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PART V

Wavelets & Multiresolution Analysis

� ADDITIONAL REFERENCES:

– A. Cohen, “Numerical Analysis of Wavelet Methods”, North-Holland, (2003)

– S. Mallat, “A Wavelet Tour of Signal Processing”, Academic Press, (1999)

– I. Daubechies, “Ten Lectures on Wavelets”, SIAM, (1992)

– www.wavelet.org
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WAVELETS — OVERVIEW (I)

� What is wrong with FOURIER ANALYSIS ???

– All spatial information is hidden in the PHASES of the expansion

coefficients and therefore not readily available

– Localized functions (“bumps”) tend to have a very complex

representation in Fourier space

– Local modification of the function affects its whole Fourier transform

– If the dominant frequency changes in space, only average frequencies are

encoded in Fourier coefficients

� Remedy — need an analysis tool that will encode both SPACE (TIME) and

FREQUENCY information at the same time

� Following the convention, will work with TIME (t) and FREQUENCY (ω) ,

rather than wavenumber (k)
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WAVELETS — OVERVIEW (II)

� From DISCRETE FOURIER TRANSFORM to INTEGRAL FOURIER

TRANSFORM — Consider the space L2 ��� � of square–integrable functions

defined on� ; if f � L2 ��� � satisfies suitable decay conditions at � ∞
(which??), the DISCRETE FOURIER TRANSFORM can be replaced with the

INTEGRAL FOURIER TRANSFORM

f̂ � ω ��� 	

∞


 ∞
f � x � e 
 iωt dt

f � t ��� 	

∞


 ∞
f̂ � ω � eiωt dω

� Interestingly, the Fourier Transforms (both discrete and integral) are

constructed as “superpositions” of DILATIONS of the function w � x ��� eix

(wk � t ��� w � kt � )

� Want to construct an integral transform using a basis function ψ which is

very localized (a “wavelet”); we will therefore need:

– DILATIONS

– TRANSLATIONS
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WAVELETS — GABOR TRANSFORM (I)

� The history begins with a WINDOWED FOURIER TRANSFORM known as the

GABOR TRANSFORM (1946)

� Gα
b f � � ω ��� 	

∞


 ∞� f � t � e 
 iωt

� gα � t
 b � dt �

where the WINDOW FUNCTION is given by gα � t ��� 1
2 � πα e


 t2
4α with α � 0

� Note that the Fourier transform of a Gaussian function is another Gaussian

function, i.e., � ∞
 ∞ e 
 iωxeax2
dx� �

π
a e


 ω2

4a

� Note also that the window function has the following normalization

� ∞
 ∞ gα � t
 b � db� � ∞
 ∞ gα � x � dx� 1

� Therefore, for the Gabor transform we obtain

	
∞


 ∞

� Gα
b f � � ω � db� f̂ � ω � � ω � �

� Thus, the set � Gα
b f : b � � � of Gabor transforms of f decomposes the

Fourier transforms f̂ of f exactly to give its LOCAL spectral information
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WAVELETS — GABOR TRANSFORM (II)
� The WIDTH of the window function can be characterized by employing the

notion of the STANDARD DEVIATION

∆gα

� 1

� gα � 2 � 	

∞


 ∞
x2g2

α � x � dx

�

1 � 2

� Note that for α � 0 ∆gα
� � α

Proof:

– � gα ��� 	 8πα 
�� 1 
 4 can be evaluated setting ω� 0 and a� 	 2α 
 � 1 in the
expression for the Fourier transform of a Gaussian function

– � ∞� ∞ x2g2
α 	 x 
 dx can be evaluated differentiating twice the Fourier transform of a

Gaussian function and again setting ω� 0 and a� 	 2α 
 � 1

� Instead of localizing the Fourier transform of f , the Gabor transform may

equivalently be regarded as windowing f with the WINDOW FUNCTION G α
b �ω

� Gα
b f � � ω ��� � f � Gα

b �ω �� 	

∞


 ∞
f � t � Gα

b �ω � t � dt � Gα
b �ω � t ��

eiωt

2 � πα
e


 t2

4α
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WAVELETS — GABOR TRANSFORM (III)

� Using the Parseval identity and noting that

Ĝα
b �ω � η ��� e


 ib � η 
 ω � e 
 α � η 
 ω � 2

we obtain for the Gabor transform

� Gα
b f � � ω ��� � f � Gα

b �ω ��

1
2π � f̂ � Ĝα

b �ω �

� 1
2π 	

∞


 ∞
f̂ � η � eib � η 
 ω � e 
 α � η 
 ω � 2 dη

� e 
 ibω

2 � πα 	

∞


 ∞� eibη f̂ � η � � g1 � 4α � η
 ω � dη

� e 
 ibω

2 � πα � G1 � 4α
ω f̂ � �
 b �

� The third line ( in red ) indicates that up to a multiplicative factor �

π
α e 
 ibω

– the WINDOWED FOURIER TRANSFORM of f with gα at t� b,

– the WINDOWED INVERSE FOURIER TRANSFORM of f̂ with g1 � 4α at

η� ω ARE EQUAL!
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WAVELETS — UNCERTAINTY PRINCIPLE (I)

� Consider more general window functions w � L2 ��� � which satisfy the

requirement

tw � t � � L2 ��� �

It can be shown that

– � t � 1 � 2w � t � � L2 ��� �

– w � L1 ��� �

– the Fourier transform ŵ is continuous

– ŵ � L2 ��� �

Note, however, that in general xŵ � x �� � L2 ��� � , therefore w may not in general

be a FREQUENCY WINDOW FUNCTION

� If w � L2 ��� � is chosen so that both w and ŵ satisfy the above condition, then

the window Fourier transform

� G̃b f � � ω ��� 	

∞


 ∞� f � t � e 
 iωt

� w � t
 b � dt� � f � Wb �ω � �

where Wb �ω� eiωtw � t
 b � , is called a SHORT–TIME FOURIER TRANSFORM
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WAVELETS — UNCERTAINTY PRINCIPLE (II)

� We can define the CENTER x� and RADIUS ∆w of w as

x� � 1

� w � 2
2 	

∞


 ∞
t �w � t � � 2 dt � ∆w�

1

� w � 2 � 	

∞


 ∞

� t
 x� � 2 �w � t � � 2 dt

�

1 � 2

� Then, � G̃b f � � ω � gives local information on f in the TIME–WINDOW

� x� � b
 ∆w � x� � b � ∆w �

� We can determine the CENTER ω� and the RADIUS ∆ŵ of the (frequency)

window function ŵ using formulae similar to the above

� Defining Vb �ω � η �� 1
2πŴb �ω � η ��� 1

2π eibωe 
 ibηŵ � η
 ω � , which is also a

window function with the center ω� � ω and radius ∆ŵ, we can write (using

the Parseval identity)

� G̃b f � � ω ��� � f � Wb �ω ��� � f̂ � Vb �ω �

� Thus, � G̃b f � � ω � also gives local spectral information about t in the frequency

window
�ω� � ω
 ∆ŵ � ω� � ω � ∆ŵ �
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WAVELETS — UNCERTAINTY PRINCIPLE (III)
� Therefore by choosing w � L2 ��� � , such that xw � x � � L2 ��� � and

xŵ � x � � L2 ��� � , to define a windowed Fourier transform � G̃b f � � ω � we obtain

localization in a TIME–FREQUENCY WINDOW

� x� � b
 ∆w � x� � b � ∆w ��� �ω� � ω
 ∆ŵ � ω� � ω � ∆ŵ �

with area equal to 4∆w∆ŵ

� In fact, there is a relation between possible time and frequency windows

which is made precise in the following theorem

� HEISENBERG UNCERTAINTY PRINCIPLE — Let w � L2 ��� � be chosen so

that xw � x � � L2 ��� � and xŵ � x � � L2 ��� � . Then

∆w∆ŵ �
1
2

Furthermore, equality is attained if and only if

w � t ��� ceiαtgα � t
 b � �

where c �� 0, α � 0, and a � b � � .
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WAVELETS — UNCERTAINTY PRINCIPLE (IV)

� Proof of the HEISENBERG UNCERTAINTY PRINCIPLE

– Let us assume that the centers x� and ω� are zero (if they are not, then we

can modify w as w̃ � t ��� e 
 iω� t f � t � x� � )
– We observe that

∆2
w∆2

ŵ� � ∞� ∞ t2 � w 	 t 
 � 2 dt � ∞� ∞ ω2 � ŵ 	 ω 
 � 2 dω

� w � 2
2 � ŵ � 2

2

� � ∞� ∞ t2 � w 	 t 
 � 2 dt � ∞� ∞ � w� 	 t 
 � 2 dt

� w � 42
– Using the Schwarz inequality we get

∆2
w∆2

ŵ �

1

� w � 42 �	

∞

� ∞

� tw 	 t 
 w� 	 t 
 � dt




2

�

1

� w � 42 �	

∞

� ∞

t
2� w 	 t 
 w� 	 t 
� w� 	 t 
 w 	 t 

 dt




2

�

1

4 � w � 4
2 �	

∞

� ∞
t 	 � w 	 t 
 � 2 
� dt




2
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WAVELETS — UNCERTAINTY PRINCIPLE (V)

� Proof of the HEISENBERG UNCERTAINTY PRINCIPLE — continued

– Integrating by parts and noting that lim � t �� 0 � t f � t ��� 0 (since

� t � 1 � 2w � t � � L2 ��� � seen earlier) we obtain

∆2
w∆2

ŵ �

1

4 � w � 4
2 � 	

∞

� ∞

� w 	 t 
 � 2 dt




2

� 1
4

– An equality will be obtained when the Schwarz inequality becomes an
equality; this implies that there exists b �� such that

w� 	 t 
� � 2btw 	 t 


so that there exists an a �� such that w � t ��� ae 
 bt2

� Thus the GABOR TRANSFORM has the smallest possible time–frequency

window.

� The above Heisenberg Uncertainty Principle has far–reaching consequences.

Wavelets 176

INTEGRAL WAVELET TRANSFORM (I)

� The short–time Fourier transform has a RIGID time–frequency window, in

the sense that its width (∆w) is unchanged for all frequencies analyzed; this

turns out to be a limitation when studying functions with varying frequency

content

� The INTEGRAL WAVELET TRANSFORM provides a window which:

– automatically narrows when focusing on high frequencies,

– automatically widens when focusing on low frequencies

� If ψ � L2 ��� � satisfies the “admissibility” condition

Cψ� 	

∞

� ∞

� ψ̂ 	 ω 
 � 2

� ω �

dω � ∞ �

then ψ is called a BASIC WAVELET . Relative to every basic wavelet ψ. the
INTEGRAL WAVELET TRANSFORM (IWT) in L2 ��� � is defined by

	 Wψ f 
 	 a � b 
� � a �
1
2

	
∞

� ∞
f 	 x 
 ψ �

x � b
a �

dx � f � L2 	� 
 � a �� 0 � b � � �
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INTEGRAL WAVELET TRANSFORM (II)
� Hereafter we will assume that tψ � t � � L2 ��� � and ωψ̂ � ω � � L2 ��� � , so that the

basic wavelet ψ provides a time-frequency window with finite area

� From the above assumption it also follows that ψ̂ is a continuous function
and therefore finiteness of Cψ implies

ψ̂ 	 0 
� 0 � � 	

∞

� ∞
ψ 	 t 
 dt� 0

� Setting

ψb;a 	 t 
� � a �
� 1

2 ψ

�

t � b
a � �

the IWT can be written as � Wψ f � � b � a � � � f � ψb;a �

� If the wavelet ψ has the center and radius given by t� and ∆ψ, respectively,

then the function ψb;a has its center at b � at� and radius equal to a∆ψ

� Thus, the IWT provides local information about the function f in a time
window

� b� at� � a∆ψ � b� at� � a∆ψ

which narrows down as a � 0.
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INTEGRAL WAVELET TRANSFORM (III)

� Consider the Fourier transform of a basic wavelet

1
2π

ψ̂b;a 	 ω 
� � a ��

1
2

2π 	

∞

� ∞
e

� iωt ψ

�

t � b
a �

dt� a � a ��

1
2

2π
e

� iωbψ̂ 	 ω 


� Suppose that ψ̂ has the center ω� and radius ∆ψ̂. Defining η � ω �� ψ̂ � ω � ω� �

we obtain a window function with center at the origin and unchanged radius

� Applying the Parseval identity to the definition of the IWT we obtain

	 Wψ f 
 	 a � b 
�

a � a ��

1
2

2π 	

∞

� ∞
f̂ 	 ω 
 eiωt η 	 aω � ω� 
 dω �

which, modulo multiplication by a constant factor and a linear frequency
shift, localizes information about the function f to the FREQUENCY

WINDOW

�

ω�

a

� 1
a

∆ψ̂ �

ω�

a

� 1
a

∆ψ̂ 
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INTEGRAL WAVELET TRANSFORM (IV)

� Note that the ratio of the CENTER FREQUENCY ω� � a to the BANDWIDTH

2∆ψ̂� a
center frequency

bandwidth

� ω�

2∆ψ̂

is independent of the scaling a; thus, the bandwidth grows with frequency in

an adaptive fashion ( constant–Q filtering )

� Reconstruction of a function from its IWT
Let ψ be a basic wavelet, then � f � g � L2 ��� �

	

∞

0 �	

∞

� ∞

	 Wψ f 
 	 b � a 
 	 Wψg 
 	 b � a 
 db




da
a2

� 1
2

Cψ 	 f � g 


Furthermore, for any f � L2 ��� � and x � � at which f is continuous

f 	 x 
�

2
Cψ 	

∞

0 �	

∞

� ∞

	 Wψ f 
 	 b � a 
 ψb;a 	 x 
 db




da
a2

Proof — using the Parseval identity, integrating with respect to da� a2 and

using the definition of Cψ
Note the role of the ADMISSIBILITY condition for ψ

Wavelets 180

DISCRETE WAVELET TRANSFORM (I)

� Consider the IWT at a discrete set of samples a� 2 
 j and b� k2 
 j for
some j � k ��

	 Wψ f 
 �

k
2 j �

1
2 j �

�
	

∞

� ∞
f 	 x 
 2 j 
 2ψ 	 2 jx � k 
 dx� 	 f � ψ j � k 


where
ψ j � k� 2 j 
 2ψ 	 2 jx � k 


must be chosen so that ψ j � k form a Riesz basis in L2 ��� � (i.e, the linear span

of ψ j � k with j � k �� is dense in L2 ��� � )

� If ψ j � k with j � k �� is a RIESZ BASIS , the the relation

	 ψ j � k � ψl � m 
� δ j � lδk � m � j � k � l � m ��

uniquely defines ANOTHER RIESZ BASIS ψl �m known as the DUAL BASIS

� Thus, every function f � L2 ��� � has a unique representation

f 	 x 
�
∞

∑
j � k� � ∞

	 f � ψ j � k 
 ψ j � k 	 x 
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DISCRETE WAVELET TRANSFORM (II)
� For the above representation to qualify as a WAVELET SERIES , the dual basis

ψ j � k must be obtained from some basic wavelet ψ̃ by ψ j � k � x ��� ψ̃ j � k � x � ,
where

ψ̃ j � k� 2 j 
 2ψ̃ 	 2 jx � k 


� In general, ψ̃ does not necessarily exist

� If ψ is chosen so that ψ̃ does exist, the pair � ψ � ψ̃ � can be used
interchangeably

f 	 x 
�

∞

∑
j � k� � ∞

	 f � ψ j � k 
 ψ̃ j � k 	 x 
�

∞

∑
j � k� � ∞

	 f � ψ̃ j � k 
 ψ j � k 	 x 


� ψ and ψ̃ are called WAVELET and DUAL WAVELET , respectively

� If the basis ψ j � k is orthogonal, i.e., ψ j � k� ψ j � k for j � k �� , we obtain an
ORTHOGONAL WAVELET TRANSFORM

f 	 x 
�

∞

∑
j � k� � ∞

	 f � ψ j � k 
 ψ j � k 	 x 
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DISCRETE WAVELET TRANSFORM (III)

� Consider a wavelet ψ and the Riesz basis ψ j � k it generates; for each j �� , let
Wj denote THE CLOSURE OF THE L INEAR SPAN of � ψ j � k : k �� � , i.e.,

Wj� closL2 � � �� ψ j � k : k �� �

� Evidently, L2 ��� � can be decomposed as a DIRECT SUM of the spaces Wj
(dots over pluses indicate “direct sums”)

L2 	� 
��
�

∑
j �� Wj� � � � 	 W� 1 	 W0 	 W1 	 
 
 


and therefore every function f � L2 ��� � has a unique decomposition

f 	 x 
� � � �� g1 	 x 
� g0 	 x 
� g1 	 x 
� 
 
 


where g j � Wj , � j ��

� if ψ is an ORTHOGONAL WAVELET , then the subspaces Wj � L2 ��� � are
MUTUALLY ORTHOGONAL Wj� Wl , j �� l which means that

	 g j � gl 
� 0 � j �� l

where g j � Wj and gl � Wl
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DISCRETE WAVELET TRANSFORM (IV)

� Therefore, in such case, the direct sum becomes an ORTHOGONAL SUM

L2 	� 
�� �

j � � Wj� � � � 
 W� 1 
 W0 
 W1 
 
 
 


� Thus, an orthogonal wavelet ψ generates an ORTHOGONAL

DECOMPOSITION of the space L2 ��� � , as the functions g j are

– UNIQUE

– MUTUALLY ORTHOGONAL
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MULTIRESOLUTION ANALYSIS (I)

� For every wavelet ψ (not necessarily orthogonal) we can consider the

following space Vj � L2 ��� � , � j ��

Vj� � � � � Wj 
 2 � Wj 
 1

� The subspaces Vj have the following very interesting properties:

1. � � � � V 
 1 � V0 � V1 �� � �

2. closL2 �� j �� Vj � � L2 ��� �

3. � j �� Vj� � 0 �

4. Vj � 1� Vj � Wj, j ��

5. f � x � � Vj� f � 2x � � Vj � 1, j ��

� Note that

– In contrast to the subspaces Wj which satisfy Wj� Wl� � 0 � , j �� l, the

sequence of subspaces Vj is NESTED (1� )

– Every f � L2 ��� � can be approximated with ARBITRARY ACCURACY by

its projections Pj f on Vj (2� )
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MULTIRESOLUTION ANALYSIS (II)
� If the reference subspace V0 is generated by a single SCALING FUNCTION

φ � L2 ��� � in the sense that

V0� closL2 � � �� φ0 � k : k �� �

where
φ j � k� 2 j 
 2φ 	 2 jx � k 
 �

then all the subspaces Vj are also generated by the same φ as

Vj� closL2 � � �� φ j � k : k �� �

in the same way as the subspaces Wj are generated by the wavelet ψ

� In the MULTIRESOLUTION ANALYSIS at a given scale ( j � 1)

– the subspace Vj represents the “LARGE SCALE” features of the function

– the subspaces Wj represents the “SMALL SCALE” features (details) of the

function
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THE END


