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SOLUTION OF A MODEL ELLIPTIC PROBLEM (I)
� We are interested in a PARTIAL DIFFERENTIAL EQUATION (a boundary

value problem) of the general form Lu � f

� We will look for solutions in the form:

uN � x � � ∑

� k �� N

ûkeikx �

�

2N � 1

∑
j� 1

u � x j � S j � x � �

where S j � x � is the periodic cardinal function centered at x j

� For the above model problem we will analyze:

– spectral Galerkin method

– spectral Collocation method

	 variant with the FOURIER COEFFICIENTS ûk as the unknowns

	 variant with the NODAL VALUES u � x j � as the unknowns
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SOLUTION OF A MODEL ELLIPTIC PROBLEM
(II)

� Consider the following 1D second–order elliptic problem in a periodic
domain Ω � 
 0 � 2π �

Lu� νu
 
 � au
 � bu� f �

where ν, a and b are constant and f � f � x � is a smooth 2π–periodic function.

� For ν � 10, a � 1, b � 5 and the RHS function

f � x � � esin � x �
� ν � cos2 � x ��� sin � x � ��� acos � x �� b �

the solution is

u � x � � esin � x �

� For the GALERKIN approach we are interested in 2π–periodic solutions in

the form

uN � x � � ∑

� k �� N

ûkeikx
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SOLUTION OF AN ELLIPTIC PROBLEM —
GALERKIN APPROACH (I)

� RESIDUAL

RN � x �� LuN � f� ∑

� k �� N

ûkLeikx � f

� Cancellation of the residual in the mean (setting the projections on the basis
functions Wn � x � � einx equal to zero)

� RN � Wn ��

N

∑
k� � N

ûk � Leikx � einx � � � f � einx �� 0 � n� � N �� � � � N

� Noting that Leikx � �� νk2� iak� b � eikx  Gkeikx we obtain

N

∑
k� � N

Gkûk !

2π

0
ei " k � n # dx� f̂n � n� � N �� � � � N

� Assuming Gk $� 0, we obtain the GALERKIN EQUATIONS for ûk

Gkûk� f̂k � k� � N �� � � � N

– The Galerkin equations are DECOUPLED

– Since u is real, it is necessary to calculate ûk for k % 0 only
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (I)

� RESIDUAL (with the expansion coefficients ûk as unknowns)

RN � x �� LuN � f� ∑

� k �� N

ûkLeikx � f

� Canceling the residual pointwise at the collocation points x j, j � 1 �& & & � M
N

∑
k� � N

� Gkûk � f̃k � eikx j� 0 � j� 1 �� � � � M

where (note the ALIASING ERROR ) f̃k � f̂k� ∑l '( ) * 0 + f̂k � lM

� Thus, the COLLOCATION EQUATIONS for the Fourier coefficients

Gkûk� f̃k� f̂k � ∑
l ,- . / 0 0

f̂k 1 lM � k� � N �� � � � N

– Formally, the GALERKIN and COLLOCATION methods are DISTINCT

– In practice, the projection � f � eikx � is evaluated using FFT and therefore

also involves aliasing errors. Therefore, for the present problem, the two

approaches are NUMERICALLY EQUIVALENT .
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (II)

� RESIDUAL (with the nodal values uN � x j � , j � 1 �& & & � M, as unknowns)

RN � x �� LuN � f

� Canceling the residual pointwise at the collocation points x j, j � 1 �& & & � M

�RN � x1 � �� � � � RN � xM � � T� � UN � F� � ν� 2 � a� 1 � b� � UN � F� 0 �

where UN � 
 uN � x1 � �& & & � uN � xM � � T and � 1 and � 2 are the differentiation

matrices.

� Derivation of the DIFFERENTIATION MATRICES

u " p #N � x j �� ∑
k

� ik � pûkeikx j

ûk�

1
M

M

∑
j� 1

uN � x j � e

� ikx j

� ���
����	
� 
 u " p #N � xi ��

M

∑
j� 1

d " p #i j uN � x j �
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (III)

� Differentiation Matrices (for even collocation, i.e., IN � � N� 1 �& & & � N and
M � 2N)

d " 1 #i j

�

�
� 


1
2 � � 1 � i 1 j cot � hi j � if i �� j

0 if i� j
d " 2 #i j

�

���
� ��


1
4 � � 1 � i 1 jN � � � 1 � i 1 j 1 1

2sin2 � hi j �

if i �� j

� � N � 1 � � N � 2 �

12
if i� j

� Remarks:

– The differentiation matrices are full (and not so well–conditioned ...), so

the system of equations for uN � x j � is now COUPLED

– For constant coefficient PDEs the present approach is therefore inferior

to the first collocation approach with the Fourier coefficients used as

unknowns

– Note the relationship to the banded matrices obtained when

approximating differential operators using finite differences

� QUESTION — Derive the above differentiation matrices, also for the case of

odd collocation
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NYQUIST–SHANNON SAMPLING THEOREM

� If a periodic function f � x � has a Fourier transform f̂k � 0 for � k �� M, then it

is completely determined by providing the function values at a series of

points spaced ∆x � 1
2M apart. The values fn � f � n

2M � are called the

SAMPLES OF f � x � .

� The minimum sampling frequency that allows for reconstruction of the

original signal, that is 2M samples per unit distance, is known as the

NYQUIST FREQUENCY . The time in between samples is called the

NYQUIST INTERVAL .

� The NYQUIST–SHANNON SAMPLING THEOREM is a fundamental tenet in

the field of INFORMATION THEORY (originally formulated by Nyquist in

1928, but formally proved by Shannon only in 1949)
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PDES WITH VARIABLE COEFFICIENTS —
GALERKIN APPROACH (I)

� Consider again the problem Lu � νu� � � au� � bu � f , but assume now that

the coefficient a is a function OF SPACE a � a � x �

� The following Galerkin equations are obtained for ûk

� νk2ûk � i
N

∑
p� � N

pâk � pûp � bûk� f̂k � k� � N �� � � � N �

where a � x ��� � aN � x � � ∑N
k�� N âkeikx and f � x �� � fN � x � � ∑N

k�� N f̂keikx;
Note that

N

∑
q� � N

âqeiqx
N

∑
p� � N

ûpeipx�

N

∑
q � p� � N

âqûpei " q 1 p # x�

2N

∑
k� � 2N

N

∑
q � p�� N
q 1 p� k

âqûpeikx

�

2N

∑
k� � 2N

N

∑
p� � N

âk � pûpeikx � where âq � ûq� 0 � for � q �� N

� Now the Galerkin equations are COUPLED (a system of equations has to be

solved)
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I)

� With FOURIER COEFFICIENTS ûk as unknowns, the collocation equations are
�

N

∑
k�� N

� νk2� b � ûkeikx j� a � x j �

N

∑
k� � N

ikûkeikx j � f � x j � � j � 1 �& & & � M

� Approximations of the Fourier coefficients of a � x � and f � x � , âc
k and f̂ c

k ,
respectively, are calculated using the Discrete Fourier Transform;

a � x j �

N

∑
k�� N

ikûkeikx j �

N

∑
p�� N

âc
peipx j

N

∑
q�� N

iqûqeiqx j �

i
N

∑
k�� N

� �
�

N

∑
q � p�� N
q � p� k

qâc
pûq �

N

∑
q � p�� N

q � p� k � N

qâc
pûq �

N

∑
q � p�� N

q � p� k� N

qâc
pûq

� �
�

eikx j

� i
N

∑
k�� N

Ŝkeikx j

� The resulting algebraic system is

� νk2ûk� iŜk� bûk � f̂k � k � � N �& & & � N �
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (II)

� Expressing (hypothetically) a � x � and f � x � with INFINITE Fourier series we
obtain

au �			 x� x j

� i
N

∑
k�� N

� Ŝ
 0 �

k � Ŝ
 1 �

k � Ŝ
 2 �

k � Ŝ
 3 �

k � eikx j

� i
N

∑
k�� N

� �
�

N

∑
q � p�� N
q � p� k

qâc
pûq �

∞

∑
m�� ∞
m �� 0

N

∑
q � p�� N
q � p� k

qâc
p � mM ûq

�

∞

∑
m�� ∞

N

∑
q � p� � N

q � p� k � N

qâc
p � mM ûq �

∞

∑
m�� ∞

N

∑
q � p�� N

q � p� k� N

qâc
p � mM ûq

� �
�

� The collocation equation become

� νk2ûk � iŜ " 0 #k � i 
 Ŝ " 1 #k � Ŝ " 2 #k � Ŝ " 3 #k � � bûk� f̂ e
k �

∞

∑
m�� ∞
m �� 0

f̂ e
k 1 mM � k� � N �� � � � N �

� Note that the terms IN RED are absent in the corresponding GALERKIN

FORMULATION ; hence the two approaches are not NUMERICALLY

EQUIVALENT anymore.
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PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (III)

� With the NODAL VALUES u � x j � , j � 1 �& & & � M as unknowns, the collocation
equations are (cf. 117)

� ν� 2 � � 
 � b� � UN� F �

where the matrix � � �
� a � x j � d �

1 �

jk � , j � k � 1 �& & & � M

� Again, solution of an algebraic system is required
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FOURIER TRANSFORMS IN HIGHER DIMENSIONS

� Consider a function u � u � x � y � 2π–periodic in both x and y;
DIRECT DISCRETE FOURIER TRANSFORM

ûkx � ky

� 1
2π !

2π

0 �

1
2π !

2π

0
u � x � y � e

� ikxx dx

�

e

� ikyy dy� 1
4π2 !

2π

0 !

2π

0
u � x � y � e

� ik� r dxdy �

where k � 
 kx � ky � is the WAVEVECTOR and r � 
 x � y � is the position vector.

� Representation of a function u � u � x � y � as a DOUBLE FOURIER SERIES

u � x � y ��

N

∑
kx � ky� � N

ûkx � ky ei " kxx 1 kyy #�

N

∑
kx � ky� � N

ûkx � ky eik� r

� Fourier transforms in two (and more) dimensions can be efficiently

performed using most standard FFT packages.
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NONLINEAR EVOLUTION PDES
� Replacing the term au� with the NONLINEAR the term uu� and applying

Galerkin or collocation method leads to a SYSTEM OF NONLINEAR

EQUATIONS that need to be solved using iterative techniques

� From now on we will focus on TIME–DEPENDENT (evolution) PDEs and as a
model problem will consider the BURGERS EQUATION

�
∂t u � u∂xu � ν∂xxu� 0 in � 0 � 2π �� � 0 � T �

u � x �� u0 � x � at t� 0

Note that steady problems can sometimes be solved as a steady limit of

certain time–dependent problems.

� Looking for solution in the form

uN � x � t ��

N

∑
k� � N

ûk � t � eikx

Note that the expansion coefficients ûk � t � are now FUNCTIONS OF TIME

� Denote by un
N the approximation of uN at time tn � n∆t, n � 0 � 1 �& & &
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NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (I)

� Time–discretization of the residual RN � x � t �

Rn
N�

un 1 1
N

� un
N

∆t

� un
N ∂xun

N

� ν∂xxun 1 1
N

Points to note:

– EXPLICIT treatment of the nonlinear term avoids costly iterations

– IMPLICIT treatment of the linear viscous term allows one to mitigate the

stability restrictions on the time step ∆t

– here using for simplicity first–order accurate explicit/implicit Euler —

can do much better than that

� system of equations obtained by applying the GALERKIN FORMALISM

�

1
∆t

� νk2

�

ûn 1 1
k

� 1
∆t

ûn
k

� i
N

∑
p � q�� N
p 1 q� k

qûn
pûn

q � k� � N �� � � � N

Note truncation of higher modes in the nonlinear term.
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NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (II)

� Evaluation of the nonlinear i∑N
p � q�� N
p � q � k

qûn
pûn

q term in Fourier space results in a

CONVOLUTION SUM which requires O � N2 � operations – can we do better

that that?

� PSEUDOSPECTRAL APPROACH — perform differentiation in FOURIER

SPACE and evaluate products in REAL SPACE ; transition between the two
representations is made using FFTs which cost ”only” O � N log � N � �

Outline of the algorithm:

1. calculate (using inverse FFT) un
N � x j � , j� 1 �� � � � M from ûn

k , k� � N� � � � N,

2. calculate (using inverse FFT) ∂xun
N � x j � , j� 1 �� � � � M from ikûn

k , k� � N� � � � N,

3. calculate the product wn
N � x j �� un

N � x j � ∂xun
N � x j � , j� 1 �� � � � M

4. Calculate (using FFT) w̃n
k , k� � N� � � � N from wn

N � x j � , j� 1 �� � � � M

� Note that, because of the ALIASING PHENOMENON , the quantity w̃n
k is

different from ŵn
k

� i∑N
p � q�� N
p � q� k

qûn
pûn

q
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NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (III)

� Analysis of aliasing in the PSEUDOSPECTRAL calculation of the nonlinear
term

wn
N � x j ��

N

∑
k� � N

w̃n
keikx j � where wn

N � x j �� un
N � x j � ∂xun

N � x j �

The Discrete Fourier Transform

w̃n
k �

1
M

M

∑
j� 1

wn
N � x j � e� ikx j � 1

M

M

∑
j� 1 �

N

∑
p�� N

ûn
peipx j

� �

N

∑
q�� N

iqûn
qeiqx j

�

e

� ikx j

� 1
M

M

∑
j� 1

N

∑
p � q�� N

iq ûn
p ûn

q ei
 p � q� k � x j � 1
M

N

∑
p � q�� N

iq ûn
p ûn

q

M

∑
j� 1

ei
 p � q� k � x j

� ŵn
k � i

N

∑
p � q�� N

p � q� k � M

qûn
pûn

q � i
N

∑
p � q�� N

p � q� k� M

qûn
pûn

q k� � N � � � � N

The term ŵn
k is the convolution sum obtained by TRUNCATING the fully

spectral Galerkin approach. The terms IN RED are the ALIASING ERRORS .

� Thus, the PSEUDOSPECTRAL GALERKIN equations are

�

1
∆t

� νk2
�

ûn 1 1
k

� 1
∆t

ûn
k

� w̃n
k � k� � N �� � � � N
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NONLINEAR EVOLUTION PDES —
COLLOCATION APPROACH (I)

� Looking for the solution in the form

uN � x � t ��

N

∑
k� � N

ûk � t � eikx �

i.e., with the Fourier coefficients ûkas unknowns

� Time–discretization of the residual RN � x � t �

Rn
N�

un 1 1
N

� un
N

∆t

� un
N ∂xun

N

� ν∂xxun 1 1
N

� Canceling the residual at the collocation points x j

1
∆t �

un 1 1
N � x j � � un

N � x j � � � un
N � x j � ∂X un

N � x j � � ν∂xxun 1 1
N � x j �� 0 j� 1 �� � � � M

� Straightforward calculation shows that the equation for the Fourier

coefficients ûk is the same as in the PSEUDOSPECTRAL GALERKIN

APPROACH . Thus the two methods are numerically equivalent.

� QUESTION — Show equivalence of pseudospectral Galerkin and collocation

approaches to a nonlinear PDE
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NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (I)

� “3/2 RULE” — extend the wavenumber range (the “spectrum”), and

therefore also the number of collocation points, of the quantities involved in

the products, so that the aliasing errors arising in pseudospectral calculations

are not present.

� ALGORITHM — consider two 2π–periodic functions

aN � x ��

N

∑
k� � N

âkeikx � bN � x ��

N

∑
k� � N

b̂keikx

Calculated in a naive way, the Fourier coefficients of the product
w � x � � a � x � b � x � are

w̃k� ŵk �

N

∑
p � q�� N

p 1 q� k 1 M

âpb̂q �

N

∑
p � q�� N

p 1 q� k � M

âpb̂q � k� � N �� � � � N

where ŵk are the coefficients of the truncated convolution sum that we want

to keep (only)
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NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (II)

1. Extend the spectra âk and b̂k to â� k and b̂� k according to

â
 k�
�

âk if � k � � N

0 if N � � k � � N
 � b̂
 k�
�

b̂k if � k � � N

0 if N � � k � � N


The number N� will be determined later.

2. Calculate (via FFT) aN � and bN � in real space on the extended grid x� j �

2π j
M � ,

j � 1 �& & & � M� , where M� � 2N� � 1
aN � � x
 j ��

N �

∑
k� � N �

â
 keikx �

j � bN � � x
 j ��

N �

∑
k� � N �

b̂
 keikx �

j

3. Multiply aN � � x� j � and bN � � x� j � : w� � x� j � � aN � � x� j � bN � � x� j � � j � 1 �& & & � M�

4. Calculate (via FFT) the Fourier coefficients of w� � x� j �

w̃
 k�

1
M


M �

∑
j� 1

w � x
 j � e

� ikx �

j � k� � N
 �� � � � N
 � M
 � 2N
 � 1

Taking the latter quantity for k � � N �& & & � N gives an expression for the

convolution sum FREE OF ALIASING ERRORS
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NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (III)

� Making a suitable choice for N�

w̃
 k� ŵk �

N �

∑
p � q�� N �

p 1 q� k 1 M �

â
 pb̂
 q �

N �

∑
p � q�� N �

p 1 q� k � M �

â
 pb̂
 q

� ŵk �

N

∑
p � q� � N

p 1 q� k 1 M �

âpb̂q �

N

∑
p � q�� N

p 1 q� k � M �

âpb̂q

because â� p � b̂� q � 0 for � p � � � q � � N

� The alias terms will vanish, when one of the frequencies p or q appearing in
each term of the sum is larger than N. Observe that in the first alias term
q � M� � k� p � 2N� � 1� k� p, therefore

min

� k � � � p �� N
� q �� min

� k � � � p �� N

� 2N
 � 1 � k � p �� 2N
 � 1 � 2N� N

Hence 2N� � 3N� 1. One may take N� % 3N � 2 ( THE “3/2 RULE” )

� Analogous argument for the second aliasing error sum.
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HYBRID INTEGRATION SCHEMES FOR ODES
WITH BOTH LINEAR AND NONLINEAR TERMS)

� Consider a model ODE problem

y
 � r � y � � Ay

� One would like to use a higher–order ODE integrator with

– EXPLICIT treatment of nonlinear terms

– IMPLICIT treatment of linear terms (with high–order derivatives)

� Combining a three–step Runge–Kutta method with the
CRANK–NICHOLSON METHOD results in the following approach:

�

I � hrk

2
A

�

yrk 1 1� yrk � hrk

2
Ayrk � hrkβrkr � yrk � � hrkζrkr � yrk � 1 � � rk� 1 � 2 � 3

where

h1 � 8
15

∆t h2� 2
15

∆t h3� 1
3

∆t

β1� 1 β2� 25
8

β3� 9
4

ζ1� 0 ζ2� � 17
8

ζ3� � 5
4


