Hi(1), the L leading order error is O(N~") which
improves when r increases.
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FOURIER SERIES (VIII) —
APPROXIMATION ERROR ESTIMATES IN Lo (1)

e First, a useful lemma (SOBOLEV INEQUALITY) — letu € Hé(l), then there
exists a constant C such that

IuliZ, gy < Cllullollulla
Proof: Suppose u € C7(1); note the following facts
— (o is the average of u

— From the mean value theorem: 3xg € | such that Gy = u(xg)
Let v(x) = u(x) — (o, then

S = v ([worey) " ([worrs)" <omi i

X0
()| < [dol + V()| < [do| +2r/2|jv]| Y2 v'|[/2 < Culg? u]ly?,

since v/ = U/, [|v|| < [|ul| and |do] < [Jull-
AsCp (1) is dense in H3 (1), the inequality also holds for any u € H3(1).
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FOURIER SERIES (I1X) —
APPROXIMATION ERROR ESTIMATES IN Lo (1)

e An estimate in the norm Lo (1) follows immediately from the previous
lemma and estimates in the H3(1) norm

r 1-r
lu—Pnull?, 1y SCL+N?)T2(L+N?) 7,

where u € H(1)

e Thusforr>1
1
llu—PnullZ, gy = O(N2 ™)

e UNIFORM CONVERGENCE forall u e HFl,(I)
(Note that u need only to be CONTINUOUS, therefore this result is stronger
than the one given on page 87)
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FOURIER SERIES (X) —
SPECTRAL DIFFERENTIATION
e Assume we have a truncated Fourier series of u(x)

un (X) = Pyu(x Ge'™
-2,

e The Fourier series of the p—th derlvatlve of u(x) is
N

ulP (x) = Pyu(® = kz (ik)Pae™™ z

e Thus, using the vectors U = [d_y,...,Gn]T and G = [a®) ... a{P1T, one

can introduce the SPECTRAL DIFFERENTIATION MATRIX D(P) defined in
Fourier space as U(P) = D(P)U | where

Spectral Methods

FOURIER SERIES (X1) —
SPECTRAL DIFFERENTIATION

o Properties of the spectral differentiation matrix in Fourier representation
- D is DIAGONAL
- D(P is sSINGULAR (diagonal matrix with a zero eigenvalue)
— after desingularization the 2-norm condition number of D(P) grows in
proportion to NP (since the matrix is diagonal, this is not an issue)

e QUESTION — how to derive the corresponding spectral differentiation
matrix in REAL REPRESENTATION ?
Will see shortly ...
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (1)

We need to evaluate the expansion (Fourier) coefficients

b
Ok:(u,(g()wz/ w(x)u(x)@(x)dx, k=0,...,N

QUADRATURE is a method to evaluate such integrals approximately.

GAUSSIAN QUADRATURE seeks to obtain the best numerical estimate of an
integral f,fw(x) f(x) dx by picking OPTIMAL POINTSX;, i=1,...,N at
which to evaluate the function f(x).

THE GAUSS-JACOBI |NTEGRATION THEOREM — If the (N +1)
interpolation points {x; }}L, are chosen to be the zeros of Py, 1(x), where

Pno1(X) is the polynomlal of degree (N + 1) of the set of polynomials which
are orthogonal on [a, b] with respect to the weight function w(x), then the

quadrature formula
b N
/a w(x) f(x)dx= iZOWi f(xi)

is ExACT for all f(x) which are polynomials of at most degree (2N + 1)
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (II)

e DEFINITION — Let K be a non-empty, Lipschitz, compact subset of RY. Let
Ig > 1 be an integer. A quadrature on K with lq points consists of:

— Asetof Iq real numbers {cy,...,w,} called QUADRATURE WEIGHTS

- Asetof Ig points {&1,... ,E|q} in K called GAUSS POINTS or
QUADRATURE NODES

The largest integer k such that Vp € Py, fi p(x)dx = z:“:lw, p(&) is called
the quadrature order and is denoted by kq

REMARK — As regards 1D bounded intervals, the most frequently used
quadratures are based on Legendre polynomials which are defined on the
interval (0,1) as E(t) = %ditk,;(tz —t)K, k > 0. Note that they are orthogonal
on (0,1) with the weight W = 1.
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (l11)

e Theorem — Let g > 1, denote by &4,... ,E|q the I roots of the Legendre

polynomial Z;, (x) and set oy = fol |‘|I_j“:1 % dt. Then
{&1,-- & w1, 0, isa quadratujr?élof order kg =2lg—1on [0,1]
Proof — Let {£,dots, £ q} be the set of Lagrange polynomials associated
with the GauB points {&1,...,&,}. Then wy = folq (t)dt, 1 <1< lq
— when p(x) is a polynomial of degree less than lg, we integrate both sides
of the identity p(t) = z:q:l P(&1) L (t)dx, Vt € [0,1] and deduce that the
quadrature is exact for p(x)

— when the polynomial p(x) has degree less than 2l we write it in the form
p(x) = d(x) B, (x) +r(x), where both q(x) and r(x) are polynomials of
degree less than Iq; owing to orthogonality of the Legendre polynomials,
we conclude

/1p(t)dt=/lr(t)dt= lﬁw(il) = Izchp(il),
0 0 = =

since the points & are also roots of A,
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (1V)

e PERIODIC GAUSSIAN QUADRATURE — If the interval [a,b] = [0, 217 is
periodic, the weight w(x) = 1 and Py(x) is the trigonometric polynomial of
degree N, the Gaussian quadrature is equivalent to the TRAPEZOIDAL RULE
(i.e., the quadrature with unit weights and equispaced nodes)

e Evaluation of the spectral coefficients:
— Assume {‘P}{:Ll is a set of basis functions orthogonal under the weight w

b N
ﬂkz/a W(x)u(x)(n((x)dx%,_Zow(xi)u(xi)(n((xi), k=0,...,N,

where Xx; are chosen so that @n+1(X) =0,i=0,...,N
— Denoting U = [, ...,0n]T and U = [u(Xo),...,u(xn)]T we can write the
above as

U =1u,

where T is a TRANSFORMATION MATRIX
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SPECTRAL INTERPOLATION (I)

e INTERPOLATION is a way of determining an expansion of a function u in
terms of some ORTHONORMAL BASIS FUNCTIONS alternative to Galerkin
spectral projections

Assuming that Sy = span{e'%%, ... e"X}  we can determine an

INTERPOLANT V € Sy of u, such that v coincides with u at 2N + 1 points

{XJ}H\SN defined by

21

C=jh, lil< =
Xj = jh, |j| <N, where h N1

For the interpolant we set

v(x) = ; aye'™
=N

where the coefficients ay, k = 1,...,N can be determined by solving the
algebraic system (cf. page 71)

; e a =u(x)), |j|<N
=N

with the matrix Ay; = e, k,j=1,...,N
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SPECTRAL INTERPOLATION (I1)
e The system can be rewritten as
WikKay = u(x)), il <N
=N

where W = e/l = e21 is the principal root of order (2N + 1) of unity (since

wik = (eih)lk)
e The matrix [W]j, =W I is unitary (i.e. WT W =T(2N+1))

Proof: Examine the expression

R 1 .
=1 5 wikwi =
RS A RSP B

— k=1, thenwikw Il =wik-D) —w0=1
— Ifk #1, define =W, then

1 1 M-1

L 1 ) ,
e 3 Wikw = =2y W
N+ o MNtlyfew M jZo

where M=2N+1, j=jif0<j<Nand j=j+Mif =N < j <0, so that
wi*tM = (i, Using the expression for the sum of a finite geometric series
completes the proof: (1—w) 37 =y W =1-cM=0
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SPECTRAL INTERPOLATION (I11)

Since the matrix W is unitary and hence its INVERSE is given by its
TRANSPOSE , the Fourier coefficients of the INTERPOLANT of u in Sy can be
calculated as follows:

1 —jk
ay=-—— zjWw ™I, where zj = u(x;j)
N+1 \kéN

The mapping
{zi}j1en — {ad e

is referred to as DISCRETE FOURIER TRANSFORM (DFT)

Straightforward evaluation of the expressions for ay, k=1,...,N
(matrix-vector products) would result in the computational cost O(N?);
clever factorization of this operation, known as the FAST FOURIER
TRANSFORMS (FFT) , reduces this cost down to O(N log(N))

See www. f f t w. or g for one of the best publicly available implementations of
the FFT.

Spectral Methods

SPECTRAL INTERPOLATION (1V)

Let Pc: Cg(l) — SN be the mapping which associates with u its interpolant
v e SN. Let (-,-)n be the GAUSSIAN QUADRATURE approximation of the
inner product (-,-)

(u,v) = /_T;uvdx N HENU(X]')V(XJ) £ (u,v)n

By construction, the operator Pc satisfies:
(Peu)(xj) = u(x;), |if <N
and therefore also (orthogonality of the defect to Sy)
(u—Pcu,vn)n =0, Vvy € Sn
By the definition of Py we have
(u—Pnu,vy) =0, Yy € Sy
Thus, Pcu(x) = 3R (u,e™®)ne'* can be obtained analogously to

Pnu(x) = Ny (u,e*)el by replacing the scalar product (-,-) with the
DISCRETE SCALAR PRODUCT (+,-)N

Spectral Methods

SPECTRAL INTERPOLATION (V)

e Thus, the INTERPOLATION COEFFICIENTS a are equivalent to the FOURIER
SPECTRAL COEFFICIENTS (g when the latter are evaluated using the
GAUSSIAN QUADRATURES

The two scalar products coincide on Sy, i.e.
(UN,VN) = (UN,VN)N, VUN,VN € SN,
hence foru e Sy, Gk = ax, k=1,...,N

Proof — examine the numerical integration formula

i/nf(x)dqu F();
21 ) n 2N+1HEN I

then for every f = 3N Gxe™™ € Sy we have

1 k=0
o /n fody= - Ty eki= L g ko
21—t 2N+1 IJZN 2N +1 “;N 0 otherwise

Thus, for the uniform distribution of xj, the Gaussian (trapezoidal) formula is
EXACT for f € Sy

Spectral Methods

SPECTRAL INTERPOLATION (VI)

e Relation between Fourier coefficients Gy of a function u(x) and Fourier
coefficients ay of its interpolant; assume that u(x) ¢ Sy

1 ik
K ﬁ[nuwkdx, Wi (x) =€
1

=g > UXj)Wi(x))
ANHL iy

e THEOREM — Foru € Cg(l) we have the relation

ax = z Oksim, WhereM =2N+1
|EZ

Proof — Consider the set of basis functions (in L2(1)) Ux = e’k We have:

U= 5o S U O = L 5 witen 2 [ K P medkD
= Xi Xi)= — =
k=N 2N+1“éN KW= 2N+1“.éN 0 otherwise

Since Pcu = ¥ jj<n @jWj, we infer from (Pcu, Wi )n = (u,Wi)n that

ak = (Pcu,Wi)n = (U,W)n = 0nWn,W, =S Up(Wn,Wk)y =S 0
k = (Pcu,Wi)n = (U, Wi)n (ngznn k)N EZn(n AN gz K+1M

ne
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SPECTRAL INTERPOLATION (VII)

[ee]
=3 e = age®i = <0k+ > 0|<+|M> gikyj
P =N =N AN

e EXTREMELY IMPORTANT COROLLARY CONCERNING INTERPOLATION
— two trigonometric polynomials e’k* and e'k2X with different frequencies k;
and k; are equal at the collocation points xj, | j| < N when

k27k1:|(2N+1), I =0,+1,....

Therefore, give a set of values at the collocation points xj, |j| <N, itis
impossible to distinguish between e’k and e'k2X, This phenomenon is
referred to as ALIASING

Note, however, that the modes appearing in the alias term correspond to
frequencies larger than the cut—off frequency N.
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SPECTRAL INTERPOLATION (VIII) —
ERROR ESTIMATES IN H(1)

e Supposes<r,r> % are given, then there exists a constant C such that if
u € Hy(I), we have

|Ju—Peulls < CL+N?)Z ul,

Outline of the proof:
Note that Pc leaves Sy invariant, therefore PcPy = Py and we may thus write

U—Pcu=u—Pyu+Pc(Pn—1)u
Setting w = (I — Py)u and using the “triangle inequality” we obtain
[[lu—Peul|s < [lu—Pnulls+[Pcwls
— The term |Ju — Pnul|s is upper—bounded using theorem from page 91

— Need to estimate ||Pcw||s — straightforward, but tedious ...
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SPECTRAL INTERPOLATION (1X)

Until now, we defined the Discrete Fourier Transform for an obb number
(2N +1) of grid points

FFT algorithms generally require an EVEN number of grid points

We can define the discrete transform for an EvEN number of grid points by
constructing the interpolant in the space Sy for which we have
dim(Sn) = 2N. To do this we choose:

-N+1<j<N

All results presented before can be established in the case with 2N grid
points with only minor modifications

However, now the N-th Fourier mode Gy does not have its complex
conjugate! This coefficient is usually set to zero (Gy = 0) to avoid an
uncompensated imaginary contribution resulting from differentiation

OoDD or EVEN collocation depending on whether M = 2N +1 or M = 2N
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SPECTRAL INTERPOLATION (X)
Before we focused on representing the INTERPOLANT as a Fourier series
V(X)) = TRy e’
Alternatively, we can represent the INTERPOLANT using the nodal values as
(assuming, for the moment, infinite domain x € R)

V)= 3 u(x;)Cj(x),
j=—00

where Cj(x) is a CARDINAL FUNCTION with the property that Cj (i) = i

(i.e., generalization of the LAGRANGE PoLYNOMIAL for infinite domain)

In an infinite domain we have the WHITTAKER CARDINAL or SINC function
__sin[r(x —kh) /h]

Ck(x) = T(x —kn)/n = sinc[(x —kh)/h],

where sinc(x) = w

Proof — the Fourier transform of ;g is 8(k) =hforall k € [-1t/h, Tt/h];

hence, the interpolant of 8jo is v(x) = %ff{:}h elkhdk = %




Spectral Methods Spectral Methods

SPECTRAL INTERPOLATION (XI1)
Thus, the spectral interpolant of a function in an INFINITE domain is a linear SPECTRAL DIFFERENTIATION (I)

combination of WHITTAKER CARDINAL functions

In a PERIODIC DOMAIN We still have the representation e Two ways to calculate the derivative w(xj) = u’(x;) based on the values
N—1 u(xj), where 0 < j < 2N +1; denote U = [ug, ..., Uzn41]" and
v(x) j; u(x;j)s;j(x), U =[uf, ..., Upnyq]T
but now the CARDINAL FUNCTIONS have the form e METHOD ONE — approach based on differentiation in Fourier space:

1 . [N(x—xj) (x=Xxj) — calculate the vector of Fourier coefficients U = TU
Sj(x) = N Sin > cot >

— apply the diagonal differentiation matrix U’ = DU (cf. page 94)
Proof — similar to the previous (unbounded) case, except that now the — return to real space via inverse Fourier transformU =TT U

interpolant in given by a DISCRETE Fourier Transform .
e REMARK — formally we can write

The relationship between the Cardinal Functions corresponding to the
- U’ =T'DTU
PERIODIC and UNBOUNDED domains J

So(x):%sin(Nx)cot(x/Z): % sinc(

X— 2”"‘) however in practice matrix operations are replaced by FFTs

h
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SPECTRAL DIFFERENTIATION (I1)

e METHOD TwoO — approach based on differentiation (in real space) of the
interpolant u’(x;) = V/(xj) = le\lz_ol u(xj)S] (x), where the cardinal function
has the following derivatives

0, j=0(mod N)
Sx)=<1 . _
5 (1)) cot(n/2), j#0 (mod N)
e Thus, since the interpolant is a linear combination of shited Cardinam

Functions, the differentiation matrix has the form of a TOEPLITZ
CIRCULANT matrix

oo ~ 5 co[(1h)/2]
“Yeoanyz L cof(2n)/2,

Ycoti2n)/2] ~Jcotf(3n)/2
~ § cot{(3h)/2)

: . 3 cotl(1h)/2)
L 1 cotl(1h)/2) 0

o Higher—order derivatives obtained calculating S(P) (xj)




