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CHEBYSHEV POLYNOMIALS —
REVIEW (I)

� General properties of ORTHOGONAL POLYNOMIALS

– Suppose I � � a � b � is a given interval. Let ω : I � ��� be a weight

function which is positive and continuous on I

– Let L2
ω 	 I 
 denote the space of measurable functions v such that

� v � ω� 
 I

� v � x �� 2ω � x � dx

�

1
2

� ∞

– L2
ω 	 I 
 is a Hilbert space with the scalar products

� u � v � ω�
I
u � x � v � x � ω � x � dx

� CHEBYSHEV POLYNOMIALS are obtained by setting:

– the weight: ω 	 x 
 � 	 1� x2 
�

1
2

– the interval: I � �� 1 � 1 �

– Chebyshev polynomials of degree k are expressed as

Tk � x �� cos � k cos

� 1 x � � k� 0 � 1 � 2 ��� � �
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CHEBYSHEV POLYNOMIALS —
REVIEW (II)

� By setting x � cos 	 z 
 we obtain Tk � cos 	 kz 
 , therefore we can derive
expressions for the first Chebyshev polynomials

T0� 1 � T1� cos � z �� x � T2� cos � 2z �� 2cos2 � z ��� 1� 2x2� 1 � � � �

� More generally, using the de Moivre formula, we obtain

cos � kz �� ℜ

� � cos � z ��� isin � z � � k

�
�

from which, invoking the binomial formula, we get

Tk � x ��

k
2

� k � 2 �

∑
m	 0

�� 1 � m � k� m� 1 � !
m! � k� 2m � ! � 2x � k � 2m �

where � α � represents the integer part of α

� Note that the above expression is COMPUTATIONALLY USELESS — one

should use the formula Tk 	 x 
 � cos 	 k cos� 1 x 
 instead!
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CHEBYSHEV POLYNOMIALS —
REVIEW (III)

� The trigonometric identity cos 	 k � 1 
 z � cos 	 k� 1 
 z � 2cos 	 z 
 cos 	 kz 


results in the following RECURRENCE RELATION

2xTk� Tk � 1� Tk � 1 � k � 1 �

which can be used to deduce Tk, k � 2 based on T0 and T1 only

� Similarly, for the derivatives we get

T� k�

d
dz � cos � kz � �

dz
dx

� d
dz � cos � kz � � 


dx
dz �

� 1

� k
sin � kz �

sin � z � �

which, upon using trigonometric identities, yields a RECURRENCE

RELATION for derivatives

2Tk�

T� k � 1

k� 1

�

T� k � 1

k� 1 � k � 1 �
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CHEBYSHEV POLYNOMIALS —
REVIEW (IV)

� Note that simply changing the integration variable we obtain

1

� 1
f � x � ω � x � dx�

π

0
f � cosθ � dθ

This also provides an isometric (i.e., norm–preserving) transformation

u � L2
ω 	 I 
� � ũ � L2 	 0 � π 
 , where ũ 	 θ 
 � u 	 cosθ 


� Consequently, we obtain

� Tk � Tl � ω�

1

� 1
TkTlωdx�

π

0
cos � kθ � cos � lθ � dθ� π

2
ckδkl �

where

ck�

2 if k� 0 �
1 if k � 1

� Note that Chebyshev polynomials are ORTHOGONAL , but not

ORTHONORMAL
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CHEBYSHEV POLYNOMIALS —
REVIEW (V)

� The Chebyshev polynomials Tk 	 x 
 vanish at the GAUSS POINTS x j defined as

x j� cos



� 2 j� 1 � π

2k � � j� 0 �� � � � k� 1

There are exactly k distinct zeros in the interval �� 1 � 1 �

� Note that� 1 � Tk � 1; furthermore the Chebyshev polynomials Tk 	 x 
 attain
their extremal values at the the GAUSS–LOBATTO POINTS x j defined as

x j� cos




jπ
k � � j� 0 ��� � � � k

There are exactly k � 1 real extrema in the interval �� 1 � 1 � .
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CHEBYSHEV POLYNOMIALS —
CLUSTERED GRIDS (I)

� Interpolation on CLUSTERED GRIDS has very special properties —
CHEBYSHEV MINIMAL AMPLITUDE THEOREM : Of all polynomials of
degree N with the leading coefficient (i.e., the coefficient of xN ) equal to 1,
the unique polynomial which has the smallest maximum on �� 1 � 1 � is
TN 	 x 
� 2N� 1, the N–th Chebyshev polynomials divided by 2N� 1. In other
words, all polynomials of the same degree and leading coefficient satisfy the
inequality

max
x � � � 1 � 1 �
� PN � x �� � max

x � � � 1 � 1 �
�

�
�

�

TN � x �

2N � 1

�
�

�
�

� 1
2N � 1

� Hence, the TRUNCATION ERROR when given in terms of 1
2N TN� 1 	 x 
 will be

best behaved

� Thus, in contrast to interpolation on UNIFORM grids, interpolation on

CLUSTERED grid is less likely to exhibit the RUNGE PHENOMENON ; this

concerns clustered grids with asymptotic density of points proportional to
N

π � 1� x2 (e.g., various Chebyshev grids)
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CHEBYSHEV POLYNOMIALS —
NUMERICAL INTEGRATION FORMULAE (I)

� FUNDAMENTAL THEOREM OF GAUSSIAN QUADRATURE — The abscissas

of the N–point Gaussian quadrature formula are precisely the roots of the

orthogonal polynomial of order N for the same interval and weighting

function.

� THE GAUSS–CHEBYSHEV FORMULA (exact for u � � 2N� 1)

1

� 1
u � x � ω � x � dx� π

N

N

∑
j	 1

u � x j � �

with x j � cos

�
� 2 j� 1 � π

2N �

(the Gauss points located in the interior of the

domain only)

Proof via straightforward application of the theorem quoted above.
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CHEBYSHEV POLYNOMIALS —
NUMERICAL INTEGRATION FORMULAE (II)

� THE GAUSS–RADAU–CHEBYSHEV FORMULA (exact for u � � 2N )

1

� 1
u � x � ω � x � dx� π

2N� 1

�

u � ξ0 ��� 2
N

∑
j	 1

u � ξ j �
�

�

with ξ j � cos

�
2 jπ

2N� 1 �
(the Gauss–Radau points located in the interior of the

domain and on one boundary, useful e.g., in annular geometry)
Proof via application of the above theorem and using the roots of the polynomial
QN � 1� x � � TN� a � TN � 1� x � � TN � 1� a � TN� x � which vanishes at x � a � � 1

� THE GAUSS–LOBATTO–CHEBYSHEV FORMULA (exact for u � � 2N )

1

� 1
u � x � ω � x � dx� π

2N� 1

�

u � ξ̃0 ��� u � ξ̃N � � 2
N � 1

∑
j	 1

u � ξ̃ j �
�

�

with ξ̃ j � cos

�

jπ
N �

(the Gauss–Lobatto points located in the interior of the

domain and on both boundaries)
Proof via application of the theorem quoted above.
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CHEBYSHEV POLYNOMIALS —
NUMERICAL INTEGRATION FORMULAE (III)

� The GAUSS–LOBATTO–CHEBYSHEV COLLOCATION POINTS are most

commonly used in Chebyshev spectral methods, because this set of points

also includes the boundary points (which makes it possible to easily

incorporate the BOUNDARY CONDITIONS in the collocation approach)

� Using the Gauss–Lobatto–Chebyshev points, the orthogonality relation for
the Chebyshev polynomials Tk and Tl with 0 � k � l � N can be written as

� Tk � Tl � ω�

1

� 1
TkTlωdx� π

N

N

∑
j	 0

1
c j

Tk � ξ̃ j � Tl � ξ̃ j ��

πck

2
δkl �

where

ck�
� ��

� ��
�

2 if k� 0 �
1 if 1 � k � N� 1 �

2 if k� N

� Note similarity to the corresponding DISCRETE ORTHOGONALITY

RELATION obtained for the trigonometric polynomials
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CHEBYSHEV APPROXIMATION —
GALERKIN APPROACH (I)

� Consider an approximation of u � L2
ω 	 I 
 in terms of a TRUNCATED

CHEBYSHEV SERIES un 	 x 
 � ∑N
k � 0 ûkTk 	 x 


� Cancel the projections of the residual RN � u� uN on the N � 1 first basis
function (i.e., the Chebyshev polynomials)

� RN � Tl � ω�
1

� 1
uTlω�

N

∑
k	 0

ûkTkTlω dx� 0 � l� 0 �� � � � N

� Taking into account the orthogonality condition, expressions for the
Chebyshev expansions coefficients are obtained

ûk� 2
πck

1
� 1

uTkωdx �
which can be evaluated using, e.g., the GAUSS–LOBATTO–CHEBYSHEV

QUADRATURES .

� QUESTION — What happens on the boundary?
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CHEBYSHEV APPROXIMATION —
GALERKIN APPROACH (II)

� Let PN : L2
ω 	 I 
 � � N be the orthogonal projection on the subspace � N of

polynomials of degree � N

� THEOREM — For all µ and σ such that 0 � µ � σ, there exists a constant C
such that

� u� PN u � µ � ω � CNe

�

µ � σ � � u � σ � ω

where

e � µ � σ ��
� �

� �
�

2µ� σ�

1
2

for µ � 1 �

3
2

µ� σ for 0 � µ � 1

Philosophy of the proof:

1. First establish continuity of the mapping u � ũ, where ũ 	 θ 
 � u 	 cos 	 θ 
 
 ,
from the weighted Sobolev space Hm

ω 	 I 
 into the corresponding periodic

Sobolev space Hm
p 	� π � π 


2. Then leverage analogous approximation error bounds established for the

case of trigonometric basis functions
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (I)

� Consider an approximation of u � L2
ω 	 I 
 in terms of a truncated Chebyshev

series (expansion coefficients as the unknowns) uN 	 x 
 � ∑N
k � 0 ûkTk 	 x 


� Cancel the residual RN � u� uN on the set of
GAUSS–LOBATTO–CHEBYSHEV collocation points x j, j � 0 � � � � � N
(one could choose other sets of collocation points as well)

u � x j ��
N

∑
k	 0

ûkTk � x j � � j� 0 �� � � � N

� Noting that Tk 	 x j 
 � cos

�

k cos� 1 	 cos 	 jπ
N 
 
 �

� cos 	 k jπ
N 
 and denoting

u j � u 	 x j 
 we obtain

u j�

N

∑
k	 0

ûk cos




k
π j
N � � j� 0 ��� � � � N

� The above system of equations can be written as U � T Û , where U and Û

are vectors of grid values and expansion coefficients, respectively.
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (II)

� In fact, the matrix T is invertible and

�

T � 1

� jk� 2
c jckN

cos




kπ j
N � � j � k� 0 ��� � � � N

� Consequently, the expansion coefficients can be expressed as follows

ûk� 2
ckN

N

∑
j	 0

1
c j

u j cos




kπ j
N �

� 2
ckN

N

∑
j	 0

1
c j

u jℜ

�

e
i

�

kπ j
N

�

�

� k� 0 ��� � � � N

Note that this expression is nothing else than the COSINE TRANSFORMS of U

which can be very efficiently evaluated using a COSINE FFT

� The same expression can be obtained by

– multiplying each side of u j � ∑N
k � 0 ûkTk 	 x j 
 by Tl� x j �

c j

– summing the resulting expression from j � 0 to j � N

– using the DISCRETE ORTHOGONALITY RELATION
π
N ∑N

j � 0
1
c j

Tk 	 ξ̃ j 
 Tl 	 ξ̃ j 
 � πck
2 δkl
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (III)

� Note that the expression for the DISCRETE CHEBYSHEV TRANSFORM

ûk� 2
ckN

N

∑
j	 0

1
c j

u j cos




kπ j
N � � k� 0 ��� � � � N

can also be obtained by using the Gauss–Lobatto–Chebyshev quadrature to
approximate the continuous expressions

ûk� 2
πck

1

� 1
uTkωdx � k� 0 ��� � � � N �

Such an approximation is EXACT for u � � N

� Analogous expressions for the Discrete Chebyshev Transforms can be

derived for other set of collocation points (Gauss, Gauss–Radau)

� Note similarities with respect to the case periodic functions and the Discrete

Fourier Transform
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (IV)

� As was the case with Fourier spectral methods, there is a very close

connection between COLLOCATION–BASED INTERPOLATION and

GALERKIN APPROXIMATION

� DISCRETE CHEBYSHEV TRANSFORM can be associated with an

INTERPOLATION OPERATOR PC : C0 	 I 
 � � N defined such that

	 PCu 
 	 x j 
 � u 	 x j 
 , j � 0 � � � � � N (where x j are the Gauss–Lobatto collocation

points)

� THEOREM — Let s �

1
2 and σ be given and 0 � σ � s. There exists a

constant C such that

� u� PCu � σ � ω � CN2σ � s � u � s � ω

for all u � Hs
ω 	 I 
 .

Philosophy of the proof — changing the variables to ũ 	 θ 
 � u 	 cos 	 θ 
 
 we

convert this problem to a problem already analyzed in the context of the

Fourier interpolation for periodic functions
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (V)

� Relation between the GALERKIN and COLLOCATION coefficients, i.e.,

ûe
k�

2
πck

1

� 1
u � x � Tk � x � ω � x � dx � k� 0 �� � � � N

ûc
k�

2
ckN

N

∑
j	 0

1
c j

u j cos




kπ j
N � � k� 0 �� � � � N

� Using the representation u 	 x 
 � ∑∞
l � 0 ûe

l Tl 	 x 
 in the latter expression and
invoking the discrete orthogonality relation we obtain

ûc
k�

2
ckN

N

∑
l	 0

ûe
k

�

N

∑
j	 0

1
c j

Tk � x j � Tl � x j �
�

�

2
ckN

∞

∑
l	 N � 1

ûe
k

�

N

∑
j	 0

1
c j

Tk � x j � Tl � x j �
�

�

� ûe
k �

2
ckN

∞

∑
l	 N � 1

ûe
kCkl

where

Ckl �

N

∑
j� 0

1
c j

Tk� x j � Tl� x j � �

N

∑
j� 0

1
c j

cos

�

kiπ
N �

cos

�

liπ
N �

�

1
2

N

∑
j� 0

1
c j �

cos

�

k� l
N

iπ

�
� cos

�

k� l
N

iπ

� �
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CHEBYSHEV APPROXIMATION —
COLLOCATION APPROACH (VI)

� Using the identity

N

∑
j	 0

cos



piπ
N �

�
�

�
�

N� 1 � if p� 2mN � m� 0 ��� 1 ��� 2 �� � �

1
2 �

1� �� 1 � p

�

otherwise

we can calculate Ckl which allows us to express the relation between the
Galerkin and collocation coefficients as follows

ûc
k� ûe

k�

1
ck

�
�

�

∞

∑
m� 1

2mN � N � k

ûe
k � 2mN�

∞

∑
m� 1

2mN � N � k

ûe� k � 2mN

�
�

�

� The terms in square brackets represent the ALIASING ERRORS . Their origin

is precisely the same as in the Fourier (pseudo)–spectral method.

� Aliasing errors can be removed using the 3� 2 APPROACH in the same way as

in the Fourier (pseudo)–spectral method
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CHEBYSHEV APPROXIMATION —
RECIPROCAL RELATIONS

� expressing the first N Chebyshev polynomials as functions of xk, k � 1 � � � � � N
T0� x � � 1 �

T1� x � � x �

T2� x � � 2x2� 1 �

T3� x � � 4x3� 3x �

T4� x � � 8x4� 8x2� 1

which can be written as V � � X , where �V � k � Tk 	 x 
 , � X � k � xk, and � is a

LOWER–TRIANGULAR matrix

� Solving this system (trivially!) results in the following RECIPROCAL
RELATIONS 1 � T0� x � �

x � T1� x � �

x2 �

1
2� T0� x �� T2� x � � �

x3 �

1
4� 3T1� x �� T3� x � � �

x4 �

1
8� 3T0� x �� 4T2� x �� T4� x � �
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CHEBYSHEV APPROXIMATION —
ECONOMIZATION OF POWER SERIES

� Find the best polynomial approximation of order 3 of f 	 x 
 � ex on �� 1 � 1 �

� Construct the (Maclaurin) expansion

ex� 1� x�

1
2

x2

�

1
6

x3

�

1
24

x4

� � � �

� Rewrite the expansion in terms of CHEBYSHEV POLYNOMIALS using the
reciprocal relations

ex� 81
64

T0 � x � �
9
8

T1 � x � �

13
48

T2 � x � �

1
24

T3 � x � �

1
192

T4 � x ��� � � �

� Truncate this expansion to the 3rd order and translate the expansion back to

the xk representation

� Truncation error is given by the magnitude of the first truncate term; Note

that the CHEBYSHEV EXPANSION COEFFICIENTS are much smaller than the

corresponding TAYLOR EXPANSION COEFFICIENTS !

� How is it possible — the same number of expansion terms, but higher

accuracy?
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CHEBYSHEV APPROXIMATION —
SPECTRAL DIFFERENTIATION (I)

� Assume the function approximation in the form uN 	 x 
 � ∑N
k � 0 ûkTk 	 x 


� First, note that CHEBYSHEV PROJECTION and DIFFERENTIATION do not

commute, i.e., PN 	 du
dx 
� � d

dx 	 PNu 


� Sequentially applying the recurrence relation 2Tk � T� k � 1
k� 1

� T� k� 1
k� 1 we obtain

T� k � x �� 2k
K

∑
p	 0

1
ck � 1 � 2p

Tk � 1 � 2p � x � � where K�
�

k� 1
2

�

� Consider the first derivative

u�

N � x ��

N

∑
k	 0

ûkT� k � x ��

N

∑
k	 0

û �

1

�

k Tk � x �

where, using the above expression for T �

k 	 x 
 , we obtain the expansion
coefficients as

û �

1

�

k

� 2
ck

N

∑
p� k � 1

�

p � k

�

odd

pûp � k� 0 �� � � � N� 1

and û� 1 �

N

� 0
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CHEBYSHEV APPROXIMATION —
SPECTRAL DIFFERENTIATION (II)

� Spectral differentiation (with the expansion coefficients as unknowns) can

thus be written as

Û� 1 � � ˆ� Û �

where Û � � û0 � � � � ûN � T , Û� 1 � � � û� 1 �

0 � � � � û� 1 �

N � T , and ˆ� is an

UPPER–TRIANGULAR matrix with entries deduced based on the previous

expression

� For the second derivative one obtains similarly

u� �

N � x ��

N

∑
k	 0

û �

2
�

k Tk � x �
û �

2

�

k

� 1
ck

N

∑
p� k � 2

�

p � k

�

even

p � p2� k2 � ûp � k� 0 ��� � � � N� 2

and û� 2 �

N

� û� 2 �

N� 1

� 0

� QUESTION — What is the structure of the second–order differentiation

matrix?
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CHEBYSHEV APPROXIMATION —
DIFFERENTIATION IN REAL SPACE (I)

� Assume the function u 	 x 
 is approximated in terms of its nodal values, i.e.,

u � x ���� uN � x ��

N

∑
j	 0

u � x j � Cj � x � �

where � x j � are the GAUSS–LOBATTO–CHEBYSHEV points and C j 	 x 
 are
the associated CARDINAL FUNCTIONS

Cj � x �� �� 1 � j � 1 � 1� x2 �

c jN2 � x� x j �

dTN � x �

dx

� 2
N p j

N

∑
m	 0

1
pm

Tm � x j � Tm � x � �

where

p j �

�

2 for j � 0 � N �

1 for j � 1 ��� � � � N� 1 � c j �

�

2 for j � N �

1 for j � 0 ��� � � � N� 1

The DIFFERENTIATION MATRIX � � p � relating the nodal values of the p–th

derivative u� p �

N to the nodal values of u is obtained by differentiating the
cardinal function appropriate number of times

u �

p

�

N � x j ��

N

∑
k	 0

d �

p

� Ck � x j �

dx �

p

�

u � xk ��

N

∑
k	 0

d �

p

�

jk u � xk � � j� 0 �� � � � N
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CHEBYSHEV APPROXIMATION —
DIFFERENTIATION IN REAL SPACE (II)

� Expressions for the entries of the DIFFERENTIATION MATRIX d� 1 �

jk at the the
GAUSS–LOBATTO–CHEBYSHEV collocation points

d �

1

�

jk

� c j

ck

�� 1 � j � k

x j� xk

� 0 � j � k � N � j �

� k �

d �

1

�

j j
� �

x j

2 � 1� x2
j � � 1 � j � N� 1 �

d �

1

�

00

� � d �

1

�

NN
� 2N2

� 1
6 �

� Thus in the matrix (operator) notation

U� 1 � � � U

� Note that ROWS of the differentiation matrix � are in fact equivalent to N–th

order asymmetric finite–difference formulas on a nonuniform grid; in other

words, spectral differentiation using nodal values as unknowns is equivalent

to finite differences employing ALL N GRID POINTS AVAILABLE
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CHEBYSHEV APPROXIMATION —
DIFFERENTIATION IN PHYSICAL SPACE (III)

� Expressions for the entries of SECOND–ORDER DIFFERENTIATION

MATRIX d� 2 �

jk at the the GAUSS–LOBATTO–CHEBYSHEV collocation points

(U� 2 � � � � 2 � U)

d� 2 �

jk

� � � 1 � j � k

ck

x2
j� x jxk� 2

� 1� x2
j �� x j� xk � 2 � 1 � j � N� 1 � 0 � k � N � j �� k

d� 2 �

j j

� � � N2� 1 �� 1� x2
j �� 3

3� 1� x2
j � 2 � 1 � j � N� 1 �

d� 2 �

0k

�

2
3

� � 1 � k

ck

� 2N2� 1 �� 1� xk � � 6

� 1� xk � 2 � 1 � k � N

d� 2 �

Nk

�

2
3

� � 1 � N � k

ck

� 2N2� 1 �� 1� xk � � 6

� 1� xk � 2 � 0 � k � N� 1

d� 2 �

00

� d� 2 �

NN

�

N4� 1
15 �

� Note that d� 2 �

jk

� ∑N
p � 0 d� 1 �

jp d� 1 �

pk

� Interestingly, �

2 is not a SYMMETRIC MATRIX ...
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GALERKIN APPROACH —
BCS VIA BASIS RECOMBINATION

� Consider an ELLIPTIC BOUNDARY VALUE PROBLEM (BVP) :

� νu� �
� au�
� bu� f � in

�
� 1 � 1 �

α � u� β � u� � g � x� � 1

α � u� β � u� � g � x� 1

� Chebyshev polynomials do not satisfy homogeneous boundary conditions,

hence standard Galerkin approach is not directly applicable.

� BASIS RECOMBINATION :

– Convert the BVP to the corresponding form with HOMOGENEOUS

BOUNDARY CONDITIONS (cf. page 72)

– Take linear combinations of Chebyshev polynomials to construct a new
basis satisfying HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS

ϕk 	�� 1 
 � 0

ϕk � x ��

Tk � x �� T0 � x �� Tk� 1 � k� even

Tk � x �� T1 � x � � k� odd

Note that the new basis preserves orthogonality
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GALERKIN APPROACH —
BCS VIA TAU APPROACH (I)

� THE TAU METHOD (Lanczos, 1938) consists in using a Galerkin approach in

which explicit enforcement of the boundary conditions replaces projections

on some of the test functions

� Consider the residual

RN � x �� � νu� �

N� au�

N� buN� f �

where uN 	 x 
 � ∑N
k � 0 ûkTk 	 x 


� Cancel projections of the residual on the first N� 2 basis functions

� RN � Tl � ω�

N

∑
k	 0�
� νû �

2

�

k � aû �

1

�

k � bûk �
1

� 1
TkTlωdx�

1

� 1
f Tlωdx � l� 0 ��� � � � N� 2

� Thus, using orthogonality, we obtain

� νû �

2

�

k � aû �

1

�

k � bûk� f̂k � k� 0 �� � � � N� 2

where f̂k � �

1� 1 f Tkωdx
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GALERKIN APPROACH —
BCS VIA TAU APPROACH (II)

� Noting that Tk 	�� 1 
 � 	�� 1 
 k and T �

k 	�� 1 
 � 	�� 1 
 k� 1k2, the BOUNDARY

CONDITIONS are enforced by supplementing the residual equations with

N

∑
k	 0

�� 1 � k � α � � β � k2 � ûk� g �

N

∑
k	 0

�� 1 � k � α � � β � k2 � ûk� g �

� Expressing û� 2 �

k and û� 1 �

k in terms of ûk via the Chebyshev spectral
differentiation matrices we obtain the following system

� Û� F̂

where Û � � û0 � � � � � ûN � T , F � � f̂0 � � � � � f̂N� 2 � g� � g� � and the matrix � is

obtained by adding the two rows representing the boundary conditions (see

above) to the matrix � 1 � � ν ˆ�

2 � a ˆ� � bI.

� When the domain boundary is not just a point (e.g., in 2D / 3D), formulation

of the Tau method becomes somewhat more involved
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COLLOCATION METHOD (I)
� Consider the residual

RN � x �� � νu� �

N� au�

N� buN� f �

where uN 	 x 
 � ∑N
k � 0 ûkTk 	 x 


� Cancel this residual at N� 1 GAUSS–LOBATTO–CHEBYSHEV collocation
points located in the interior of the domain

� νu� �

N � x j ��� au�

N � x j ��� buN � x j �� f � x j � � j� 1 ��� � � � N� 1

� Enforce the two boundary conditions at endpoints

α � uN � xN � � β � u�
N � xN �� g �

α � uN � x0 ��� β � u�

N � x0 �� g �
Note that this shows the utility of using the

GAUSS–LOBATTO–CHEBYSHEV collocation points
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COLLOCATION METHOD (II)
� Consequently, the following system of N � 1 equations is obtained

N

∑
k� 0

� � νd� 2 �

jk� ad� 1 �

jk � uN� x j �� buN� x j � � f� x j � � j � 1 ��� � � � N� 1

α� uN� xN �� β�

N

∑
k� 0

d� 1 �

Nk uN� xk � � g�

α � uN� x0 �� β �

N

∑
k� 0

d� 1 �

0k uN� xk � � g �

which can be written as � cU � F , where � � c � jk � � � c0 � jk,
j � k � 1 � � � � � N� 1 with � c0 given by

� c0� �� ν �

2

� a � � b � � U
and the BOUNDARY CONDITIONS above added as the rows 0 and N of � c

� Note that the matrix corresponding to this system of equations may be

POORLY CONDITIONED , so special care must be exercised when solving this

system for large N.

� Similar approach can be used when the nodal values u 	 x j 
 , rather than the

Chebyshev coefficients ûk are unknowns



Chebyshev Spectral Methods 163

CHEBYSHEV METHODS —
NONCONSTANT COEFFICIENTS AND NONLINEAR

EQUATIONS

� When the equations has NONCONSTANT COEFFICIENTS , similar difficulties

as in the Fourier case are encountered (evaluation of CONVOLUTION SUMS )

� Consequently, the COLLOCATION (pseudo–spectral) approach is preferable

along the guidelines laid out in the case of the Fourier spectral methods

� Assuming a � a 	 x 
 in the elliptic boundary value problem, we need to make
the following modification to � c :

�
�

c0� �� ν �

2

� �
�

� b � � U �

where �
� � � a 	 x j 
 d� 1 �

jk � , j � k � 1 � � � � � N

� For the Burgers equation ∂tu � 1
2 ∂xu2� ν∂2

xu we obtain at every time step n

� � � ∆t ν � �

2

� � Un � 1� Un�
1
2

∆t � W n �
where � W n � j � � Un � j � Un � j; Note that an algebraic system has to be solved at

each time step
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EPILOGUE — DOMAIN DECOMPOSITION
� Motivation:

– treatment of problem in IRREGULAR DOMAINS

– STIFF PROBLEMS

� PHILOSOPHY — partition the original domain Ω into a number of

SUBDOMAINS � Ωm �

M
m � 1 and solve the problem separately on each those

while respecting consistency conditions on the interfaces

� SPECTRAL ELEMENT METHOD

– consider a collection of problem posed on each subdomain Ωm
Lum � f

um� 1 	 am 
 � um 	 am 
 � um 	 am� 1 
 � um� 1 	 am� 1 


– Transform each subdomain Ωm to I � �� 1 � 1 �
– use a separate set of Nm ORTHOGONAL POLYNOMIALS to approximate

the solution on every subinterval

– boundary conditions on interfaces provide coupling between problems on

subdomains


