

PART V

Wavelets & Multiresolution Analysis

- ADDITIONAL REFERENCES:

- A. Cohen, “Numerical Analysis of Wavelet Methods”, North-Holland, (2003)
- S. Mallat, “A Wavelet Tour of Signal Processing”, Academic Press, (1999)
- I. Daubechies, “Ten Lectures on Wavelets”, SIAM, (1992)
- www.wavelet.org

WAVELETS — OVERVIEW (I)

- What is wrong with **FOURIER ANALYSIS** ????
 - All spatial information is hidden in the **PHASES** of the expansion coefficients and therefore not readily available
 - Localized functions (“bumps”) tend to have a very complex representation in Fourier space
 - Local modification of the function affects its whole Fourier transform
 - If the dominant frequency changes in space, only average frequencies are encoded in Fourier coefficients
- Remedy — need an analysis tool that will encode both **SPACE (TIME)** and **FREQUENCY** information at the same time
- Following the convention, will work with **TIME (*t*)** and **FREQUENCY (*ω*)**, rather than wavenumber (*k*)

WAVELETS — OVERVIEW (II)

- From **DISCRETE FOURIER TRANSFORM** to **INTEGRAL FOURIER TRANSFORM** — Consider the space $L_2(\mathbb{R})$ of square-integrable functions defined on \mathbb{R} ; if $f \in L_2(\mathbb{R})$ satisfies suitable decay conditions at $\pm\infty$ (which??), the **DISCRETE FOURIER TRANSFORM** can be replaced with the **INTEGRAL FOURIER TRANSFORM**

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-i\omega x} dx$$

$$f(t) = \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega$$

- Interestingly, the Fourier Transforms (both discrete and integral) are constructed as “superpositions” of **DILATIONS** of the function $w(x) = e^{ix}$ ($w_k(t) = w(kt)$)
- Want to construct an integral transform using a basis function ψ which is very localized (a “wavelet”); we will therefore need:
 - **DILATIONS**
 - **TRANSLATIONS**

WAVELETS — GABOR TRANSFORM (I)

- The history begins with a **WINDOWED FOURIER TRANSFORM** known as the **GABOR TRANSFORM** (1946)

$$(\mathcal{G}_b^\alpha f)(\omega) = \int_{-\infty}^{\infty} (f(t) e^{-i\omega t}) g_\alpha(t-b) dt,$$

where the **WINDOW FUNCTION** is given by $g_\alpha(t) = \frac{1}{2\sqrt{\pi\alpha}} e^{-\frac{t^2}{4\alpha}}$ with $\alpha > 0$

- Note that the Fourier transform of a Gaussian function is another Gaussian function, i.e., $\int_{-\infty}^{\infty} e^{-i\alpha x} e^{ax^2} dx = \sqrt{\frac{\pi}{a}} e^{-\frac{\alpha^2}{4a}}$
- Note also that the window function has the following normalization $\int_{-\infty}^{\infty} g_\alpha(t-b) dt = \int_{-\infty}^{\infty} g_\alpha(x) dx = 1$
- Therefore, for the Gabor transform we obtain

$$\int_{-\infty}^{\infty} (\mathcal{G}_b^\alpha f)(\omega) db = \hat{f}(\omega), \quad \omega \in \mathbb{R}$$

- Thus, the set $\{\mathcal{G}_b^\alpha f : b \in \mathbb{R}\}$ of Gabor transforms of f decomposes the Fourier transforms \hat{f} of f exactly to give its **LOCAL** spectral information

WAVELETS — GABOR TRANSFORM (II)

- The **WIDTH** of the window function can be characterized by employing the notion of the **STANDARD DEVIATION**

$$\Delta_{g_\alpha} \triangleq \frac{1}{\|g_\alpha\|_2} \left\{ \int_{-\infty}^{\infty} x^2 g_\alpha^2(x) dx \right\}^{1/2}$$

- Note that for $\alpha > 0$ $\Delta_{g_\alpha} = \sqrt{\alpha}$

Proof:

- $\|g_\alpha\| = (8\pi\alpha)^{-1/4}$ can be evaluated setting $\omega = 0$ and $a = (2\alpha)^{-1}$ in the expression for the Fourier transform of a Gaussian function
- $\int_{-\infty}^{\infty} x^2 g_\alpha^2(x) dx$ can be evaluated differentiating twice the Fourier transform of a Gaussian function and again setting $\omega = 0$ and $a = (2\alpha)^{-1}$

- Instead of localizing the Fourier transform of f , the Gabor transform may equivalently be regarded as windowing f with the **WINDOW FUNCTION** $\mathcal{G}_{b,\omega}^\alpha$

$$(\mathcal{G}_b^\alpha f)(\omega) = (f, \mathcal{G}_{b,\omega}^\alpha) = \int_{-\infty}^{\infty} f(t) \overline{\mathcal{G}_{b,\omega}^\alpha(t)} dt, \quad \mathcal{G}_{b,\omega}^\alpha(t) = \frac{e^{i\omega t}}{2\sqrt{\pi\alpha}} e^{-\frac{t^2}{4\alpha}}$$

WAVELETS — GABOR TRANSFORM (III)

- Using the Parseval identity and noting that

$$\hat{\mathcal{G}}_{b,\omega}^\alpha(\eta) = e^{-ib(\eta-\omega)} e^{-\alpha(\eta-\omega)^2}$$

we obtain for the Gabor transform

$$\begin{aligned} (\mathcal{G}_b^\alpha f)(\omega) &= (f, \mathcal{G}_{b,\omega}^\alpha) = \frac{1}{2\pi} (\hat{f}, \hat{\mathcal{G}}_{b,\omega}^\alpha) \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\eta) e^{ib(\eta-\omega)} e^{-\alpha(\eta-\omega)^2} d\eta \\ &= \frac{e^{-ib\omega}}{2\sqrt{\pi\alpha}} \int_{-\infty}^{\infty} (e^{ib\eta} \hat{f}(\eta)) g_{1/4\alpha}(\eta-\omega) d\eta \\ &= \frac{e^{-ib\omega}}{2\sqrt{\pi\alpha}} (\mathcal{G}_\omega^{1/4\alpha} \hat{f})(-b) \end{aligned}$$

- The third line (in red) indicates that up to a multiplicative factor $\sqrt{\frac{\pi}{\alpha}} e^{-ib\omega}$
 - the **WINDOWED FOURIER TRANSFORM** of f with g_α at $t = b$,
 - the **WINDOWED INVERSE FOURIER TRANSFORM** of \hat{f} with $g_{1/4\alpha}$ at $\eta = \omega$ **ARE EQUAL!**

WAVELETS — UNCERTAINTY PRINCIPLE (I)

- Consider more general window functions $w \in L_2(\mathbb{R})$ which satisfy the requirement

$$tw(t) \in L_2(\mathbb{R})$$

It can be shown that

- $|t|^{1/2}w(t) \in L_2(\mathbb{R})$
- $w \in L_1(\mathbb{R})$
- the Fourier transform \hat{w} is continuous
- $\hat{w} \in L_2(\mathbb{R})$

Note, however, that in general $x\hat{w}(x) \notin L_2(\mathbb{R})$, therefore w may not in general be a **FREQUENCY WINDOW FUNCTION**

- If $w \in L_2(\mathbb{R})$ is chosen so that both w and \hat{w} satisfy the above condition, then the window Fourier transform

$$(\tilde{\mathcal{G}}_b f)(\omega) = \int_{-\infty}^{\infty} (f(t) e^{-i\omega t}) \overline{w(t-b)} dt = (f, W_{b,\omega}),$$

where $W_{b,\omega} = e^{i\omega t} w(t-b)$, is called a **SHORT-TIME FOURIER TRANSFORM**

WAVELETS — UNCERTAINTY PRINCIPLE (II)

- We can define the **CENTER** x^* and **RADIUS** Δ_w of w as

$$x^* \triangleq \frac{1}{\|w\|_2^2} \int_{-\infty}^{\infty} t|w(t)|^2 dt, \quad \Delta_w \triangleq \frac{1}{\|w\|_2} \left\{ \int_{-\infty}^{\infty} (t-x^*)^2 |w(t)|^2 dt \right\}^{1/2}$$

- Then, $(\tilde{\mathcal{G}}_b f)(\omega)$ gives local information on f in the **TIME-WINDOW**

$$[x^* + b - \Delta_w, x^* + b + \Delta_w]$$

- We can determine the **CENTER** ω^* and the **RADIUS** $\Delta_{\hat{w}}$ of the (frequency) window function \hat{w} using formulae similar to the above

- Defining $V_{b,\omega}(\eta) \triangleq \frac{1}{2\pi} \hat{W}_{b,\omega}(\eta) = \frac{1}{2\pi} e^{ib\omega} e^{-ib\eta} \hat{w}(\eta-\omega)$, which is also a window function with the center $\omega^* + \omega$ and radius $\Delta_{\hat{w}}$, we can write (using the Parseval identity) $(\tilde{\mathcal{G}}_b f)(\omega) = (f, W_{b,\omega}) = (\hat{f}, V_{b,\omega})$

- Thus, $(\tilde{\mathcal{G}}_b f)(\omega)$ also gives local spectral information about t in the frequency window

$$[\omega^* + \omega - \Delta_{\hat{w}}, \omega^* + \omega + \Delta_{\hat{w}}]$$

WAVELETS — UNCERTAINTY PRINCIPLE (III)

- Therefore by choosing $w \in L_2(\mathbb{R})$, such that $xw(x) \in L_2(\mathbb{R})$ and $x\hat{w}(x) \in L_2(\mathbb{R})$, to define a windowed Fourier transform $(\tilde{\mathcal{G}}_b f)(\omega)$ we obtain localization in a **TIME–FREQUENCY WINDOW**

$$[x^* + b - \Delta_w, x^* + b + \Delta_w] \times [\omega^* + \omega - \Delta_{\hat{w}}, \omega^* + \omega + \Delta_{\hat{w}}]$$

with area equal to $4\Delta_w\Delta_{\hat{w}}$

- In fact, there is a relation between possible time and frequency windows which is made precise in the following theorem
- HEISENBERG UNCERTAINTY PRINCIPLE** — Let $w \in L_2(\mathbb{R})$ be chosen so that $xw(x) \in L_2(\mathbb{R})$ and $x\hat{w}(x) \in L_2(\mathbb{R})$. Then

$$\Delta_w\Delta_{\hat{w}} \geq \frac{1}{2}$$

Furthermore, equality is attained if and only if

$$w(t) = ce^{i\alpha t} g_\alpha(t-b),$$

where $c \neq 0$, $\alpha > 0$, and $a, b \in \mathbb{R}$.

WAVELETS — UNCERTAINTY PRINCIPLE (IV)

- Proof of the **HEISENBERG UNCERTAINTY PRINCIPLE**
 - Let us assume that the centers x^* and ω^* are zero (if they are not, then we can modify w as $\tilde{w}(t) = e^{-i\omega^* t} f(t+x^*)$)
 - We observe that

$$\begin{aligned} \Delta_w^2 \Delta_{\hat{w}}^2 &= \frac{\int_{-\infty}^{\infty} t^2 |w(t)|^2 dt \int_{-\infty}^{\infty} \omega^2 |\hat{w}(\omega)|^2 d\omega}{\|w\|_2^2 \|\hat{w}\|_2^2} \\ &= \frac{\int_{-\infty}^{\infty} t^2 |w(t)|^2 dt \int_{-\infty}^{\infty} |w'(t)|^2 dt}{\|w\|_2^4} \end{aligned}$$

- Using the Schwarz inequality we get

$$\begin{aligned} \Delta_w^2 \Delta_{\hat{w}}^2 &\geq \frac{1}{\|w\|_2^4} \left[\int_{-\infty}^{\infty} |t\bar{w}(t)w'(t)| dt \right]^2 \\ &\geq \frac{1}{\|w\|_2^4} \left[\int_{-\infty}^{\infty} \frac{t}{2} [\bar{w}(t)w'(t) + \bar{w}'(t)w(t)] dt \right]^2 \\ &\geq \frac{1}{4\|w\|_2^4} \left[\int_{-\infty}^{\infty} t(|w(t)|^2)' dt \right]^2 \end{aligned}$$

WAVELETS — UNCERTAINTY PRINCIPLE (V)

- Proof of the **HEISENBERG UNCERTAINTY PRINCIPLE** — continued
 - Integrating by parts and noting that $\lim_{|t| \rightarrow 0} \sqrt{t}f(t) = 0$ (since $|t|^{1/2}w(t) \in L_2(\mathbb{R})$ seen earlier) we obtain

$$\Delta_w^2 \Delta_{\hat{w}}^2 \geq \frac{1}{4\|w\|_2^4} \left[\int_{-\infty}^{\infty} |w(t)|^2 dt \right]^2 = \frac{1}{4}$$

- An equality will be obtained when the Schwarz inequality becomes an equality; this implies that there exists $b \in \mathbb{C}$ such that

$$w'(t) = -2btw(t)$$

so that there exists an $a \in \mathbb{C}$ such that $w(t) = ae^{-bt^2}$

- Thus the **GABOR TRANSFORM** has the smallest possible time–frequency window.
- The above Heisenberg Uncertainty Principle has far-reaching consequences.

INTEGRAL WAVELET TRANSFORM (I)

- The short-time Fourier transform has a **RIGID** time–frequency window, in the sense that its width (Δ_w) is unchanged for all frequencies analyzed; this turns out to be a limitation when studying functions with varying frequency content
- The **INTEGRAL WAVELET TRANSFORM** provides a window which:
 - automatically narrows when focusing on high frequencies,
 - automatically widens when focusing on low frequencies
- If $\psi \in L_2(\mathbb{R})$ satisfies the “admissibility” condition

$$C_\psi \triangleq \int_{-\infty}^{\infty} \frac{|\hat{\psi}(\omega)|^2}{|\omega|} d\omega < \infty,$$

then ψ is called a **BASIC WAVELET**. Relative to every basic wavelet ψ , the **INTEGRAL WAVELET TRANSFORM (IWT)** in $L_2(\mathbb{R})$ is defined by

$$(W_\psi f)(a, b) \triangleq |a|^{\frac{1}{2}} \int_{-\infty}^{\infty} f(x) \overline{\psi\left(\frac{x-b}{a}\right)} dx, \quad f \in L_2(\mathbb{R}), \quad a \neq 0, b \in \mathbb{R},$$

INTEGRAL WAVELET TRANSFORM (II)

- Hereafter we will assume that $t\psi(t) \in L_2(\mathbb{R})$ and $\omega\hat{\psi}(\omega) \in L_2(\mathbb{R})$, so that the basic wavelet ψ provides a time-frequency window with finite area
- From the above assumption it also follows that $\hat{\psi}$ is a continuous function and therefore finiteness of C_ψ implies

$$\hat{\psi}(0) = 0 \implies \int_{-\infty}^{\infty} \psi(t) dt = 0$$

- Setting

$$\psi_{b;a}(t) \triangleq |a|^{-\frac{1}{2}} \psi\left(\frac{t-b}{a}\right),$$

the IWT can be written as $(W_\psi f)(b, a) = (f, \psi_{b;a})$

- If the wavelet ψ has the center and radius given by t^* and Δ_ψ , respectively, then the function $\psi_{b;a}$ has its center at $b + at^*$ and radius equal to $a\Delta_\psi$
- Thus, the IWT provides local information about the function f in a time window

$$[b + at^* - a\Delta_\psi, b + at^* + a\Delta_\psi]$$

which narrows down as $a \rightarrow 0$.

INTEGRAL WAVELET TRANSFORM (III)

- Consider the Fourier transform of a basic wavelet

$$\frac{1}{2\pi} \hat{\psi}_{b;a}(\omega) = \frac{|a|^{-\frac{1}{2}}}{2\pi} \int_{-\infty}^{\infty} e^{-i\omega t} \psi\left(\frac{t-b}{a}\right) dt = \frac{a|a|^{-\frac{1}{2}}}{2\pi} e^{-i\omega b} \hat{\psi}(\omega)$$

- Suppose that $\hat{\psi}$ has the center ω^* and radius Δ_ψ . Defining $\eta(\omega) \triangleq \hat{\psi}(\omega + \omega^*)$ we obtain a window function with center at the origin and unchanged radius
- Applying the Parseval identity to the definition of the IWT we obtain

$$(W_\psi f)(a, b) = \frac{a|a|^{-\frac{1}{2}}}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega b} \overline{\eta(a\omega - \omega^*)} d\omega,$$

which, modulo multiplication by a constant factor and a linear frequency shift, localizes information about the function f to the **FREQUENCY WINDOW**

$$\left[\frac{\omega^*}{a} - \frac{1}{a} \Delta_\psi, \frac{\omega^*}{a} + \frac{1}{a} \Delta_\psi \right]$$

INTEGRAL WAVELET TRANSFORM (IV)

- Note that the ratio of the **CENTER FREQUENCY** ω^*/a to the **BANDWIDTH** $2\Delta_\psi/a$

$$\frac{\text{center frequency}}{\text{bandwidth}} = \frac{\omega^*}{2\Delta_\psi}$$

is independent of the scaling a ; thus, the bandwidth grows with frequency in an adaptive fashion (**constant-Q filtering**)

- Reconstruction of a function from its IWT

Let ψ be a basic wavelet, then $\forall f, g \in L_2(\mathbb{R})$

$$\int_0^{\infty} \left[\int_{-\infty}^{\infty} (W_\psi f)(b, a) \overline{(W_\psi g)(b, a)} db \right] \frac{da}{a^2} = \frac{1}{2} C_\psi (f, g)$$

Furthermore, for any $f \in L_2(\mathbb{R})$ and $x \in \mathbb{R}$ at which f is continuous

$$f(x) = \frac{2}{C_\psi} \int_0^{\infty} \left[\int_{-\infty}^{\infty} (W_\psi f)(b, a) \psi_{b;a}(x) db \right] \frac{da}{a^2}$$

Proof — using the Parseval identity, integrating with respect to da/a^2 and using the definition of C_ψ

Note the role of the **ADMISSIBILITY** condition for ψ

DISCRETE WAVELET TRANSFORM (I)

- Consider the IWT at a discrete set of samples $a = 2^{-j}$ and $b = k2^{-j}$ for some $j, k \in \mathbb{Z}$

$$(W_\psi f)\left(\frac{k}{2^j}, \frac{1}{2^j}\right) = \int_{-\infty}^{\infty} f(x) \overline{2^{j/2} \psi(2^j x - k)} dx = (f, \psi_{j,k})$$

where

$$\psi_{j,k} \triangleq 2^{j/2} \psi(2^j x - k)$$

must be chosen so that $\psi_{j,k}$ form a Riesz basis in $L_2(\mathbb{R})$ (i.e, the linear span of $\psi_{j,k}$ with $j, k \in \mathbb{Z}$ is dense in $L_2(\mathbb{R})$)

- If $\psi_{j,k}$ with $j, k \in \mathbb{Z}$ is a **RIESZ BASIS**, then the relation

$$(\psi_{j,k}, \psi^{l,m}) = \delta_{j,l} \delta_{k,m}, \quad j, k, l, m \in \mathbb{Z}$$

uniquely defines **ANOTHER RIESZ BASIS** $\psi^{l,m}$ known as the **DUAL BASIS**

- Thus, every function $f \in L_2(\mathbb{R})$ has a unique representation

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \psi^{j,k}(x)$$

DISCRETE WAVELET TRANSFORM (II)

- For the above representation to qualify as a **WAVELET SERIES**, the dual basis $\psi^{j,k}$ must be obtained from some basic wavelet $\tilde{\psi}$ by $\psi^{j,k}(x) = \tilde{\psi}(2^j x - k)$, where

$$\tilde{\psi}_{j,k} \triangleq 2^{j/2} \tilde{\psi}(2^j x - k)$$

- In general, $\tilde{\psi}$ does not necessarily exist
- If ψ is chosen so that $\tilde{\psi}$ does exist, the pair $(\psi, \tilde{\psi})$ can be used interchangeably

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \psi_{j,k}(x) = \sum_{j,k=-\infty}^{\infty} (f, \tilde{\psi}_{j,k}) \tilde{\psi}_{j,k}(x)$$

- ψ and $\tilde{\psi}$ are called **WAVELET** and **DUAL WAVELET**, respectively
- If the basis $\psi_{j,k}$ is orthogonal, i.e., $\psi_{j,k} = \psi^{j,k}$ for $j, k \in \mathbb{Z}$, we obtain an **ORTHOGONAL WAVELET TRANSFORM**

$$f(x) = \sum_{j,k=-\infty}^{\infty} (f, \psi_{j,k}) \psi_{j,k}(x)$$

DISCRETE WAVELET TRANSFORM (IV)

- Therefore, in such case, the direct sum becomes an **ORTHOGONAL SUM**

$$L_2(\mathbb{R}) = \bigoplus_{j \in \mathbb{Z}} W_j \triangleq \dots \oplus W_{-1} \oplus W_0 \oplus W_1 \oplus \dots$$

- Thus, an orthogonal wavelet ψ generates an **ORTHOGONAL DECOMPOSITION** of the space $L_2(\mathbb{R})$, as the functions g_j are
 - UNIQUE**
 - MUTUALLY ORTHOGONAL**

DISCRETE WAVELET TRANSFORM (III)

- Consider a wavelet ψ and the Riesz basis $\psi_{j,k}$ it generates; for each $j \in \mathbb{Z}$, let W_j denote **THE CLOSURE OF THE LINEAR SPAN** of $\{\psi_{j,k} : k \in \mathbb{Z}\}$, i.e.,

$$W_j \triangleq \text{clos}_{L_2(\mathbb{R})} \{\psi_{j,k} : k \in \mathbb{Z}\}$$

- Evidently, $L_2(\mathbb{R})$ can be decomposed as a **DIRECT SUM** of the spaces W_j (dots over pluses indicate “direct sums”)

$$L_2(\mathbb{R}) = \sum_{j \in \mathbb{Z}}^{\bullet} W_j \triangleq \dots \dot{+} W_{-1} \dot{+} W_0 \dot{+} W_1 \dot{+} \dots$$

and therefore every function $f \in L_2(\mathbb{R})$ has a unique decomposition

$$f(x) = \dots + g_1(x) + g_0(x) + g_{-1}(x) + \dots$$

where $g_j \in W_j, \forall j \in \mathbb{Z}$

- if ψ is an **ORTHOGONAL WAVELET**, then the subspaces $W_j \in L_2(\mathbb{R})$ are **MUTUALLY ORTHOGONAL** $W_j \perp W_l, j \neq l$ which means that

$$(g_j, g_l) = 0, \quad j \neq l$$

where $g_j \in W_j$ and $g_l \in W_l$

MULTIRESOLUTION ANALYSIS (I)

- For every wavelet ψ (not necessarily orthogonal) we can consider the following space $V_j \in L_2(\mathbb{R}), \forall j \in \mathbb{Z}$

$$V_j = \dots \dot{+} W_{j-2} \dot{+} W_{j-1}$$

- The subspaces V_j have the following very interesting properties:

- $\dots \subset V_{-1} \subset V_0 \subset V_1 \subset \dots$
- $\text{clos}_{L_2} (\bigcup_{j \in \mathbb{Z}} V_j) = L_2(\mathbb{R})$
- $\bigcap_{j \in \mathbb{Z}} V_j = \{0\}$
- $V_{j+1} = V_j \dot{+} W_j, j \in \mathbb{Z}$
- $f(x) \in V_j \Leftrightarrow f(2x) \in V_{j+1}, j \in \mathbb{Z}$

- Note that

- In contrast to the subspaces W_j which satisfy $W_j \cap W_l = \{0\}, j \neq l$, the sequence of subspaces V_j is **NESTED** (1°)
- Every $f \in L_2(\mathbb{R})$ can be approximated with **ARBITRARY ACCURACY** by its projections $P_j f$ on V_j (2°)

MULTIRESOLUTION ANALYSIS (II)

- If the reference subspace V_0 is generated by a single **SCALING FUNCTION** $\phi \in L_2(\mathbb{R})$ in the sense that

$$V_0 = \text{clos}_{L_2(\mathbb{R})} \{ \phi_{0,k} : k \in \mathbb{Z} \}$$

where

$$\phi_{j,k} \triangleq 2^{j/2} \phi(2^j x - k),$$

then all the subspaces V_j are also generated by the same ϕ as

$$V_j = \text{clos}_{L_2(\mathbb{R})} \{ \phi_{j,k} : k \in \mathbb{Z} \}$$

in the same way as the subspaces W_j are generated by the wavelet ψ

- In the **MULTIRESOLUTION ANALYSIS** at a given scale $(j+1)$
 - the subspace V_j represents the **“LARGE SCALE”** features of the function
 - the subspaces W_j represents the **“SMALL SCALE”** features (details) of the function

THE END