PART V

Wavelets & Multiresolution Analysis
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WAVELETS — OVERVIEW (1)

e What is wrong with FOURIER ANALY SIS ?7?

— All spatial information is hidden in the PHA SES of the expansion
coefficients and therefore not readily available

Localized functions (“bumps”) tend to have a very complex
representation in Fourier space

Local modification of the function affects its whole Fourier transform
If the dominant frequency changes in space, only average frequencies are
encoded in Fourier coefficients

Remedy — need an analysis tool that will encode both sPACE (TIME) and
FREQUENCY information at the same time

Following the convention, will work with TIME (t) and FREQUENCY (w) ,
rather than wavenumber (k)

WAVELETS — OVERVIEW (I1)

e From DISCRETE FOURIER TRANSFORM t0 INTEGRAL FOURIER
TRANSFORM — Consider the space Ly (R) of square-integrable functions
defined on RR; if f € L(R) satisfies suitable decay conditions at oo
(which??), the DISCRETE FOURIER TRANSFORM can be replaced with the
INTEGRAL FOURIER TRANSFORM

/_oo f(x)e 19 dt
F(t) =/_°; F(02)d* do

e Interestingly, the Fourier Transforms (both discrete and integral) are
constructed as “superpositions” of DILATIONS of the function w(x) = elx

(Wi (t) = w(kt))
e Want to construct an integral transform using a basis function Y which is
very localized (a “wavelet”); we will therefore need:
— DILATIONS

— TRANSLATIONS

WAVELETS — GABOR TRANSFORM (1)

The history begins with a wINDOWED FOURIER TRANSFORM known as the
GABOR TRANSFORM (1946)

(GE0@ = [ (foe™)gt—b,

2
where the WINDOW FUNCTION is given by gq (t) e @ witha >0

1
= 2ym
Note that the Fourier transform of a Gauiszian function is another Gaussian
function, i.e., [, e 1e® dx = \/ge*E

Note also that the window function has the following normalization
JZoGu(t—b)db= [, gu(x)dx=1

Therefore, for the Gabor transform we obtain
/ (G F)(w)db= f(w), weR

Thus, the set { GJ' f : b e R} of Gabor transforms of f decomposes the
Fourier transforms f of f exactly to give its LocAL spectral information




WAVELETS — GABOR TRANSFORM (I1)

e The wiDTH of the window function can be characterized by employing the
notion of the STANDARD DEVIATION

a1 ® 29 12
Ny, = 7—— / X xdx}
o & g 100

¢ Note that for a > 0 Ag, =/
Proof:

— ||gall = (8T)~/4 can be evaluated setting w= 0 and a= (2a)~! in the
expression for the Fourier transform of a Gaussian function

— ™ %202 (x) dx can be evaluated differentiating twice the Fourier transform of a
Gaussian function and again setting =0 and a= (2a)~!

o Instead of localizing the Fourier transform of f, the Gabor transform may
equivalently be regarded as windowing f with the wiNDOW FUNCTION G |

(G50 = (1,680 = [ 1OGE0d, Ghut) =5 —

WAVELETS — GABOR TRANSFORM (1)

e Using the Parseval identity and noting that

gbw( ) = e~ ib-0) e~ a(n-w)?

we obtain for the Gabor transform

1 A -
(G F)(w) = (f, Gow) = 5=(F: Gb)
_ 1 [T e dbi-w) g-a(n-)?
_ZT[/ f(n)ebn-vle dn
—|boa

b
=2 ) 'r'f )91/4a(ﬂ—®)dﬂ

e ibw 1/40 ¢
= f)(=b
e The third line (in red ) indicates that up to a multiplicative factor \/7e"b‘*’
— the WINDOWED FOURIER TRANSFORM of f withgq att =b,

— the WINDOWED INVERSE FOURIER TRANSFORM of f with 0140 at
N = WARE EQUAL!

WAVELETS — UNCERTAINTY PRINCIPLE (1)
Consider more general window functions w € L(IR) which satisfy the
requirement

tw(t) € Lo(R)

It can be shown that

~ [tI2w(t) € Lo(R)

- weli(R)

— the Fourier transform W is continuous

- We Lx(R)
Note, however, that in general xW(x) ¢ L, (R), therefore w may not in general
be a FREQUENCY WINDOW FUNCTION

If w e L(R) is chosen so that both w and W satisfy the above condition, then
the window Fourier transform

(GoN(@ = [ (FOe ") wi=b)dt = (,Wh),

where W, ¢, = €“w(t — b), is called a SHORT-TIME FOURIER TRANSFORM

WAVELETS — UNCERTAINTY PRINCIPLE (I1)

e \We can define the CENTER X* and RADIUS A, of w as
1 w 1/2
XA / thw(t) P, Awé—{/ (t—x*)2|w(t)|2dt}
w3 Wiz 1/ -e
Then, (G f)(w) gives local information on f in the TIME-WINDOW
[X*-i-b—AW;X*-i-b-i-Aw]

We can determine the CENTER w* and the RADIUS Ay, of the (frequency)
window function W using formulae similar to the above

Defining Vb o(N) £ 2£:Wh oo(N) = 2:€"2e~1P1i(n — w), which is also a
window function with the center w* + wand radius Ay, we can write (using

the Parseval identity) -~ N
(gbf)(w) = (fa\%,w) = (fvvb,&))

Thus, (Gyf)(w) also gives local spectral information about t in the frequency
window
[0* + w— Ay, 0 + W+ Ag]




WAVELETS — UNCERTAINTY PRINCIPLE (II1)
e Therefore by choosing w € Ly(IR), such that xw(x) € Lo(R) and
xW(x) € Ly(R), to define a windowed Fourier transform (Gi, f)(w) we obtain
localization in a TIME—FREQUENCY WINDOW
[X* +b—Aw, X + b+ Ay] X [0" + 0 — A, 0" + 0+ Ag]
with area equal to 4A\Ay

In fact, there is a relation between possible time and frequency windows
which is made precise in the following theorem
HEISENBERG UNCERTAINTY PRINCIPLE — Let w € L(RR) be chosen so
that xw(x) € La(R) and xW(x) € Lo(R). Then

1

AplDy > =
WEW = 5

Furthermore, equality is attained if and only if
w(t) = ce gy (t - b),

wherec#0,a >0,anda,be R.

WAVELETS — UNCERTAINTY PRINCIPLE (1V)
e Proof of the HEISENBERG UNCERTAINTY PRINCIPLE
— Let us assume that the centers x* and w* are zero (if they are not, then we
can modify was W(t) = eVt f (t + x*))
— We observe that
JZo B w(t) 2 dit [, o [(w)[* dw
| w313
_ S B w() P dt %, W (t)[2 dt
(w3

8%

— Using the Schwarz inequality we get

WAVELETS — UNCERTAINTY PRINCIPLE (V)

e Proof of the HEISENBERG UNCERTAINTY PRINCIPLE — continued
— Integrating by parts and noting that lim ;o Vit (t) =0 (since
|t|Y/2w(t) € Lo(R) seen earlier) we obtain

- [/f;\wa)\zdtr:;l1

4l w3

— An equality will be obtained when the Schwarz inequality becomes an
equality; this implies that there exists b € C such that
W (t) = —2btw(t)
so that there exists an a € C such that w(t) = aeht*

e Thus the GABOR TRANSFORM has the smallest possible time—frequency
window.

e The above Heisenberg Uncertainty Principle has far-reaching consequences.

INTEGRAL WAVELET TRANSFORM (1)

e The short—time Fourier transform has a RIGID time—frequency window, in
the sense that its width (Ay) is unchanged for all frequencies analyzed; this
turns out to be a limitation when studying functions with varying frequency
content

e The INTEGRAL WAVELET TRANSFORM provides a window which:

— automatically narrows when focusing on high frequencies,
— automatically widens when focusing on low frequencies
o If P € Lo(R) satisfies the “admissibility” condition
ce LTI

Jw ||

then  is called a BASIC WAVELET . Relative to every basic wavelet . the
INTEGRAL WAVELET TRANSFORM (IWT) in L(R) is defined by

(vaf)(a,b)é\aﬁ/_if(x)w(%)) dx, feLa(R), aZ0,beR,




INTEGRAL WAVELET TRANSFORM (I1)

Hereafter we will assume that ty(t) € Lo(R) and w{(w) € Lo(R), so that the
basic wavelet  provides a time-frequency window with finite area

From the above assumption it also follows that ( is a continuous function
and therefore finiteness of Cy implies
$(0)=0 :>/ Y(t)dt =0

Setting
wa) 2w (12°)),
the IWT can be written as (W, T)(b,a) = (f, Up;a)
If the wavelet  has the center and radius given by t* and Ay, respectively,
then the function ;5 has its center at b+ at* and radius equal to aAy

Thus, the IWT provides local information about the function f in a time
window
[b+at* —aly,b+at* +aly)

which narrows down as a — 0.

INTEGRAL WAVELET TRANSFORM (111)

e Consider the Fourier transform of a basic wavelet

1 1
1 a~2 [ t—b ala72 _;
2T[l1,b;a(w) - 2‘11 /_m eﬁmqj( a > dt= ‘2|T[ e h(w)

e Suppose that ( has the center w* and radius Ag,. Defining n(w) 2 {(w+ w")
we obtain a window function with center at the origin and unchanged radius

Applying the Parseval identity to the definition of the IWT we obtain

_1 o )
Wy (@b = 222 [ flwdnao— oo
which, modulo multiplication by a constant factor and a linear frequency
shift, localizes information about the function f to the FREQUENCY
WINDOW

w1 w1
L _Zhg, = +2A
[a a3 ta a’}

INTEGRAL WAVELET TRANSFORM (1V)

Note that the ratio of the CENTER FREQUENCY w*/a to the BANDWIDTH
ZAq,/a
center frequency '
bandwidth 24

is independent of the scaling a; thus, the bandwidth grows with frequency in
an adaptive fashion ( constant-Q filtering )

Reconstruction of a function from its IWT
Let | be a basic wavelet, then Vf,g € L (R)

7wy )b, 2) WogiB @ db| 22 = ey (t,9)
/0 |:./—oo }a 2

Furthermore, for any f € L»(RR) and x € R at which f is continuous
2 e da
100= 7| [ om0 ]
Proof — using the Parseval identity, integrating with respect to da/a? and
using the definition of Cy,
Note the role of the ADMISSIBILITY condition for

DISCRETE WAVELET TRANSFORM (1)

Consider the IWT at a discrete set of samples a= 2~ and b= k2~ for
some j,ke Z

) (5537 ) = L 1092TUE k= (1,1

where _ _
Wik £ 212y (21x - k)

must be chosen so that Y x form a Riesz basis in Lo (R) (i.e, the linear span
of j « with j,k € Z is dense in L (R))
If Y with j,k € Z is a RIESZ BASIS, the the relation

(W W™ =8} 18m:  i.k|,meZ
uniquely defines ANOTHER RIESZ BASIS l]Jl’m known as the DUAL BASIS

e Thus, every function f € Lp(IR) has a unique representation

0

T (L Ww )

e




DISCRETE WAVELET TRANSFORM (1)

For the above representation to qualify as a WAVELET SERIES, the dual basis
W) K must be obtained from some basic wavelet § by YK (x) = @ k(%) ,
where

0y k£ 2172p(20x— k)

In general, ] does not necessarily exist

If Y is chosen so that { does exist, the pair (W, ) can be used
interchangeably

o o

=5 (F,000jkx) Z (£, Bj0Wj k(x)

j,k=—00 k=—00
Y and  are called WAVELET and DUAL WAVELET , respectively

If the basis Y; x is orthogonal, i.e., @} x = YK for j,k € Z, we obtain an
ORTHOGONAL WAVELET TRANSFORM

0

fo="5 (Fujwjkx)

e

DISCRETE WAVELET TRANSFORM (I11)

Consider a wavelet Y and the Riesz basis j it generates; for each j € 7, let
W denote THE CLOSURE OF THE L INEAR SPAN of {Wj «: K€ Z}, i.e,

W; £ clos, ) {Wjk: ke Z}

Evidently, L»(R) can be decomposed as a DIRECT SUM of the spaces Wi
(dots over pluses indicate “direct sums”)
ZVV, s WO W W
JEZ
and therefore every function f € Ly(IR) has a unique decomposition
FO) =" +0100 +0(*) + 919 +
where gj € W, Vj € Z

if Y is an ORTHOGONAL WAVELET , then the subspaces W € L, (R) are
MUTUALLY ORTHOGONAL Wj LW, j # | which means that

(9j,9) =0, j#I
where gj € Wj and g € W

DISCRETE WAVELET TRANSFORM (1V)

e Therefore, in such case, the direct sum becomes an ORTHOGONAL SUM

=PwW oW oWoWe...
JEZ

e Thus, an orthogonal wavelet ) generates an ORTHOGONAL
DECOMPOSITION of the space L, (R), as the functions g; are
— UNIQUE

— MUTUALLY ORTHOGONAL

MULTIRESOLUTION ANALYSIS (1)

For every wavelet s (not necessarily orthogonal) we can consider the
following space Vj € Lo(R), Vj € Z

Vi=-+W_2+Wj_

The subspaces V; have the following very interesting properties:
~CcV1cVycvViC...
. clos, (UjezVj) = L2(R)
- NjezVj ={0}
. Vj+l :Vj —;—Wj, JEZ
CfX eV e f(2X) eV, jEZ
Note that

— In contrast to the subspaces W; which satisfy W "W = {0}, j # 1, the
sequence of subspaces Vj is NESTED (1°)

— Every f € Lp(R) can be approximated with ARBITRARY ACCURACY by
its projections Pj f on Vj (2°)




MULTIRESOLUTION ANALYSIS (1)

o If the reference subspace V; is generated by a single SCALING FUNCTION
@€ Lo(R) in the sense that

Vo = clos, ) {@ok : kK€ Z}
where
0 2 2129(21x k),
then all the subspaces V; are also generated by the same @as
Vj = clos,w){@«: ke Z}
in the same way as the subspaces W; are generated by the wavelet ()

e Inthe MULTIRESOLUTION ANALY SIS at a given scale (j + 1)
- the subspace Vj represents the “LARGE SCALE” features of the function

— the subspaces W; represents the “SMALL SCALE” features (details) of the
function

THE END




