Spectral Methods

SOLUTION OF A MODEL ELLIPTIC PROBLEM (1)

e We are interested in a PARTIAL DIFFERENTIAL EQUATION (a boundary
value problem) of the general form Lu= f

e We will look for solutions in the form:
N (X) = Z Okeikxa
[K[<N
2N+1

= > ux))S(x),

=1
where S;j(x) is the periodic cardinal function centered at x|
e For the above model problem we will analyze:
— spectral Galerkin method

— spectral Collocation method

* variant with the FOURIER COEFFICIENTS U as the unknowns
* variant with the NODAL VALUES u(x|) as the unknowns

Spectral Methods

SOLUTION OF A MODEL ELLIPTIC PROBLEM

(1)

Consider the following 1D second-order elliptic problem in a periodic
domain Q = [0, 21
Luzv —au +bu=f,

where v, aand b are constant and f = f(x) is a smooth 2reperiodic function.

Forv =10, a= 1, b= 5 and the RHS function
f(x) = i [v(cosz(x) —sin(x)) — acos(x) + b}

the solution is
u(x) = "

For the GALERKIN approach we are interested in 2Teperiodic solutions in
the form

UN (X) = l]keikx
Zn

Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
GALERKIN APPROACH (1)

RESIDUAL )
Ru(¥)=Luy—f= ; GeLe™ — f
K<N

Cancellation of the residual in the mean (setting the projections on the basis
functions Wi (x) = €™ equal to zero)

N Lo .
(RN,WH): z Ok(Le'kxaemx)f(faemx)ZOa n 7Na"'aN
k==N

Noting that L& = (—vk? —iak + b)&** £ G,&* we obtain

N 21 N
S gkak/o dk-Mdx=f,, n=-N,...,N
k=—N

Assuming Gy # 0, we obtain the GALERKIN EQUATIONS for (i
Gy = fi, k=-N,...,N
— The Galerkin equations are DECOUPLED
— Since u is real, it is necessary to calculate Uy for k > 0 only
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SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (1)

e RESIDUAL (with the expansion coefficients (i as unknowns)

Ru(X) = Luy—f = ; e —f
KN

e Canceling the residual pointwise at the collocation points xj, j =1,...,M
N [
Y (G- fe®i =0, j=1,...M
k=—N
where (note the ALIASING ERROR ) fic = fic+ 31z (0} it
e Thus, the COLLOCATION EQUATIONS for the Fourier coefficients
Gl = fic = fi+ > firim, k=—=N,...,N
1eZ\ {0}
— Formally, the GALERKIN and COLLOCATION methods are DISTINCT
— In practice, the projection (f,e”‘x) is evaluated using FFT and therefore
also involves aliasing errors. Therefore, for the present problem, the two
approaches are NUMERICALLY EQUIVALENT .




Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (I1)

e RESIDUAL (with the nodal values un(Xj), j =1,...,M, as unknowns)

Rn(X) = Luy — f

[Ru(X1);-..,Ru(xw)]" = LUy — F = (v, — aDy 4+ bI)Uy — F =0,

where Uy = [un(X1),--.,Un(xv)]T and Dy and D are the differentiation
matrices.
o Derivation of the DIFFERENTIATION MATRICES

Ul (x)) = Z(ik) O

= P00 = Y dfu(x)

M
G = 1 3 un(x; e ik i
M 2

e Canceling the residual pointwise at the collocation points xj, j =1,...,M

Spectral Methods

SOLUTION OF AN ELLIPTIC PROBLEM —
COLLOCATION APPROACH (I111)

o Differentiation Matrices (for even collocation, i.e., Iy =—-N+1,...,N and
M = 2N i+

) i+ L }(,1)i+iN+ w

e :{ (=) cot(hyj) if i ] o = 4 2sin?(hy;)

0 if i = ] CIN=DIN=2) 4y

12

ifi]

e Remarks:

— The differentiation matrices are full (and not so well-conditioned ...), so
the system of equations for un (X;j) is now COUPLED

— For constant coefficient PDEs the present approach is therefore inferior
to the first collocation approach with the Fourier coefficients used as
unknowns

— Note the relationship to the banded matrices obtained when
approximating differential operators using finite differences

e QUESTION — Derive the above differentiation matrices, also for the case of
odd collocation
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NYQUIST-SHANNON SAMPLING THEOREM

is completely determined by providing the function values at a series of
points spaced Ax = ﬁ apart. The values fn = f () are called the
SAMPLES OF f(X) .

The minimum sampling frequency that allows for reconstruction of the
original signal, that is 2M samples per unit distance, is known as the
NYQUIST FREQUENCY . The time in between samples is called the
NYQUIST INTERVAL .

the field of INFORMATION THEORY (originally formulated by Nyquist in
1928, but formally proved by Shannon only in 1949)

e If aperiodic function f(x) has a Fourier transform f = 0 for |k| > M, then it

The NYQUIST-SHANNON SAMPLING THEOREM is a fundamental tenet in
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PDES WITH VARIABLE COEFFICIENTS —
GALERKIN APPROACH (1)

e Consider again the problem £u=vu” —au’ +bu= f, but assume now that
the coefficient a is a function OF SPACE a = a(x)

e The following Galerkin equations are obtained for G

N
—Vk20y —i > Péplp +blk = fi, k=—=N,... N,

p=-—N
where a(x) = an(x) = SN &g and f(x) = fn(x) = SN k€
Note that

NN N .
3 a3 G 3 agdens
g=-N p=-N g,p=—N k=—2Ng,p=-N
+p=k
NN ‘
= Y & plipe™, where &q,0q =0, for [q| > N
k=2on pEN

e Now the Galerkin equations are COUPLED (a system of equations has to be
solved)
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Spectral Methods

PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (1)

e With FOURIER COEFFICIENTS (i as unknowns, the collocation equations are
N . N .
— Y (K+b)ae i —ax) S ikae < = f(x), j=1,...,M
k=—N k=—N

e Approximations of the Fourier coefficients of a(x) and f(x), & and ﬁf,
respectively, are calculated using the Discrete Fourier Transform;

N . N X N .
ax) 5 ke = 5 ad™ S igue®i =
=—N p=—N a=-N

N N _
g5+ Y odlgt+ Y qéf)l]q) ki
N N N

q,p=— G,p=—
g+p=k+N q+p=k—N

e The resulting algebraic system is

—VKk20y — 1S+ b = fx, k=—N,...,N,

PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I1)

e Expressing (hypothetically) a(x) and f(x) with INFINITE Fourier series we
obtain

’ f N &0) al1) &2) &(3) Likxi
= j
au o |k:§7N(S§ +§ +§ +§ )€

N o N
qué‘;Jﬁqu > > Nqé‘,;rnmaq

m=—oq p=—
q+p=k m#£0 g+ p=k

N © N

P R

+ > Y ddmlet > 985l
m==e gp="N m=e qp=—N
o p=ktN a+p=k-N

e The collocation equation become

~vke0—i§Y +i (§K1) + &2 +§K3)) +biy = fe+ % e s k=—N,...,N,
mz0
o Note that the terms IN RED are absent in the corresponding GALERKIN
FORMULATION ; hence the two approaches are not NUMERICALLY
EQUIVALENT anymore.
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Spectral Methods

PDES WITH VARIABLE COEFFICIENTS —
COLLOCATION APPROACH (I111)

With the NODAL VALUES U(xj), j = 1,...,M as unknowns, the collocation
equations are (cf. 117)
(VD — IV +bI)Uy = F,

where the matrix ' = [a(x,-)d}ﬂ, jk=1,...,M

Again, solution of an algebraic system is required

FOURIER TRANSFORMS IN HIGHER DIMENSIONS

e Consider a function u = u(x,y) 2reperiodic in both x and y;
DIRECT DISCRETE FOURIER TRANSFORM

Gk = i/zI i/znu(x ek x| ik dy = i/m/zﬂu(x ek dxd
kx,ky = 21t Jo 21t Jo ,Y, y = A2 o o ,Y, )

where k = [ky, ky] is the WAVEVECTOR and r = [x,y] is the position vector.

e Representation of a function u= u(x,y) as a DOUBLE FOURIER SERIES

N _ N _
u(x,y) = ka,k e|(kx><+kyy) = ﬂkx,k gkr
kx,kyz:—N ! kx,kyZ:—N ’
e Fourier transforms in two (and more) dimensions can be efficiently
performed using most standard FFT packages.
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NONLINEAR EVOLUTION PDES

Replacing the term au’ with the NONLINEAR the term uu’ and applying
Galerkin or collocation method leads to a SYSTEM OF NONLINEAR
EQUATIONS that need to be solved using iterative techniques

From now on we will focus on TIME-DEPENDENT (evolution) PDEs and as a
model problem will consider the BURGERS EQUATION

OtU+Udxu—Vixu=0 in[0,21] x [0, T]
{ u(x) = up(X) att=0

Note that steady problems can sometimes be solved as a steady limit of

certain time—dependent problems.

Looking for solution in the form

N
3 ()

UN (th) =
k

Note that the expansion coefficients Uy(t) are now FUNCTIONS OF TIME

Denote by uy; the approximation of uy at time tn = nAt, n=0,1,...

Spectral Methods

NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (I)
e Time—discretization of the residual Ry(x,t)

un+l un
Ry = NTN+UN6XUN—VO uly

n+1
Points to note:
— EXPLICIT treatment of the nonlinear term avoids costly iterations

— IMPLICIT treatment of the linear viscous term allows one to mitigate the
stability restrictions on the time step At

— here using for simplicity first-order accurate explicit/implicit Euler —
can do much better than that

e system of equations obtained by applying the GALERKIN FORMALISM

1, 3

= ki Z qdpdg, k=-N,...,N
PG=—N
p+a=k

Note truncation of higher modes in the nonlinear term.

Spectral Methods

NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (I1)

e Evaluation of the nonlinear i Z ba=—n A0p0g term in Fourier space results in a
p+a+k
CONVOLUTION sUM which requires O(N?) operations — can we do better

that that?
PSEUDOSPECTRAL APPROACH — perform differentiation in FOURIER
SPACE and evaluate products in REAL SPACE ; transition between the two

representations is made using FFTs which cost ”only” O(Nlog(N))
Outline of the algorithm:

1. calculate (using inverse FFT) uf (%), j = .,M from 0, k= —N...,N,

. calculate (using inverse FFT) dxug (Xj), j =1,...,M fromik(p, k= —N...,N,

2
3. calculate the product wy (xj) = ug (Xj)oxuy (xj), i=1,...,M
4. Calculate (using FFT) W, k= —N...,N fromw{(xj), j = 1,...,M

Note that, because of the ALIASING PHENOMENON , the quantity Wy, is

i A _ig¢N NN
different from wy =iy, \ 90y
p+a=k

Spectral Methods

NONLINEAR EVOLUTION PDES —
GALERKIN APPROACH (111)

e Analysis of aliasing in the PSEUDOSPECTRAL calculation of the nonlinear

term N ,
Whx) = WEe, where wh(x) = Uf (x})axUR ()
k=—N

The Discrete Fourier Transform

1Y ko .
_ = WR‘(Xj)e_lkXJ _ = unelpxJ qu equl |ka
v 2 w22 ) (2
u < AN & (PHa—K)xj 1 N 2 i(p+a—k)x
Z iqap 0g € i = Vi pq__ Z

z qUp g +i Z qply k=-N...,N
p,g=—N
p+g=k+M
The term W{! is the convolution sum obtained by TRUNCATING the fully
spectral Galerkin approach. The terms IN RED are the ALIASING ERRORS.

e Thus, the PSEUDOSPECTRAL GALERKIN equations are

1 1
(At +vk2) ot = Eaﬂ—\ﬁfg, k=—N,...,N
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Spectral Methods

NONLINEAR EVOLUTION PDES —
COLLOCATION APPROACH (1)

Looking for the solution in the form
N

unxt) = S k(t)e®,
2
i.e., with the Fourier coefficients (xas unknowns
Time—discretization of the residual Ry (x,t)
uyt - 1
Ry = “— t U OxURy — VU™

Canceling the residual at the collocation points X;

1 .

A [URFH06) = U (¢9)] + IR (X)OxUR (%) = VU () =0 j=1,...,M

Straightforward calculation shows that the equation for the Fourier
coefficients Oy is the same as in the PSEUDOSPECTRAL GALERKIN
APPROACH . Thus the two methods are numerically equivalent.

approaches to a nonlinear PDE

QUESTION — Show equivalence of pseudospectral Galerkin and collocation

NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (I)
“3/2 RULE” — extend the wavenumber range (the “spectrum”), and
therefore also the number of collocation points, of the quantities involved in
the products, so that the aliasing errors arising in pseudospectral calculations
are not present.

ALGORITHM — consider two 21eperiodic functions

N
ik« A ik
s by (X) = bké
o

k=—=N
Calculated in a naive way, the Fourier coefficients of the product
w(x) = a(x)b(x) are
N
W =W+ H
p.g=—N
pa=k+M
where Wy are the coefficients of the truncated convolution sum that we want
to keep (only)

Spectral Methods

Spectral Methods

NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (I1)
. Extend the spectra & and by to & and Bf( according to

. & if [k <N N by if [k <N
10 ifEN<|K <N’ T lo ifN<[K <N

The number N’ will be determined later.

j=1,...,M where M’ 5 2N’ +1 N
av()= Y &%, bu() = 3 B
k=—N’ k=—N’

- Multiply an/(x}) and b (x)): W(xj) = an (X)) v (%), ] = 1,..., M’

. Calculate (via FFT) the Fourier coefficients of w'(x])
1M

VVkZWzW(
j

=1

X)e ™, k=—N/.. N, M'=2N'+1

Taking the latter quantity for k= —N,..., N gives an expression for the
convolution sum FREE OF ALIASING ERRORS

. Calculate (via FFT) an and by in real space on the extended grid x’j = %

NONLINEAR EVOLUTION PDES —
ALIASING REMOVAL (I11)
e Making a suitable choice for N
NI
W=+ S &bg+ Y &b
p.a=—N pg=—N’
p+g=k+M’ p+g=k—M’
N . N .
p.a=-N pa=-N
p+q=k+M’ p+q=k—M’
because é’p,% =0for|p|,|g >N

e The alias terms will vanish, when one of the frequencies p or g appearing in
each term of the sum is larger than N. Observe that in the first alias term
g=M +k—-p=2N'+1+k— p, therefore

min = min 2N +1+k—p)=2N'+1—-2N>N
\k\=\p\SN(q) IkMp\SN( P)

Hence 2N’ > 3N — 1. One may take N’ > 3N/2 ( THE “3/2 RULE”)

e Analogous argument for the second aliasing error sum.
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HYBRID INTEGRATION SCHEMES FOR ODESs
WITH BOTH LINEAR AND NONLINEAR TERMS)

e Consider a model ODE problem

y =r(y)+Ay

e One would like to use a higher—order ODE integrator with

— EXPLICIT treatment of nonlinear terms
— IMPLICIT treatment of linear terms (with high—order derivatives)
e Combining a three-step Runge—Kutta method with the
CRANK—NICHOLSON METHOD results in the following approach:

h h
(1= ") et =y oAy o () + o (), =123

where




