PART II
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Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
DirICHLET BOUNDARY CONDITIONS :

d2y
dx?
y(0) =y(2r) =0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:

=g for x € (0, 27)

Vi1 — 2yt yi—1
2

=gjforj=1,....N

where h = ,\,2—11 and x; = jh

» Endpoint nodes: )
=0 = y—-2n=hg
Yn41 = 0= —2yn + yn_1 = h’gn

» Tridiagonal algebraic system — solved very efficiently with the
THOMAS ALGORITHM (a version of the Gaussian elimination)
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Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

» Solving a TWO-POINT BOUNDARY VALUE PROBLEM with
NEUMANN BOUNDARY CONDITIONS :

dy
dx?2
a0y = ¥ (2m) =
x (0) = dx(27r) =0
» Finite-difference approximation:
» Second-order center difference formula for the interior nodes:
Yit1 — 2y +yj-1
A2
» First-order Forward/Backward Difference formulae to
re—express endpoint values:
Yi— Y
h
YN+1 — YN
h
First-order only — DEGRADED ACCURACY!
» Tridiagonal algebraic system — Is there any problem? Where?
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=g for x € (0,2m)

=gjforj=1,...,N

=0 = y=xn



Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

> In order to retain the SECOND-ORDER ACCURACY in the
approximation of the Neumann problem need to use
higher-order formulae at endpoints, e.g.

T R 3y0
Yo 2h

1
=0 = w-= g(ﬂ’z +4y1)

» The first row thus becomes
2,2 _ K2
3y2 3}/1 =ng

SECOND—ORDER ACCURACY RECOVERED!
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT STENCILS — stencils based on three grid points
(in every direction) only: {xj11, X, xj—1} at the j — th node

> |s is possible to obtain higher (then second) order of accuracy
on compact stencils? — YES!

» Consider the central difference approximation to the equation
d?y _
42 ~ &

Yisr =2yt yi1 W
j h2J i _ﬁyj( )+O(h4):gj
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Boundary-Value Problems Dirichlet Boundary Conditions

Neumann Boundary Conditions
Compact Schemes

2 i . . . .
> Re-express the error term %yj('v)usmg the equation in question:

R Gy R, B [gr1—28+g-1 M (v 4
127 125 T 12 2 &  TOW)

» Inserting into the original finite-difference equation:

Yivr = 2%+ yi1 o g+1— 28t g1
h2 =&+ 12

+ O(h")

» Slight modification of the RHS — FOURTH-ORDER
ACCURACY!!!
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Boundary-Value Problems Dirichlet Boundary Conditions
Neumann Boundary Conditions

Compact Schemes

» COMPACT FINITE DIFFERENCE SCHEMES —

» ADVANTACGES:
> Increased accuracy on compact grids

» DRAWBACKS:
> need to be tailored to the specific equation solved

> can get fairly complicated for more complex equations
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» Consider the following CAUCHY PROBLEM :

d .
= = Fly.t) with y(t0) = yo

The independent variable t is usually referred to as TIME .

» Equations with higher-order derivatives can be reduced to
systems of first-order equations

» Generalizations to systems of ODEs straightforward
» When the RHS function does not depend on y, i.e.,
fy,t) = £(t),

solution obtained via a QUADRATURE

» Assume uniform time-steps ( h is constant )
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Generalis
Initial-Value Problems Time-Stepping Schemes

Runge’s Principle, Lax Theorem and Conservation Properties

» ACCURACY — unlike in the Boundary Value Problems, there
is no terminal condition and approximation errors may
accumulate in time; consequently, a relevant characterization
of accuracy is provided by the GLOBAL ERROR

(global error) = (local error) x (# of time steps),

rather than the LOCAL ERROR .

» STABILITY — unlike in the Boundary Value Problems, where
boundedness of the solution at final time is enforced via a
suitable terminal condition , in Initial Value Problems there is
a priori no guarantee that the solution will remain bounded.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (I)

> STABILITY of various numerical schemes is usually analyzed
by applying these schemes to the following LINEAR MODEL :

d _

= Ay = (Ar + X))y with y(to) = yo,

which is stable when A\, <=0 .

» EXACT SOLUTION:

A2h2 \3p3
y(t):yoe”: <1+/\h+2+6+...>y0
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Model Problem (II)

» MOTIVATION — consider the following
ADVECTION-DIFFUSION PDE :

ou  Qu_ 0%
ot Sox  ox2

=0

Taking Fourier transform yields (k is the wavenumber):
di
b cikin+ak’ =0

where
» the real term a k? il represents DIFFUSION

> the imaginary term c i k Uy represents ADVECTION
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

» Consider a Taylor series expansion

h2
Y(tns) = y(ta) + hy'(ta) + 2y (62) + ...
Using the ODE we obtain
y/ = Q =

dt
dy’ df

== = — =f+ff
dt ar T

» Neglecting terms proportional to second and higher powers of
h yields the ExpLIiCIT EULER METHOD

Yn+1 =Yn+ hf()’n, tn)

> Retaining higher—order terms is inconvenient, as it requires
differentiation of f and does not lead to schemes with



Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (1)

» LOCAL ERROR analysis:

Vi1 = (L4 Ah) yn + [O(H?)]

» GLOBAL ERROR analysis:

-
(global error) = Ch? - N = Ch?* - b= C'h

Thus, the scheme is
» locally second-order accurate

» globally (over the interval [to, to + Nh]) first-order accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Explicit Scheme (I11)

» Stability (for the model problem)

Yni1 = Yn + Ahyn = (14 M)y,

» Thus, the solution after n time steps

Yn:(l-i-)\h)"yoétfnyo = o=1+M\h

> For large n, the numerical solution remains stable iff
o] <1 = (L+Ah)?+(\h)?2<1
» CONDITIONALLY STABLE for real \

» UNSTABLE for imaginary A
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (1)

» IMPLICIT SCHEMES — based on approximation of the RHS that
involve f(y,11,t), where y,.1 is the unknown to be determined

» [MPLICIT EULER SCHEME — obtained by neglecting second and
higher-order terms in the expansion:

h2
y(tn) = y(tar1) — hy/(tn+1) + 7y/,(tn+1) ..

» Upon substitution % = f(Yn+1, tn+1) We obtain

tn+1
Yn+1 = Yn + hf(Yni1, tay1)

» The scheme is
> locally SECOND—ORDER accurate
» globally (over the interval [to, to + Nh]) FIRST-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Euler Implicit Scheme (I1)

» Stability (for the model problem):

Ynt1 = Yn+ Ayp1 = Y1 = (1 - )‘h)_l)’n
1
1—Ah
ol <1 = (1-AhP2+(Nh) =1
» Implicit Euler scheme is thus stable for

> all stable model problems
» most unstable model problems

» REMARK: When solving systems of ODEs of the form
y = A(t)y, each implicit step requires solution of an algebraic
system: ypy1 = (I — hA) 1y,

» Implicit schemes are generally hard to implement for nonlinear
problems
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

» Obtained by approximating the formal solution of the ODE
Y+l = Yn+ ft"“ f(y,t) dt using the TRAPEZOIDAL QUADRATURE :

h
Yn+1 = Yn + 2 [f(y,,, tn) + f(y,,+1, tn+1)]

> The scheme is
> locally THIRD—ORDER accurate

» globally (over the interval [ty, to + Nh]) SECOND—ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Crank-Nicolson Scheme (1)

» Stability (for the model problem):
Ah 1+ 4
Yn+1 = Yn + 7(yn+1 +Yn) = Yay1= T2 | In

Ah
AR\ "
B 1+5 A n 1
Ynt1 = 71_M Yo=0Yo — 0=

+
S

2
> 1-—

o] <1 = R(Ah) <

O [\)‘y

» STABLE for all model ODEs with stable solutions
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (1)

» LEAPFROG as an example of a TWO-STEP METHOD :
Yn+1 = Yn—1+ 2 h)\yn

» CHARACTERISTIC EQUATION for the AMPLIFICATION FACTOR
(Yn = UnYO)
62 —2hXc—1=0

where roots give the amplification factors:

2h2
o1 =M+ 14+ N2k ~ 1+/\h+>\T+... = ML Oo(r)

222
02 = M= V14 X2h? = —(1 = M+ = — ) =—e ML o)

> Thus, the scheme is
> locally THIRD—ORDER accurate
» globally (over the interval [ty, ty + Nh]) SECOND—ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Leapfrog Scheme (II)

» Stability for diffusion problems (A =\, ):

o1 =Ah+/1+X2h?>1 forall h>0

Thus the scheme is UNCONDITIONALLY UNSTABLE for diffusion
problems!

» Stability for advection problems (A = i)\; ):

1
o3y =1 (M) for h< DY

Thus, the scheme is CONDITIONALLY UNSTABLE and

NON-DIFFUSIVE for advection problems!

» QUESTION — analyze dispersive (i.e., related to arg(c)) errors of
the leapfrog scheme.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1)

» General form of a MULTISTEP (£, () PROCEDURE :

P q
> aiynii =hY_ Bif (Yaij tars)

j=0 j=0
with characteristic polynomials
Ep(2) = apzP + ap12P 7t + -+ ag

Cq(z) = Bq27 + ﬂq—qui1 +-+ 5o

» if p> g — EXPLICIT SCHEME
» if p< g — IMPLICIT SCHEME

» CONSISTENCY: h—-0 = Local Error — 0
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Generalis

Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (I1)

Theorem
» Consider an initial-value problem % = f(t,y), y(0) = yo,
where f : [0, T] x R" — R" is r times continuously
differentiable w. r. t. both variables. A (£, () —procedure
converges uniformly in [0, T], i.e.,
limp—s0 MaXs,clo, 7] Yo — y(ta)| = 0 if:

1. the following consistency conditions are verified: £(1) =0 and
¢'(1) = ¢(1) ( CONSISTENCY CONDITION )

2. all roots of the polynomial £(z) are such that |z;| <1 and the
roots with |zi| = 1 are simple ( STABILITY CONDITION )
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (lII)

Proof (part 1.)

» Taylor expansions

t+ h khk+(9(hr+1)
—o
—1 k1) (¢ =t (k)
Vittih)=S"Y (t )J hk + O(h ):Zk)’ (t)jk71hk71+o(hr)
par S k=0 k!

» Error E(t,h) (s = max{p, q})

E(t,h) = ajy(t+jh)—h > Bif(t+jhy(t+jh)=> [ajy(t+jh)—hB;y (t+]h)]
j=0 j=0 j=0

—Z [ZJ 0~ kj* 1@} 0 s ogry
J

=0 (%)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Multistep Procedures (1V)

Proof (Cont.)

>
S

(%) > ey —kj<IB=0, k=0,...r
j=0

» For the global error to vanish we need r = 1, so that O(h?)
S
k=0: > ;=0 = £1)=0
j=0
S S
k=1: > ja=> 8 = 1)=¢1)
Jj=0 Jj=0
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)

» General form of a FRACTIONAL STEP METHOD :
Yot1 =Ynt+ 11 hki+y2hky+y3hks+ ...
where
ki = f(yn, tn)
ka = f(yn + Bihky, tn + arh)
k3 = f(yn + B2hky + B3hko, th + a2 h)

» Choose ~;, 8; and «; to match as many expansion coefficients as

possible in B2 B3
y(tnia) = y(ta) + by (ta) + =y (t0) + 2™ (tn)
y'=f
y' = fo+ ffy

Y = fu + fefy 2fFe + £ + £,y

» Runge-Kutta methods are SELF—STARTING with fairly good stability
and accuracy properties.
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge-Kutta Methods (1)
» RK4 — an ODE "“workhorse”:

h h h
= —k — (ko + k: —k
Yn+1 }/n+61+3(2+ 3)+64

h
ki = F(yn, tn) ke = f(yn + S ki, tay1/2)
h
k3:f(y,,_|-5 2, thy1/2) ks = f(yn + hk3, th1)

» The amplification factor:

Xh2 N3RS et
+—+

o=1+Xh+ 5 6 21

Thus, stability iff |o| <1
» ACCURACY:
e =04+ 0O(h°)
Thus, the scheme is

» locally FIFTH-ORDER accurate
» globally (over the interval [to, to + Nh]) FOURTH-ORDER accurate
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Runge’s Principle

» Let (k + 1) be the order of the local truncation error; denote Y(t, h)
an approximation of the exact solution y(t) computed with the step
size h; then at t = ty + 2nh:

y(t) = Y(t,h) ~ C2nh*" = C(t — to)h"
y(t) = Y(t,2h) ~ Cn(2n)*" = C(t — to)2"

Subtracting:
Y (t,2h) — Y(t, h) ~ C(t — to)(1 — 2°)h*

» Thus, we can obtain an estimate of the ABSOLUTE ERROR based on
solution with two step—sizes only:
Y(t, h) — Y(t,2h)

y(8) = Yt h) = T

» Runge’s principle is very useful for ADAPTIVE STEP SIZE
REFINEMENT

B. Protas MATH745, Fall 2012



Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Lax Equivalence Theorem!

» Consider an INITIAL VALUE PROBLEM
du

i Lu with u(ty) = uo

and assume that it is well-posed, i.e., it admits solutions which are
unique and stable

» Consider a numerical method defined by a finite—difference operator
C(h) such that the approximate solution is given by

up(nh) =C(h)"wo, n=1,2,...

» The above method is CONSISTENT iff % is a convergent
approximation of the operator £

» LAX THEOREM — For a CONSISTENT difference method
STABILITY is equivalent to CONVERGENCE

For a more technical discussion, see $ 5.2 in Atkinson & Han (2001)
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties ()

» Is ACCURACY and STABILITY all that matters?

» CONSERVATION PROPERTIES — conservation by the numerical
method (i.e., in the discrete sense) of various invariants the original
equation may possess

» REMARK — conservation properties are particularly relevant for
solution of Hamiltonian / hyperbolic systems

» Example — conservation of the solution norm:
» In the continuous setting (assume u = |u|e'?)

dlu
. Il _o = (o)) = Iul,
— = i\iu <~
dt LY
dt "
> In the discrete setting: |up(nh)| = |up((n — 1)h)| = --- = |ux(0)]

Necessary and sufficient condition for discrete conservation: 3h, |o(h)| =1
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Generalis
Initial-Value Problems Time-Stepping Schemes
Runge’s Principle, Lax Theorem and Conservation Properties

Conservation Properties (II)

> Implicit Euler —
==l = e !
1-— l)\ h 1+ M2h2

The scheme is thus DISSIPATIVE (i.e., not conservative)
» Fourth—Order Runge-Kutta —

o] _%A$h2+...<1 for all h

X2 3R et 1
=[1+iAh————i= ’ ~1/576 — BACHS + \3h8
o] = |1+ S 2 24\/56 BASHS + A§
=1- ﬁxﬁhﬁ .. <1 forsmall h

The scheme is thus DISSIPATIVE (i.e., not conservative)

> Leapfrog — lo1p] =1 forall h< I>\
The scheme is thus CONSERVATIVE for all time—steps for which it is
stable!!! Leapfrog is an example of a SYMPLECTIC INTEGRATOR

which are designed to have good conservation properties.
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» Classification of linear PDEs in 2D: consider v : Q2 — R and
A, B, C € R such that
9%u 9%u 0%u
» ELLIPTIC PROBLEMS : B2 —4AC <0
» Poisson equation: Ry u
2 + 87)/2 =g(x,y)
» PARABOLIC PROBLEMS : B2 —4AC =0
» Heat equation: @ - @ N @ + etey)
ot 2\ ox2 Oy? gy
» HYPERBOLIC PROBLEMS : B2 —4AC >0

» Wave equation: 2y Ry u
ﬁ:a ﬁ+87}/2 +g(x,y)

B. Protas MATH745, Fall 2012



Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» POISSON EQUATION

Py P

Au=2"Y
“ 6x2+8y2

=g(x,y) nQ, QcCR?

> Assuming Ax = Ay = h, the DISCRETE LAPLACIAN

Uiy1j+ Uijy1 —4ujj+uj—1j+ ujj1

2
Au= e + O(h?)
where uj; = u(iAx,jAy), i,j=1,...,N
» Thus
Uiyt + Uije1r — duij + w1+ uijo1 = h* g, hj=1,...,N

» After incorporating boundary conditions (Dirichlet, Neumann) and
vectorizing the variables ( &j;(v_1); = &ij ), we obtain a sparse
algebraic problems with a diagonally-dominant PENTADIAGONAL
MATRIX = straightforward to solve
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Elliptic Problems
Parabolic Problems

Differences for PDEs — Review Hyperbolic Problems

» HEAT EQUATION

ou 0%u
EZW m [O, T]X[a,b]

» CRANK-NICOLSON METHOD (xj=jAx,j=1,...,M, t = nAt,
n=1,...,N):
n
» spatial derivative: (g%)j = % + 0O((Ax)?)

» time derivative:

du\"t _ut - 1[92\ | (u
(at>j =~ ar TO@BN=3 (ax) +<ax >

n n At n n n n n
Uj+1 _ Uj = m (uj;rll _ 2 +1 + u +11 + Uj+1 2Uj —+ uj—l) + O ((Ax)2 + (At)2)

+0((A1))

» thus, defining r = (AA:)Z ,we have at every time step n

—rulH 214 o™t — il =l 4 2(1 = r)uf + ruf

which for U" = [u], ..., u;\’ﬂ]T can be written as an algebraic system
21— A)U™ = (21 + A)U" , where A is a tridiagonal matrix
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» 0 METHOD
» allow for a more general approximation in time of the RHS (8 € [0,1])

ou\"" UJ'?H —uf 1 o2u\ " o*u\"
<8t>j =" At +O(At) = 5 0 (8X2>J +(1-9) (5X2)J +O(At)

> special cases

» § =0 = EXpPLICIT METHOD: U™ = AgU"
» =1 = CrANK NICOLSON METHOD (see previous slide)

» § =1 — IMPLICIT METHOD: A Ul ="
» Stability:

» The EXPLICIT SCHEME is STABLE for r = (AA—;)Q < %

» The CRANK—NICOLSON and IMPLICIT SCHEME are STABLE for all r
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Elliptic Problems
Parabolic Problems

Finite Differences for PDEs — Review Hyperbolic Problems

» WAVE EQUATION ) )
0“u  0O<u

ﬁ:ﬁ in [0, T]X[a,b]

N —2utu”
» Spatial derivative: (%)j = %;;UJ_I + O((Ax)?)

» Time derivative:

u\" UJ"7+1 —2u! + Uf_l ) 2?u\"
(aﬂ)j L (axz),-
. (At n n— (At
Uj +1 = (AX)2 (Uj+1 + uj—l) — Uj ! + 21— (AX)Z Uj + O ((AX)2 + (At)4)

» Stability for ((ﬁi); <1

» REMARK: need two initial conditions!
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