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PART IV

Spectral Methods

� ADDITIONAL REFERENCES:

– R. Peyret, Spectral methods for incompressible viscous flow, Springer (2002),

– B. Mercier, An introduction to the numerical analysis of spectral methods,

Springer (1989),

– C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods in

Fluid Dynamics, Springer (1988).
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METHOD OF WEIGHTED RESIDUALS (I)

� SPECTRAL METHODS belong to the broader category of WEIGHTED

RESIDUAL METHODS , for which approximations are defined in terms of

series expansions, such that a measure of the error knows as the RESIDUAL

is set to be zero in some approximate sense

� In general, an approximation uN � x � to u � x � is constructed using a set of basis
functions ϕk � x � , k � 0 �� � � � N (note that ϕk � x � need not be ORTHOGONAL )

uN � x �	� ∑
k 
 IN

ûkϕk � x �� a � x � b� IN
 � 1�� � � � N �

� Residual for two central problems:

– APPROXIMATION of a function u:

RN � x �
 u� uN

– APPROXIMATE SOLUTION of a (differential) equation Lu� f � 0:

RN � x �
 LuN� f
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METHOD OF WEIGHTED RESIDUALS (II)

� In general, the residual RN in canceled in the following sense:

� RN� ψi � w �
 �

b

a
w � RN ψ̄i dx
 0� i � IN�

where ψi � x � , i � IN are the TRIAL (TEST) FUNCTIONS and w : � a � b �� ���

are the WEIGHTS

� Spectral Method is obtained by:

– selecting the BASIS FUNCTIONS ϕk to form an ORTHOGONAL system
under the weight w:

� ϕi� ϕk � w
 δik� i� k � IN and

– selecting the trial functions to coincide with the basis functions:
ψk
 ϕk� k � IN

with the weights w � � w ( SPECTRAL GALERKIN APPROACH ), or

– selecting the trial functions as
ψk
 δ � x� xk �� xk � � a� b ��

where xk are chosen in a non–arbitrary manner, and the weights are

w � � 1 ( COLLOCATION, “PSEUDO–SPECTRAL” APPROACH )
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METHOD OF WEIGHTED RESIDUALS (III)

� Note that the residual RN vanishes

– in the mean sense specified by the weight w in the Galerkin approach

– pointwise at the points xk in the collocation approach
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APPROXIMATION OF FUNCTIONS (I) —
GALERKIN METHOD

� Assume that the basis functions � ϕk � N
k� 1 form an orthogonal set

� Define the residual

RN � x �
 u� uN
 u�

N

∑
k� 0

ûkϕk

� Cancellation of the residual in the mean sense (with the weight w)

� RN� ϕi � w
 �
b

a �
u�

N

∑
k� 0

ûkϕk

�

ϕ̄i wdx
 0� i
 0�� � � � N

�� � denotes complex conjugation (cf. definition of the inner product)

� Orthogonality of the basis / trial functions thus allows us to determine the
coefficients ûk by evaluating the expressions

ûk
 �

b

a
u ϕ̄k wdx� k
 0�� � � � N

� Note that, for this problem, the Galerkin approach is equivalent to the LEAST

SQUARES METHOD .
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APPROXIMATION OF FUNCTIONS (II) —
COLLOCATION METHOD

� Define the residual

RN � x �
 u� uN
 u�

N

∑
k� 0

ûkϕk

� POINTWISE cancellation of the residual
N

∑
k� 0

ûkϕk � xi �
 u � xi �� i
 0�� � � � N

Determination of the coefficients ûk thus requires solution of an algebraic

system. Existence and uniqueness of solutions requires that det � ϕk � xi � � �� 0

(condition on the choice of the collocation points x j and the basis functions

ϕk)

� For certain basis pairs of basis functions ϕk and collocation points x j the

above system can be easily inverted and therefore determination of ûk may

be reduced to evaluation of simple expressions

� For this problem, the collocation method thus coincides with an

INTERPOLATION TECHNIQUE based on the set of points � x j �
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APPROXIMATION OF PDES (I) —
GALERKIN METHOD

� Consider a generic PDE problem

� 		

 		

�

Lu� f� 0 a 
 x 
 b

B � u� g � x� a

B � u� g � x� b �

where L is a linear, second–order differential operator, and B� and B�

represent appropriate boundary conditions (Dirichlet, Neumann, or Robin)

� Reduce the problem to an equivalent HOMOGENEOUS formulation via a
“lifting” technique, i.e., substitute u � ũ � v , where ũ is an arbitrary function
satisfying the boundary conditions above and the new (homogeneous)
problem for v is

� 		

 		

�

Lv� h� 0 a 
 x 
 b

B � v� 0 x� a

B � v� 0 x� b �

where h � f� L ũ

� The reason for this transformation is that the basis functions ϕk (usually)

satisfy homogeneous boundary conditions.
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APPROXIMATION OF PDES (II) —
GALERKIN METHOD

� The residual

RN � x �
 LvN� h� where vN


N

∑
k� 0

v̂kϕk � x �

satisfies (“by construction”) the boundary conditions

� Cancellation of the residual in the mean (cf. THE WEAK FORMULATION )

� RN� ϕi � w
 � LvN� h� ϕi � w� i
 0�� � � � N

Thus
N

∑
k� 0

v̂k � Lϕk� ϕi � w
 � h� ϕi � w� i
 0�� � � � N�

where the scalar product � Lϕk � ϕi � w can be accurately evaluated using

properties of the basis functions ϕi and � h � ϕi � w � ĥi

� An � N � 1 ��� � N � 1 � algebraic system is obtained with the matrix

determined by

– the properties of the basis functions � ϕk � N
k� 1

– the properties of the operator L
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APPROXIMATION OF PDES (III) —
COLLOCATION METHOD

� The residual (corresponding to the original inhomogeneous problem)

RN � x �
 LuN� f� where uN


N

∑
k� 0

ûkϕk � x �

� Pointwise cancellation of the residual, including the boundary nodes:

� 		

 		

�
LuN � xi � � f � xi � i� 1 � � � � � N� 1

B � uN � x0 � � g �

B � uN � xN � � g � �

This results in an � N � 1 ��� � N � 1 � algebraic system. Note that depending

on the properties of the basis � ϕ0 �� � � � ϕN � , this system may be singular.

� Sometimes an alternative formulation is useful, where the nodal values
uN � x j � j � 0 �� � � � N, rather than the expansion coefficients ûk, k � 0 �� � � � N
are unknown. The advantage is a convenient form of the expression for the
derivative

u � p �

N � xi �


N

∑
j� 0

d � p �

i j uN � x j ��

where d � p � is a p–TH ORDER DIFFERENTIATION MATRIX .
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ORTHONORMAL SYSTEMS (I) —
CONSTRUCTION

� THEOREM — Let H be a separable Hilbert space and T a compact

Hermitian operator. Then, there exists a sequence � λn � n � � and � Wn � n � �

such that

1. λn � � ,

2. the family � Wn � n � � forms A COMPLETE BASIS in H

3. T Wn � λnWn for all n � �

� Systems of orthogonal functions are therefore related to spectra of certain

operators, hence the name SPECTRAL METHODS
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ORTHONORMAL SYSTEMS (II) —
EXAMPLE # 1

� Let T : L2 � 0 � π � � L2 � 0 � π � be defined for all f � L2 � 0 � π � by T f � u, where
u is the solution of the Dirichlet problem

�
� u	 	 
 f

u � 0 �
 u � π �
 0

Compactness of T follows from the Lax–Milgram lemma and compact

embeddedness of H1 � 0 � π � in L2 � 0 � π � .

� EIGENVALUES AND EIGENVECTORS

λk
 1
k2 and Wk
 
 2sin � kx � for k � 1

� Thus, each function u � L2 � 0 � π � can be represented as

u � x �
 
 2 ∑
k � 1

ûkWk � x ��

where ûk � � u � Wk � L2

� 
 2
π �

π
0 u � x � sin � kx � dx .

� Uniform (pointwise) convergence is not guaranteed (only in L2 sense)!
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ORTHONORMAL SYSTEMS (III) —
EXAMPLE # 2

� Let T : L2 � 0 � π � � L2 � 0 � π � be defined for all f � L2 � 0 � π � by T f � u, where
u is the solution of the Neumann problem

�
� u	 	 � u
 f

u	 � 0 �
 u	 � π �
 0

Compactness of T follows from the Lax–Milgram lemma and compact

embeddedness of H1 � 0 � π � in L2 � 0 � π � .
� EIGENVALUES AND EIGENVECTORS

λk
 1
1 � k2 and W0 � x �
 1� Wk
 
 2cos � kx � for k � 1

� Thus, each function u � L2 � 0 � π � can be represented as

u � x �
 
 2 ∑
k � 0

ûkWk � x ��

where ûk � � u � Wk � L2

� 
 2
π �

π
0 u � x � cos � kx � dx .

� Uniform (pointwise) convergence is not guaranteed (only in L2 sense)!
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ORTHONORMAL SYSTEMS (IV) —
EXAMPLE # 3

� Expansion in SINE SERIES good for functions vanishing on the boundaries

� Expansion in COSINE SERIES good for functions with first derivatives

vanishing on the boundaries

� Combining sine and cosine expansions we obtain the FOURIER SERIES

EXPANSION with the basis functions (in L2 �� π � π � )
Wk � x �
 eikx� for k � 0

Wk form a Hilbert basis with better properties then sine or cosine series alone.

� FOURIER SERIES vs. FOURIER TRANSFORM —

– FOURIER TRANSFORM : F1 : L2 � � � � L2 � � � ,

F1 � u � � k �
 �

∞

� ∞
e

� ikxu � x � dx� k � �

– FOURIER SERIES : F2 : L2 � 0 � 2π � � l2, (i.e., bounded to discrete)

ûk
 F2 � u � � k �
 �

2π

0
e

� ikxu � x � dx� k
 0� 1� 2�� � �
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ORTHONORMAL SYSTEMS (V) —
POLYNOMIAL APPROXIMATION

� WEIERSTRASS APPROXIMATION THEOREM — To any function f � x � that

is continuous in � a � b � and to any real number ε � 0 there corresponds a

polynomial P � x � such that � P � x �� f � x � � C � a � b ��� ε, i.e. the set of

polynomials is DENSE in the Banach space C � a � b �

(C � a � b � is the Banach space with the norm � f � C � a � b � � maxx � � a � b 	
 f � x �


� Thus the power functions xk, k � 0 � 1 �� � � represent a natural basis in C � a � b �

� QUESTION — Is this set of basis functions useful?

NO! — SEE BELOW
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ORTHONORMAL SYSTEMS (VI) —
EXAMPLE

� Find the polynomial P̄N (of order N) that best approximates a function
f � L2 � a � b � [note that we will need the structure of a Hilbert space, hence
we go to L2 � a � b � , but C � a � b �� L2 � a � b � ], i.e.

�

b

a

� f � x �� P̄N � x � � 2 dx � �

b

a

� f � x �� PN � x � � 2 dx

where P̄N � x �
 ā0 � ā1x � ā2x2 � � � � � āN xN

� Using the formula ∑N
j� 0 ā j � e j � ek � � � f � ek � � j � 0 �� � � � N, where ek � xk

N

∑
k� 0

āk �

b

a
xk � j dx
 �

b

a
x j f � x � dx

N

∑
k� 0

āk
bk � j � 1� ak � j � 1

k � j � 1



�

b

a
x j f � x � dx

� The resulting algebraic problem is extremely ILL–CONDITIONED , e.g. for
a � 0 and b � 1

�A � k j
 1
k � j � 1
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ORTHONORMAL SYSTEMS (VII) —
POLYNOMIAL APPROXIMATION

� Much better behaved approximation problems are obtained with the use of

ORTHOGONAL BASIS FUNCTIONS

� Such systems of orthogonal basis functions are derived by applying the

SCHMIDT ORTHOGONALIZATION PROCEDURE to the system � 1 � x �� � � � xN �

� Various families of ORTHOGONAL POLYNOMIALS are obtained depending

on the choice of:

– the domain � a � b � over which the polynomials are defined, and

– the weight w characterizing the inner product ��
 � 
 � w used for

orthogonalization
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ORTHONORMAL SYSTEMS (VIII) —
ORTHOGONAL POLYNOMIALS

� Polynomials defined on the interval �� 1 � 1 �

– LEGENDRE POLYNOMIALS (w � 1)

Pk � x �
 �

2k � 1
2

1
2k k!

dk

dxk � x2� 1 � k� k
 0� 1� 2�� � �

– JACOBI POLYNOMIALS (w � � 1� x � α � 1 � x � β)

J � α � β �

k � x �
 Ck � 1� x � � α � 1 � x � � β dk

dxk � � 1� x � α � k � 1 � x � β � k � k
 0� 1� 2�� � � �

where Ck is a very complicated constant

– CHEBYSHEV POLYNOMIALS (w � 1

 1� x2 )

Tn � x �
 cos � k arccos � x � �� k
 0� 1� 2�� � � �

Note that Chebyshev polynomials are obtained from Jacobi polynomials

for α � β � � 1 � 2
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ORTHONORMAL SYSTEMS (IX) —
ORTHOGONAL POLYNOMIALS

� Polynomials defined on the PERIODIC interval �� π � π �

TRIGONOMETRIC POLYNOMIALS (w � 1)

Sk � x �
 eikx k
 0� 1� 2�� � �

� Polynomials defined on the interval � 0 � � ∞ �

LAGUERRE POLYNOMIALS (w � e� x)

Lk � x �


1
k!

ex dk

dxk � e � xxk �� k
 0� 1� 2�� � �

� Polynomials defined on the interval �� ∞ � � ∞ �

HERMITE POLYNOMIALS (w � 1)

Hk � x �
 �� 1 � k

� 2k k! 
 π � 1 � 2
ex2 dk

dxk e

� x2

� k
 0� 1� 2�� � �
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ORTHONORMAL SYSTEMS (X) —
ORTHOGONAL POLYNOMIALS

� What is the relationship between ORTHOGONAL POLYNOMIALS and

eigenfunctions of a COMPACT HERMITIAN OPERATOR (cf. Theorem on

page 75)?

� Each of the aforementioned families of ORTHOGONAL POLYNOMIALS forms
the set of eigenvectors for the following STURM–LIOUVILLE PROBLEM

d
dx � p � x �

dy
dx � � � q � x � � λr � x � � y
 0

a1y � a � � a2y	 � a �
 0

b1y � b � � b2y	 � b �
 0

for appropriately selected domain � a � b � and coefficients p, q, r, a1, a2, b1, b2.
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FOURIER SERIES (I) — CALCULATION OF
FOURIER COEFFICIENTS

� TRUNCATED FOURIER SERIES:

uN � x �


N

∑
k� � N

ûkeikx

� The series involves 2N � 1 complex coefficients of the form (weight w� 1):

ûk
 1
2π �

π

� π
ue

� ikx dx� k
 � N�� � � � N
� The expansion is redundant for real–valued u — the property of CONJUGATE

SYMMETRY û� k � ¯̂uk , which reduces the number of complex coefficients to

N � 1; furthermore, ℑ � û0 �� 0 for real u, thus one has 2N � 1 REAL

coefficients; in the real case one can work with positive frequencies only!

� Equivalent real representation:

uN � x �
 a0 �

N

∑
k� 1

� ak cos � kx � � bk sin � kx � � �

where a0 � û0, ak � 2ℜ � ûk � and bk � 2ℑ � ûk � .
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FOURIER SERIES (II) — UNIFORM
CONVERGENCE

� Consider a function u that is continuous, periodic (with the period 2π) and

differentiable; note the following two facts:

– The Fourier coefficients are always less than the average of u

� ûk �
 ����

1
2π �

π

� π
u � x � eikx dx

���� � M � u ��

1
2π �

π

� π

� u � x � � dx

– If v � dαu
dxα � u � α � , then ûk � v̂k

� ik � α

� Then, using integration by parts, we have

ûk
 1
2π �

π

� π
u � x � e � ikx dx
 1

2π � u � x �

e � ikx

� ik �

π

� π

� 1
2π �

π

� π
u	 � x �

e � ikx

� ik
dx

� Repeating integration by parts p times

ûk
 �� 1 � p 1
2π �

π

� π
u � p � � x �

e � ikx

�� ik � p dx
 � � ûk � � M � u � p � �
� k � p

Therefore, the more regular is the function u, the more rapidly its Fourier

coefficients tend to zero as
 n
 � ∞
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FOURIER SERIES (III) — UNIFORM
CONVERGENCE

� We have

� ûk � � M � u	 	 �
� k � 2


 � ∑
k 
� � ûkeikx � � û0 � ∑

n �� 0

M � u	 	 �

n2

The latter series converges ABSOLUTELY

� Thus, if u is TWICE CONTINUOUSLY DIFFERENTIABLE and its first

derivative is CONTINUOUS AND PERIODIC with period 2π, then its Fourier

series uN � PNu CONVERGES UNIFORMLY to u for
 N
 � ∞

� SPECTRAL CONVERGENCE – if φ � C∞
p �� π � π � , then for all α � 0 there

exists a positive constant Cα such that
 φ̂k
� Cα

� n � α , i.e., for a function with an

infinite number of smooth derivatives, the Fourier coefficients vanish faster

than algebraically
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FOURIER SERIES (IV) — RATES OF
CONVERGENCE

� RATE OF DECAY of Fourier transform of a function f : � � � is determined
by its SMOOTHNESS ; functions defined on a bounded (periodic) domain are
a special case

� THEOREM [a collection of several related results, see also Trefethen (2000)] — Let
u � L2 � � � have Fourier transform û.

– If u has p� 1 continuous derivatives in L2 � � � for some p � 0 and a p–th
derivative of bounded variation, then û � k �
 O � � k � � p � 1 � as � k �� ∞,

– If u has infinitely many continuous derivatives in L2 � � � , then û � k �
 O � � k � � m � as

� k � � ∞ for EVERY m � 0 (the converse also holds)

– If there exist a� c � 0 such that u can be extended to an ANALYTIC function in the
complex strip � ℑ � z � �	 a with 
 u �� � iy � 
 � c uniformly for all y � �� a� a � , where


 u � � � iy � 
 is the L2 norm along the horizontal line ℑ � z �
 y, then ua � L2 � � � ,
where ua � k �
 ea � k � û � k � (the converse also holds)

– If u can be extended to an ENTIRE function (i.e., analytic throughout the complex
plane) and there exists a � 0 such that � u � z � �
 o � ea � z � � as � z �� ∞ for all complex
values z �� , the û has compact support contained in �� a� a � ; that is û � k �
 0 for
all � k � � a (the converse also holds)
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FOURIER SERIES (V) — RADII OF
CONVERGENCE

� DARBOUX’S PRINCIPLE [see Boyd (2001)] — for all types of spectral

expansions (and for ordinary power series), both the domain of convergence

in the complex plane and the rate of convergence are controlled by the

location and strength of the GRAVEST SINGULARITY in the complex plane

(“singularities” in this context denote poles, fractional powers, logarithms

and discontinuities of f � z � or its derivatives)
� Thus, given a function f : � 0 � 2π �� � , the rate of convergence of its Fourier

series is determined by the properties of its COMPLEX EXTENSION

F : 
 � 
 !!!

� Shapes of regions of convergence:

– Taylor series — circular disk extending up to the nearest singularity

– Fourier (and Hermite) series — horizontal strip extending vertically up to the
nearest singularity

– Chebyshev series — ellipse with foci at x
 � 1 and extending up to the nearest
singularity
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FOURIER SERIES (VI) —
PERIODIC SOBOLEV SPACES

� Let Hr
p � I � be a PERIODIC SOBOLEV SPACE , i.e.,

Hr
p � I �
 � u : u � α � � L2 � I �� α
 0�� � � � r � �

where I � �� π � π � is a periodic interval. The space C∞
p � I � is dense in Hr

p � I �

� The following two norms can be shown to be EQUIVALENT in Hr
p:


 u 
 r

�

∑
k 
� � 1 � k2 � r � ûk � 2

�

1 � 2

� 
 u 
 � r

�

r

∑
α� 0

Cα
r 
 u � α � 
 2

�

1 � 2

Note that the first definition is naturally generalized for the case when r is non–integer!

� The PROJECTION OPERATOR PN commutes with the derivative in the
distribution sense:

� PN u � � α �
 ∑

� k �� N

� ik � αûkWk
 PN u � α �
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FOURIER SERIES (VII) —
APPROXIMATION ERROR ESTIMATES IN Hs

p � I �

� Let r � s � � with 0� s� r; then we have:


 u� PN u 
 s � � 1 � N2 �

s � r
2 
 u 
 r� for u � Hr

p � I �

Proof:


 u� PN u 
 2
s
 ∑

� k �� N

� 1 � k2 � s � r � r � ûk � 2 � � 1 � N2 � s � r ∑

� k � � N

� 1 � k2 � r � ûk � 2

� � 1 � N2 � s � r 
 u 
 2
r

� Thus, accuracy of the approximation PNu is better when u is SMOOTHER ;

more precisely, for u � Hr
p � I � , the L2 leading order error is O � N

� r � which

improves when r increases.
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FOURIER SERIES (VIII) —
APPROXIMATION ERROR ESTIMATES IN L∞ � I �

� First, a useful lemma (SOBOLEV INEQUALITY) — let u � H1
p � I � , then there

exists a constant C such that


 u 
 2
L∞ � I � � C 
 u 
 0 
 u 
 1

Proof: Suppose u � C∞
p � I � ; note the following facts

– û0 is the average of u

– From the mean value theorem: � x0 � I such that û0 � u � x0 �

Let v � x � � u � x �� û0, then

1
2 � v � x � � 2
 �

x

x0

v � y � v	 � y � dy �
� �

x

x0

� v � y � � 2 dy

�

1 � 2

� �

x

x0

� v	 � y � � 2 dy

�

1 � 2

� 2π 
 v 
 
 v	 


� u � x � � � � û0 � � � v � x � � � � û0 � � 2π1 � 2 
 v 
 1 � 2 
 v	 
 1 � 2 � C 
 u 
 1 � 2
0 
 u 
 1 � 2

1 �

since v	 � u	 , � v �� � u � and
 û0
� � u � .
As C∞

p � I � is dense in H1
p � I � , the inequality also holds for any u � H1

p � I � .
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FOURIER SERIES (IX) —
APPROXIMATION ERROR ESTIMATES IN L∞ � I �

� An estimate in the norm L∞ � I � follows immediately from the previous
lemma and estimates in the Hs

p � I � norm


 u� PN u 
 2
L∞ � I � � C � 1 � N2 � �

r
2 � 1 � N2 �

1 � r
2 �

where u � Hr
p � I �

� Thus for r 
 1


 u� PN u 
 2
L∞ � I �
 O � N

1
2

� r �

� UNIFORM CONVERGENCE for all u � H1
p � I �

(Note that u need only to be CONTINUOUS , therefore this result is stronger

than the one given on page 87)
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FOURIER SERIES (X) —
SPECTRAL DIFFERENTIATION

� Assume we have a truncated Fourier series of u � x �

uN � x �
 PN u � x �


N

∑
k� � N

ûkeikx

� The Fourier series of the p–th derivative of u � x � is

u � p �
N � x �
 PN u � p �


N

∑
k� � N

� ik � pûkeikx


N

∑
k� � N

û � p �

k eikx

� Thus, using the vectors Û � � û� N �� � � � ûN � T and Û � p � � � û � p �� N �� � � � û � p �

N � T , one

can introduce the SPECTRAL DIFFERENTIATION MATRIX � � p � defined in
Fourier space as Û � p � � ˆ� � p � Û , where

ˆ�� p � � ip

� ����������
�

� N p

. . .

0

. . .

N p
� ����������
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FOURIER SERIES (XI) —
SPECTRAL DIFFERENTIATION

� Properties of the spectral differentiation matrix in Fourier representation

– � � p � is DIAGONAL

– � � p � is SINGULAR (diagonal matrix with a zero eigenvalue)

– after desingularization the 2–norm condition number of � � p � grows in

proportion to N p (since the matrix is diagonal, this is not an issue)

� QUESTION — how to derive the corresponding spectral differentiation

matrix in REAL REPRESENTATION ?

Will see shortly ...
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (I)

� We need to evaluate the expansion (Fourier) coefficients

ûk
 � u� φk � w
 �

b

a
w � x � u � x � φk � x � dx� k
 0�� � � � N

� QUADRATURE is a method to evaluate such integrals approximately.

� GAUSSIAN QUADRATURE seeks to obtain the best numerical estimate of an

integral �

b
a w � x � f � x � dx by picking OPTIMAL POINTS xi, i � 1 �� � � � N at

which to evaluate the function f � x � .

� THE GAUSS–JACOBI INTEGRATION THEOREM — If the � N � 1 �

interpolation points � xi � N
i� 0 are chosen to be the zeros of PN� 1 � x � , where

PN� 1 � x � is the polynomial of degree � N � 1 � of the set of polynomials which
are orthogonal on � a � b � with respect to the weight function w � x � , then the
quadrature formula

�

b

a
w � x � f � x � dx


N

∑
i� 0

wi f � xi �

is EXACT for all f � x � which are polynomials of at most degree � 2N � 1 �
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (II)

� DEFINITION — Let K be a non-empty, Lipschitz, compact subset of � d . Let

lq 
 1 be an integer. A quadrature on K with lq points consists of:

– A set of lq real numbers � ω1 �� � � � ωlq � called QUADRATURE WEIGHTS

– A set of lq points � ξ1 �� � � � ξlq � in K called GAUSS POINTS or

QUADRATURE NODES

The largest integer k such that 
 p � Pk, � K p � x � dx � ∑
lq
l� 1 ωl p � ξl � is called

the quadrature order and is denoted by kq

� REMARK — As regards 1D bounded intervals, the most frequently used

quadratures are based on Legendre polynomials which are defined on the

interval � 0 � 1 � as Ek � t � � 1
k!

dk

dtk � t2� t � k, k 
 0. Note that they are orthogonal

on � 0 � 1 � with the weight W � 1.
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (III)

� Theorem — Let lq 
 1, denote by ξ1 �� � � � ξlq the lq roots of the Legendre

polynomial Elq � x � and set ωl � �

1
0 ∏

lq
j� 1
j �� l

t� ξ j

ξl� ξ j
dt. Then

� ξ1 �� � � � ξlq � ω1 �� � � � ωlq � is a quadrature of order kq � 2lq� 1 on � 0 � 1 �

Proof — Let � L1 � dots � Llq � be the set of Lagrange polynomials associated

with the Gauß points � ξ1 �� � � � ξlq � . Then ωl � �

1
0 Ll � t � dt, 1� l� lq

– when p � x � is a polynomial of degree less than lq, we integrate both sides

of the identity p � t � � ∑
lq
l� 1 p � ξl � Ll � t � dx, 
 t � � 0 � 1 � and deduce that the

quadrature is exact for p � x �
– when the polynomial p � x � has degree less than 2lq we write it in the form

p � x � � q � x � Elq � x � � r � x � , where both q � x � and r � x � are polynomials of
degree less than lq; owing to orthogonality of the Legendre polynomials,
we conclude

�

1

0
p � t � dt
 �

1

0
r � t � dt


lq

∑
l� 1

ωl r � ξl �

lq

∑
l� 1

ωl p � ξl ��

since the points ξl are also roots of Elq
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SPECTRAL GALERKIN METHOD —
NUMERICAL QUADRATURES (IV)

� PERIODIC GAUSSIAN QUADRATURE — If the interval � a � b � � � 0 � 2π � is

periodic, the weight w � x �� 1 and PN � x � is the trigonometric polynomial of

degree N, the Gaussian quadrature is equivalent to the TRAPEZOIDAL RULE

(i.e., the quadrature with unit weights and equispaced nodes)

� Evaluation of the spectral coefficients:

– Assume � φ � N
k� 1 is a set of basis functions orthogonal under the weight w

ûk
 �

b

a
w � x � u � x � φk � x � dx �
 �

N

∑
i� 0

w � xi � u � xi � φk � xi �� k
 0�� � � � N�

where xi are chosen so that φN� 1 � xi � � 0, i � 0 �� � � � N
– Denoting Û � � û0 �� � � � ûN � T and U � � u � x0 � �� � � � u � xN � � T we can write the

above as

Û � � U �

where � is a TRANSFORMATION MATRIX
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SPECTRAL INTERPOLATION (I)

� INTERPOLATION is a way of determining an expansion of a function u in

terms of some ORTHONORMAL BASIS FUNCTIONS alternative to Galerkin

spectral projections

� Assuming that SN � span � ei0k �� � � � eiNx � , we can determine an
INTERPOLANT v � SN of u, such that v coincides with u at 2N � 1 points

� x j � � j �� N defined by

x j
 jh� � j � � N� where h
 2π
2N � 1

� For the interpolant we set
v � x �
 ∑

� k � � N

akeikx

where the coefficients ak, k � 1 �� � � � N can be determined by solving the
algebraic system (cf. page 71)

∑

� k � � N

eikx j ak
 u � x j �� � j � � N

with the matrix � k j � eikx j , k � j � 1 �� � � � N
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SPECTRAL INTERPOLATION (II)

� The system can be rewritten as

∑

� k �� N

W jk ak
 u � x j �� � j � � N

where W � eih � e
2iπ

2N � 1 is the principal root of order � 2N � 1 � of unity (since

W jk � � e
ih

�

jk
)

� The matrix �� � jk � W jk is unitary (i.e. � T � � 	 � 2N � 1 � )
Proof: Examine the expression

1
2N� 1


 T
 � � � � 1
2N� 1 ∑


 j 
� N

W jkW

� jl� δkl

– If k
 l, then W jkW � jl
 W j � k � l �
 W 0
 1

– If k �
 l, define ω
 W k � l , then

1
2N� 1 ∑


 j 
 � N

W jkW

� jl� 1
2N� 1 ∑


 j 
 � N

ω j� 1
M

M � 1

∑
j� � 0

ω j�

where M
 2N � 1, j	 
 j if 0 � j � N and j	 
 j � M if� N � j	 0, so that
ω j � M
 ω j . Using the expression for the sum of a finite geometric series
completes the proof: � 1� ω � ∑M � 1

j� � 0 ω j�
 1� ωM
 0
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SPECTRAL INTERPOLATION (III)
� Since the matrix � is unitary and hence its INVERSE is given by its

TRANSPOSE , the Fourier coefficients of the INTERPOLANT of u in SN can be
calculated as follows:

ak
 1
2N � 1 ∑

� k � � N

z jW

� jk� where z j
 u � x j �

� The mapping

� z j � � j �� N

� � � ak � � k �� N

is referred to as DISCRETE FOURIER TRANSFORM (DFT)

� Straightforward evaluation of the expressions for ak, k � 1 �� � � � N
(matrix–vector products) would result in the computational cost O � N2 � ;
clever factorization of this operation, known as the FAST FOURIER

TRANSFORMS (FFT) , reduces this cost down to O � N log � N � �

� See www.fftw.org for one of the best publicly available implementations of

the FFT.
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SPECTRAL INTERPOLATION (IV)

� Let PC : C0
p � I � � SN be the mapping which associates with u its interpolant

v � SN . Let ��
 � 
 � N be the GAUSSIAN QUADRATURE approximation of the
inner product ��
 � 
 �

� u� v �
 �

π

� π
uvdx �
 1

2N � 1 ∑

� j �� N

u � x j � v � x j �	� � u� v � N

� By construction, the operator PC satisfies:

� PCu � � x j �
 u � x j �� � j � � N

and therefore also (orthogonality of the defect to SN )

� u� PCu� vN � N
 0�� vN � SN

� By the definition of PN we have

� u� PNu� vN �
 0�� vN � SN

� Thus, PCu � x � � ∑N
k� � N � u � eikx � Neikx can be obtained analogously to

PNu � x � � ∑N
k� � N � u � eikx � eikx by replacing the scalar product ��
 � 
 � with the

DISCRETE SCALAR PRODUCT ��
 � 
 � N
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SPECTRAL INTERPOLATION (V)

� Thus, the INTERPOLATION COEFFICIENTS ak are equivalent to the FOURIER

SPECTRAL COEFFICIENTS ûk when the latter are evaluated using the

GAUSSIAN QUADRATURES

� The two scalar products coincide on SN , i.e.

� uN� vN �
 � uN� vN � N�� uN� vN � SN�

hence for u � SN , ûk � ak, k � 1 �� � � � N

� Proof — examine the numerical integration formula

1
2π �

π

� π
f � x � dx �
 1

2N � 1 ∑

� j � � N

f � x j � ;

then for every f � ∑N
k� � N ûkeikx � SN we have

1
2π �

π

� π
eikx dx
 1

2N � 1 ∑

� j � � N

eikx j
 1
2N � 1 ∑

� j � � N

W jk

�

1 k
 0

0 otherwise

Thus, for the uniform distribution of x j, the Gaussian (trapezoidal) formula is

EXACT for f � SN
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SPECTRAL INTERPOLATION (VI)

� Relation between Fourier coefficients ûk of a function u � x � and Fourier
coefficients ak of its interpolant; assume that u � x � �� SN

ûk
 1
2π �

π

� π
uW k dx� Wk � x �
 eikx

ak
 1
2N � 1 ∑

� j � � N

u � x j � Wk � x j �

� THEOREM — For u � C0
p � I � we have the relation

ak
 ∑
l 
�

ûk � lM� where M
 2N � 1

Proof — Consider the set of basis functions (in L2 � I � ) Uk � eikx. We have:

� Uk� Un � N
 1
2N � 1 ∑

� j �� N

Uk � x j � Un � x j �


1
2N � 1 ∑

� j �� N

W j � k � n �

�

1 k
 n � mod M �

0 otherwise

Since PCu � ∑ � j �� N a jWj , we infer from � PCu � Wk � N � � u � Wk � N that

ak
 � PCu� Wk � N
 � u� Wk � N

�

∑
n 
�

ûnWn� Wk

� N


 ∑
n 
 �

ûn � Wn� Wk � N


 ∑
l 
�

ûk � lM
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SPECTRAL INTERPOLATION (VII)
� Thus

u � x j �
 v � x j �


∞

∑
k� � ∞

ûkeikx j
 ∑

� k �� N

akeikx j
 ∑

� k �� N �

ûk � ∑
l 
� � � 0 �

ûk � lM

�

eikx j

� EXTREMELY IMPORTANT COROLLARY CONCERNING INTERPOLATION

— two trigonometric polynomials eik1x and eik2x with different frequencies k1

and k2 are equal at the collocation points x j,
 j
� N when

k2� k1 � l � 2N � 1 � � l � 0 �� 1 �� � � �

Therefore, give a set of values at the collocation points x j,
 j
� N, it is

impossible to distinguish between eik1x and eik2x. This phenomenon is

referred to as ALIASING

� Note, however, that the modes appearing in the alias term correspond to

frequencies larger than the cut–off frequency N.
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SPECTRAL INTERPOLATION (VIII) —
ERROR ESTIMATES IN Hs

p � I �

� Suppose s� r, r � 1
2 are given, then there exists a constant C such that if

u � Hr
p � I � , we have


 u� PCu 
 s � C � 1 � N2 �

s � r
2 
 u 
 r

Outline of the proof:
Note that PC leaves SN invariant, therefore PCPN � PN and we may thus write

u� PCu
 u� PN u � PC � PN� I � u

Setting w � � I� PN � u and using the “triangle inequality” we obtain


 u� PCu 
 s � 
 u� PN u 
 s � 
 PCw 
 s

– The term � u� PNu � s is upper–bounded using theorem from page 91

– Need to estimate � PCw � s — straightforward, but tedious ...
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SPECTRAL INTERPOLATION (IX)

� Until now, we defined the Discrete Fourier Transform for an ODD number

� 2N � 1 � of grid points

� FFT algorithms generally require an EVEN number of grid points

� We can define the discrete transform for an EVEN number of grid points by
constructing the interpolant in the space S̃N for which we have
dim � S̃N � � 2N. To do this we choose:

x̃ j
 jh̃� � N � 1 � j � N

h̃
 π
N

� All results presented before can be established in the case with 2N grid

points with only minor modifications

� However, now the N-th Fourier mode ûN does not have its complex

conjugate! This coefficient is usually set to zero (ûN � 0) to avoid an

uncompensated imaginary contribution resulting from differentiation

� ODD or EVEN collocation depending on whether M � 2N � 1 or M � 2N
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SPECTRAL INTERPOLATION (X)

� Before we focused on representing the INTERPOLANT as a Fourier series

v � x j � � ∑N
k� � N akeikx j

� Alternatively, we can represent the INTERPOLANT using the nodal values as

(assuming, for the moment, infinite domain x � � )

v � x � �

∞

∑
j� � ∞

u � x j � Cj � x � �

where Cj � x � is a CARDINAL FUNCTION with the property that C j � xi � � δi j

(i.e., generalization of the LAGRANGE POLYNOMIAL for infinite domain)

� In an infinite domain we have the WHITTAKER CARDINAL or SINC function

Ck � x � � sin � π � x� kh � � h �

π � x� kh � � h

� sinc � � x� kh � � h � �

where sinc � x � � sin � πx �
πx

� Proof — the Fourier transform of δ j0 is δ̂ � k � � h for all k � �� π � h � π � h � ;
hence, the interpolant of δ j0 is v � x � � h

2π �

π � h

� π � h eikh dk � sin � πx � h �

πx � h
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SPECTRAL INTERPOLATION (XI)
� Thus, the spectral interpolant of a function in an INFINITE domain is a linear

combination of WHITTAKER CARDINAL functions

� In a PERIODIC DOMAIN we still have the representation

v � x � �

N� 1

∑
j� 0

u � x j � S j � x � �

but now the CARDINAL FUNCTIONS have the form

S j � x � � 1
N

sin

�

N � x� x j �

2

�

cot

�
� x� x j �

2

�

� Proof — similar to the previous (unbounded) case, except that now the

interpolant in given by a DISCRETE Fourier Transform

� The relationship between the Cardinal Functions corresponding to the

PERIODIC and UNBOUNDED domains

S0 � x � � 1
2N

sin � Nx � cot � x � 2 � �

∞

∑
m� � ∞

sinc
�

x� 2πm
h

�
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SPECTRAL DIFFERENTIATION (I)

� Two ways to calculate the derivative w � x j � � u	 � x j � based on the values

u � x j � , where 0� j� 2N � 1; denote U � � u0 �� � � � u2N� 1 � T and

U	 � � u	 0 �� � � � u	 2N� 1 � T

� METHOD ONE — approach based on differentiation in Fourier space:

– calculate the vector of Fourier coefficients Û � � U

– apply the diagonal differentiation matrix Û	 � ˆ� Û (cf. page 94)

– return to real space via inverse Fourier transform U � � T Û

� REMARK — formally we can write

U	 � � T ˆ� � U �

however in practice matrix operations are replaced by FFTs
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SPECTRAL DIFFERENTIATION (II)

� METHOD TWO — approach based on differentiation (in real space) of the
interpolant u	 � x j � � v	 � x j � � ∑N� 1

j� 0 u � x j � S	 j � x � , where the cardinal function
has the following derivatives

S	 � x j �


�
�

�

0� j
 0 � mod N �

1
2 �� 1 � j cot � jh � 2 �� j �
 0 � mod N �

� Thus, since the interpolant is a linear combination of shited Cardinam
Functions, the differentiation matrix has the form of a TOEPLITZ
CIRCULANT matrix

� �
	





















































�

0 � 1
2 cot �� 1h � 
 2 �

� 1
2 cot �� 1h � 
 2 �

.
.
.

.
.
. 1

2 cot �� 2h � 
 2 �

1
2 cot �� 2h � 
 2 �

.
.
. � 1

2 cot �� 3h � 
 2 �

� 1
2 cot �� 3h � 
 2 �

.
.
.

.

.

.

.

.

.

.
.
.

.
.
. 1

2 cot �� 1h � 
 2 �

1
2 cot �� 1h � 
 2 � 0

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

� Higher–order derivatives obtained calculating S � p � � x j �


