PART III
REVIEW OF (ABSTRACT)
APPROXIMATION THEORY

Although this may seem a paradox,
all exact science is dominated by the idea of approximation.
— Bertrand Russell (1872-1970)
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Basic Concepts Inner Products, Unitary and Hilbert Spaces
Orthogonality

» Consider a real or complex linear space V; A SCALAR
PRODUCT is real or complex number (x, y) associated with
the elements x, y € V with the following properties:

» (x,x) is real, (x,x) >0, (x,x) =0 only if x =0,

> (%) = (v, ),

> (1x + axe, y) = aa(xi, y) + aa(x2, y)

» A normed space V is said to be UNITARY if its norm and

scalar product are connected via the following relation:
1/2
x|l = (x, )"/

» A complete unitary space H is called a HILBERT SPACE
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Basic Concepts Inner Products, Unitary and Hilbert Spaces

Orthogonality

» Two elements x and y of a Hilbert space V are said to be
mutually ORTHOGONAL (x L y) if (x,y) = 0. A countable
set of elements xq,x2,..., Xk, ... is said to be ORTHONORMAL
(or to form AN ORTHONORMAL SYSTEMS ) if (x;, xj) = dj;

» The following properties hold:

» x L Qforall xeV

» x Lxonlyifx=20

» ifx L A ie,x Lyforally e AC YV, then x is also
orthogonal to the linear hull £(A)

»ifxLly,(n=1,2...)and y, >y, thenx Ly

» if Aisdensein V and x L A, then x =0

» SCHMIDT ORTHOGONALIZATION — Let A be a set of
countably many linearly independent elements
X1, X2, ..., Xk, ... of a Hilbert space H. Then there is an
orthonormal system 7 = {e; € V : (e, &) = d;;} , such that
the linear hulls of A, = {x;: j=1,...,k} and
Fr=A{e:j=1,...,k} arethe same for all k.
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Fourier Series
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Approximation in Hilbert Spaces

> Let {e1, e,...} be an orthonormal system in a Hilbert space
H and let Hy be the linear hull of {e;,...,ex}. Then for every
x € H the element a = Zjlle(x, ej) e € Hy has the property
that |[x — a|| < [[x — y|| for all y € Hi. The numbers (x, ¢))
are called THE FOURIER COEFFICIENTS relative to the
orthonormal system {ej, e,...}. Furthermore, from
|x — al|? > 0 follows the BESSEL INEQUALITY :

k
Z] x, )7 < (x,x)
j=1

> If A is a given set in a Hilbert space H, then
L ={x: (x,a) =0 forall ac A}

is a closed linear subspace of H. It is, therefore, itself a Hilbert
space and is called THE ORTHOGONAL COMPLEMENT OF A
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Fourier Series
Best Approximations
Rates of Convergence

Approximation in Hilbert Spaces

» If Hy is a closed linear subspace of a Hilbert space H and H>
is its orthogonal complement, then every x € H can be
uniquely represented in the form

X =x1+x2, (x1 € Hi,x2 € Ha)

We write H = H; @& H> and call H an orthogonal sum of H;
and H2.

» Since
[x = x1l| = p(x, H1) = inf {l|x —y1|l},
y1€EH

[x = 2|l = p(x, H2) = inf {|[x —y2ll},
y26H>

one calls x; and xo the ORTHOGONAL PROJECTIONS of x on
Hy and H,, respectively.
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Fourier Series
Best Approximations
Rates of Convergence

Approximation in Hilbert Spaces

> Let {e1, e,...} be a countable orthonormal system in a Hilbert
space H. By Bessel inequality, the series
o) . n .
> io1(x,6) g =limp0 371 (x, ) € defines an element of H for
every x € H. This is called THE FOURIER SERIES OF X

> The partial sum s, = 377 (x, &) & is the orthogonal projection of x
on the subspace H, = L({e1,...,e,}). One has
15nlI* = Zj:1 [(x, ej)’2

» If the system {e1,..., ek, ...} is complete in H, i.e.,
L({e1,...,ek,...}) = H, then the Fourier series for any x € H
converges to x
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Fourier Series
Best Approximations
Rates of Convergence

Approximation in Hilbert Spaces

» An orthonormal system is said to be CLOSED if THE PARCEVAL
EQUATION

(0.9]
D10 ) = lIxII?
j=1

holds for every x € H. An orthonormal system is closed IFF it is
complete.

> An orthonormal system in a separable Hilbert space is at most
countable
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Fourier Series
Best Approximations
Rates of Convergence

Approximation in Hilbert Spaces

» Statement of a GENERAL APPROXIMATION PROBLEM IN A
HILBERT SPACE H — consider a fixed element f € H and G, C H
which is a finite-dimensional subspace of H (with the same norm).
Want to find an element g € G, such that

D(f,Gn, |l - ) = inf {|If —gll} = [If — &I
gegn

The element g is called THE BEST APPROXIMATION and the number
D(f,Gn,|| - ||) is called THE DEFECT .

> Issues:
» Does the best approximation g exist?
» Can g be uniquely determined?

» How can g be computed?
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Fourier Series
Best Approximations
Rates of Convergence

» The approximation problem in a Hilbert space H has a unique
solution g for which (g — f,h) =0 holds for all h € G,,. If
{e1,...,en} is a basis of G, then

£=3>9"
j=1

Approximation in Hilbert Spaces

with n ()
chn(ejvek):(faek)a j:]-a"'an (*)

J=1

and the approximation error is

g2 = (a8 = FP — > (e f

j=1
» Thus, the Fourier coefficients c-("), j=1,...,n, can be calculated by

solving an algebraic system (%) with the Hermitian, positive—definite
matrix Ajx = (e}, ex) (the so called GRAM MATRIX ).

> If the basis {e1,...,e,} is orthogonal, the system becomes decoupled

and the Fourier coefficients can be calculated simply as c,((”) = (f, ex)
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Fourier Series
Best Approximations
Rates of Convergence

Approximation in Hilbert Spaces

» Assume that ¢;, j = 1,2,... are the Fourier coefficients related to an
approximation of some function f = > 7 ; c;e;

» The RATE OF CONVERGENCE of this approximation is:

» ALGEBRAIC with order k if for j >>1

lim |¢|[j* < 0o, or, equivalently, |¢j| ~ O(™¥)
Jj—oo

» EXPONENTIAL OR SPECTRAL with index r if for ANY k > 0

lim |g|j* < oo, o, equivalently, |¢j| ~ O(exp(—qj")), r,q € RT
j—o0

spectral convergence can be:
» SUBGEOMETRIC when r < 1,
» GEOMETRIC when r = 1, and
> SUPERGEOMETRIC otherwise
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