MATH 745: Topics in Numerical Analysis

Bartosz Protas

Department of Mathematics & Statistics Email: bprotas@mcmaster.ca Office HH 326, Ext. 24116 Course Webpage: http://www.math.mcmaster.ca/~bprotas/MATH745

September 23, 2014

Agenda

Standard Finite Differentces — A Review

Basic Definitions Polynomial–Based Approach Taylor Table

Finite Differences — an Operator Perspective

Review of Functional Analysis Background Differentiation Matrices Unboundedness and Conditioning

Miscellanea

Complex Step Derivarive Padé Approximation Modified Wavenumber Analysis

Introduction

What is NUMERICAL ANALYSIS?

- Development of COMPUTATIONAL ALGORITHMS for solutions of problems in algebra and analysis
- Use of methods of MATHEMATICAL ANALYSIS to determine a priori properties of these algorithms such as:
 - CONVERGENCE,
 - ► ACCURACY,
 - STABILITY
- REMARK Application of these methods to solve actual problems arising in practice is usually considered outside the scope of Numerical Analysis (
 SCIENTIFIC COMPUTING)

PART I Differentiation with Finite Differences

Standard Finite Differentces — A Review	Basic Definitions
Finite Differences — an Operator Perspective	Polynomial–Based Approach
Miscellanea	Tavlor Table

► Assumptions :

- f : Ω → ℝ is a smooth function, i.e. is continuously differentiable sufficiently many times,
- ► the domain Ω = [a, b] is discretized with a uniform grid {x₁ = a,..., x_N = b}, such that x_{j+1} - x_j = h_j = h (extensions to nonuniform grids are straightforward)
- ▶ PROBLEM given the nodal values of the function f, i.e., f_j = f(x_j), j = 1,..., N approximate the nodal values of the function derivative

$$\frac{df}{dx}(x_j) = f'(x_j) =: f'_j, \qquad j = 1, \dots, N$$

► The symbol (^{δf}/_{δx})_j will denote the approximation of the derivative f'(x) at x = x_j

 Standard Finite Differences — A Review
 Basic Definitions

 Finite Differences — an Operator Perspective
 Polynomial–Based Approach

 Miscellanea
 Taylor Table

The simplest approach — Derivation of finite difference formulae via TAYLOR-SERIES EXPANSIONS

$$f_{j+1} = f_j + (x_{j+1} - x_j)f'_j + \frac{(x_{j+1} - x_j)^2}{2!}f''_j + \frac{(x_{j+1} - x_j)^3}{3!}f'''_j + \dots$$

= $f_j + hf'_j + \frac{h^2}{2}f''_j + \frac{h^3}{6}f'''_j + \dots$

Rearrange the expansion

$$f'_{j} = \frac{f_{j+1} - f_{j}}{h} - \frac{h}{2}f''_{j} + \cdots = \frac{f_{j+1} - f_{j}}{h} + \mathcal{O}(h),$$

where $\mathcal{O}(h^{\alpha})$ denotes the contribution from all terms with powers of h greater or equal α (here $\alpha = 1$).

► Neglecting O(h), we obtain a FIRST ORDER FORWARD-DIFFERENCE FORMULA :

$$\left(\frac{\delta f}{\delta x}\right)_j = \frac{f_{j+1} - f_j}{h}$$

- Standard Finite Differences A Review
 Basic Definitions

 Finite Differences an Operator Perspective
 Polynomial-Based Approach

 Miscellanea
 Taylor Table
- Backward difference formula is obtained by expanding f_{j-1} about x_j and proceeding as before:

$$f'_{j} = \frac{f_{j} - f_{j-1}}{h} - \frac{h}{2}f''_{j} + \dots \implies \left(\frac{\delta f}{\delta x}\right)_{j} = \frac{f_{j} - f_{j-1}}{h}$$

- ► Neglected term with the lowest power of *h* is the LEADING-ORDER APPROXIMATION ERROR, i.e., $Err = \left| f'(x_j) - \left(\frac{\delta f}{\delta x}\right)_j \right| \approx Ch^{\alpha}$
- The exponent α of h in the leading-order error represents the ORDER OF ACCURACY OF THE METHOD — it tells how quickly the approximation error vanishes when the resolution is refined
- The actual value of the approximation error depends on the constant C characterizing the function f
- ► In the examples above $Err = -\frac{h}{2}f''_j$, hence the methods are FIRST-ORDER ACCURATE

Basic Definitions Polynomial–Based Approach Taylor Table

Higher–Order Formulas (I)

Consider two expansions:

$$f_{j+1} = f_j + hf'_j + \frac{h^2}{2}f''_j + \frac{h^3}{6}f'''_j + \dots$$

$$f_{j-1} = f_j - hf'_j + \frac{h^2}{2}f''_j - \frac{h^3}{6}f'''_j + \dots$$

Subtracting the second from the first:

$$f_{j+1} - f_{j-1} = 2hf'_j + \frac{h^3}{3}f'''_j + \dots$$

Central Difference Formula

$$f'_{j} = \frac{f_{j+1} - f_{j-1}}{2h} - \frac{h^2}{6}f'''_{j} + \dots \implies \left(\frac{\delta f}{\delta x}\right)_{j} = \frac{f_{j+1} - f_{j-1}}{2h}$$

Basic Definitions Polynomial-Based Approach Taylor Table

Higher–Order Formulas (II)

- The leading-order error is $\frac{\hbar^2}{6}f_j^{\prime\prime\prime}$, thus the method is SECOND-ORDER ACCURATE
- Manipulating four different Taylor series expansions one can obtain a fourth-order central difference formula :

$$\left(\frac{\delta f}{\delta x}\right)_{j} = \frac{-f_{j+2} + 8f_{j+1} - 8f_{j-1} + f_{j-2}}{12h}, \qquad Err = \frac{h^{4}}{30}f^{(v)}$$

Basic Definitions Polynomial–Based Approach Taylor Table

Approximation of the Second Derivative

Consider two expansions:

$$f_{j+1} = f_j + hf'_j + \frac{h^2}{2}f''_j + \frac{h^3}{6}f'''_j + \dots$$

$$f_{j-1} = f_j - hf'_j + \frac{h^2}{2}f''_j - \frac{h^3}{6}f'''_j + \dots$$

Adding the two expansions

$$f_{j+1} + f_{j-1} = 2f_j + h^2 f_j'' + \frac{h^4}{12} f_j^{i\nu} + \dots$$

- Central difference formula for the second derivative: $f_j'' = \frac{f_{j+1} - 2f_j + f_{j-1}}{h^2} - \frac{h^2}{12}f_j^{(iv)} + \dots \implies \left(\frac{\delta^2 f}{\delta x^2}\right)_i = \frac{f_{j+1} - 2f_j + f_{j-1}}{h^2}$
- The leading-order error is $\frac{h^2}{12}f_j^{(iv)}$, thus the method is SECOND-ORDER ACCURATE

 Standard Finite Differences
 A Review
 Basic Definitions

 Finite Differences
 an Operator Perspective
 Polynomial-Based Approach

 Miscellanea
 Taylor Table

- An alternative derivation of a finite-difference scheme:
 - ▶ Find an *N*-th order accurate interpolating function *p*(*x*) which interpolates the function *f*(*x*) at the nodes *x_j*, *j* = 1,..., *N*, i.e., such that *p*(*x_j*) = *f*(*x_j*), *j* = 1,..., *N*
 - Differentiate the interpolating function p(x) and evaluate at the nodes to obtain an approximation of the derivative p'(x_j) ≈ f'(x_j), j = 1,..., N

Example:

For j = 2,..., N − 1, let the interpolant have the form of a quadratic polynomial p_j(x) on [x_{j−1}, x_{j+1}] (Lagrange interpolating polynomial)

$$p_{j}(x) = \frac{(x - x_{j})(x - x_{j+1})}{2h^{2}} f_{j-1} + \frac{-(x - x_{j-1})(x - x_{j+1})}{h^{2}} f_{j} + \frac{(x - x_{j-1})(x - x_{j})}{2h^{2}} f_{j+1}$$

$$p_{j}'(x) = \frac{(2x - x_{j} - x_{j+1})}{2h^{2}} f_{j-1} + \frac{-(2x - x_{j-1} - x_{j+1})}{h^{2}} f_{j} + \frac{(2x - x_{j-1} - x_{j})}{2h^{2}} f_{j+1}$$

► Evaluating at x = x_j we obtain f'(x_j) ≈ p'_j(x_j) = t_{j+1}-t_{j-1}/2h (i.e., second-order accurate center-difference formula)
 Standard Finite Differences — A Review
 Basic Definitions

 Finite Differences — an Operator Perspective
 Polynomial–Based Approach

 Miscellanea
 Taylor Table

Generalization to higher–orders straightforward

Example:

- For j = 3,..., N − 2, one can use a fourth-order polynomial as interpolant p_j(x) on [x_{j−2}, x_{j+2}]
- Differentiating with respect to x and evaluating at x = x_j we arrive at the fourth–order accurate finite–difference formula

$$\left(\frac{\delta f}{\delta x}\right)_{j} = \frac{-f_{j+2} + 8f_{j+1} - 8f_{j-1} + f_{j-2}}{12h}, \qquad Err = \frac{h^{4}}{30}f^{(\nu)}$$

- Order of accuracy of the finite-difference formula is one less than the order of the interpolating polynomial
- The set of grid points needed to evaluate a finite-difference formula is called <u>STENCIL</u>
- In general, higher-order formulas have larger stencils

- Standard Finite Differentces A Review
 Basic Definitions

 Finite Differences an Operator Perspective
 Polynomial–Based Approach

 Miscellanea
 Taylor Table
- A general method for choosing the coefficients of a finite difference formula to ensure the highest possible order of accuracy
- ► Example: consider a one-sided finite difference formula ∑²_{p=0} a_pf_{j+p}, where the coefficients a_p, p = 0, 1, 2 are to be determined.
- Form an expression for the approximation error

$$f_j' - \sum_{p=0}^2 a_p f_{j+p} = \epsilon$$

and expand it about x_i in the powers of h

 Standard Finite Differentces — A Review
 Basic Definitions

 Finite Differences — an Operator Perspective
 Polynomial–Based Approach

 Miscellanea
 Taylor Table

Expansions can be collected in a Taylor table

- the leftmost column contains the terms present in the expression for the approximation error
- the corresponding rows (multiplied by the top row) represent the terms obtained from expansions about x_i
- columns represent terms with the same order in h sums of columns are the contributions to the approximation error with the given order in h
- The coefficients a_p, p = 0, 1, 2 can now be chosen to cancel the contributions to the approximation error with the lowest powers of h

 Standard Finite Differentces
 A Review
 Basic Definitions

 Finite Differences
 an Operator Perspective
 Polynomial-Based Approach

 Miscellanea
 Taylor Table

Setting the coefficients of the first three terms to zero:

$$\begin{cases} -a_0 - a_1 - a_2 = 0\\ -a_1 h - a_2(2h) = -1\\ -a_1 \frac{h^2}{2} - a_2 \frac{(2h)^2}{2} = 0 \end{cases} \implies a_0 = -\frac{3}{2h}, a_1 = \frac{2}{h}, a_2 = -\frac{1}{2h}$$

The resulting formula:

$$\left(\frac{\delta f}{\delta x}\right)_j = \frac{-f_{j+2} + 4f_{j+1} - 3f_j}{2h}$$

The approximation error — determined the evaluating the first column with non-zero coefficient:

$$\left(-a_1\frac{h^3}{6}-a_2\frac{(2h)^3}{6}\right)f_j'''=\frac{h^2}{3}f_j'''$$

The formula is thus **SECOND**-ORDER ACCURATE

 Standard Finite Differences — A Review
 Review of Functional Analysis Background

 Finite Differences — an Operator Perspective
 Differentiation Matrices

 Miscellanea
 Unboundedness and Conditioning

▶ NORMED SPACES $X: \exists \| \cdot \| : X \to \mathbb{R}$ such that $\forall x, y \in X$

$$\begin{split} \|x\| &\geq 0, \\ \|x+y\| &\leq \|x\| + \|y\|, \\ \|x\| &= 0 \ \Leftrightarrow x \equiv 0 \end{split}$$

Banach spaces

- ▶ vector spaces: finite-dimensional (ℝ^N) vs. infinite-dimensional (*l_p*)
- function spaces (on Ω ⊆ ℝ^N): Lebesgue spaces L_p(Ω), Sobolev spaces W^{p,q}(Ω)
- Hilbert spaces: inner products, orthogonality & projections, bases, etc.
- Linear Operators: operator norms, functionals, Riesz' Theorem

- ► Assume that f and f' belong to a function space X; DIFFERENTIATION $\frac{d}{dx}$: $f \rightarrow f'$ can then be regarded as a LINEAR OPERATOR $\frac{d}{dx}$: $X \rightarrow X$
- ▶ When f and f' are approximated by their nodal values as $\mathbf{f} = [f_1 \ f_2 \ \dots \ f_N]^T$ and $\mathbf{f}' = [f'_1 \ f'_2 \ \dots \ f'_N]^T$, then the differential operator $\frac{d}{dx}$ can be approximated by a DIFFERENTIATION MATRIX $\mathbf{A} \in \mathbb{R}^{N \times N}$ such that $\mathbf{f}' = \mathbf{A} \mathbf{f}$; How can we determine this matrix?
- Assume for simplicity that the domain Ω is periodic, i.e., f₀ = f_N and f₁ = f_{N+1}; then differentiation with the second-order center difference formula can be represented as the following matrix-vector product

$$\begin{bmatrix} f_1' \\ \vdots \\ f_N' \end{bmatrix} = \frac{1}{h} \begin{bmatrix} 0 & \frac{1}{2} & & -\frac{1}{2} \\ -\frac{1}{2} & 0 & & & \\ & \ddots & \ddots & \ddots & \\ & & 0 & \frac{1}{2} \\ -\frac{1}{2} & & -\frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} f_1 \\ \vdots \\ f_N \end{bmatrix}$$

 Standard Finite Differentces
 A Review
 Review of Functional Analysis Background

 Finite Differences
 an Operator Perspective
 Differentiation Matrices

 Miscellanea
 Unboundedness and Conditioning

- ► Using the fourth-order center difference formula we would obtain a pentadiagonal system ⇒ increased order of accuracy entails increased bandwidth of the differentiation matrix A
- ► A is a TOEPLITZ MATRIX , since is has constant entries along the the diagonals; in fact, it a also a CIRCULANT MATRIX with entries a_{ij} depending only on (i − j)(mod N)
- ► Note that the matrix A defined above is SINGULAR (has a zero eigenvalue λ = 0) Why?
- This property is in fact inherited from the original "continuous" operator d/dx which is also singular and has a zero eigenvalue
- A singular matrix A does not have an inverse (at least, not in the classical sense); what can we do to get around this difficulty?

 Standard Finite Differences — A Review
 Review of Functional Analysis Background

 Finite Differences — an Operator Perspective
 Miscellanea

 Unboundedness and Conditioning
 Unboundedness and Conditioning

- ► Matrix singularity ⇔ linearly dependent rows ⇔ the LHS vector does not contain enough information to determine UNIQUELY the RHS vector
- MATRIX DESINGULARIZATION incorporating additional information into the matrix, so that its argument can be determined uniquely
- Example desingularization of the second-order center difference differentiation matrix:
 - in a center difference formula, even and odd nodes are decoupled
 - knowing f'_j, j = 1,..., N and f₁, one can recover f_j, j = 3,5,... (i.e., the odd nodes) only ⇒ f₂ must also be provided
 - hence, the zero eigenvalue has multiplicity two
 - when desingularizing the differentiation matrix one must modify at least two rows (see, e.g., sing_diff_mat_01.m)

- Standard Finite Differentces
 A Review
 Review of Functional Analysis Background

 Finite Differences
 an Operator Perspective
 Differentiation Matrices

 Miscellanea
 Unboundedness and Conditioning
- What is WRONG with the differentiation operator?
- ► The differentiation operator $\frac{d}{dx}$ is UNBOUNDED ! One usually cannot find a constant $C \in \mathbb{R}$ independent of f, such that

$$\left\|\frac{d}{dx}f(x)\right\|_{X} \le C \, \|f\|_{X}, \quad \forall_{f \in X}$$

For instance, $f(x) = e^{ikx}$, so that $|\mathcal{C}| = k \to \infty$ for $k \to \infty$...

- Unfortunately, finite-dimensional emulations of the differentiation operator (the DIFFERENTIATION MATRICES) inherit this property
- ▶ OPERATOR NORM for matrices

$$\|\mathbf{A}\|_2^2 = \max_{\|\mathbf{x}\|=1} \|\mathbf{A}\mathbf{x}\|_2^2 = \max_{\mathbf{x}} \frac{(\mathbf{A}\mathbf{x}, \mathbf{A}\mathbf{x})}{(\mathbf{x}, \mathbf{x})} = \max_{\mathbf{x}} \frac{(\mathbf{x}, \mathbf{A}^\top \mathbf{A}\mathbf{x})}{(\mathbf{x}, \mathbf{x})} = \lambda_{\max}(\mathbf{A}^\top \mathbf{A}) = \sigma_{\max}^2(\mathbf{A})$$

Thus, the 2-norm of a matrix is given by the square root of its largest SINGULAR VALUE $\sigma_{max}(\mathbf{A})$

- Standard Finite Differentces A Review
 Review of Functional Analysis Background

 Finite Differences an Operator Perspective
 Differentiation Matrices

 Miscellanea
 Unboundedness and Conditioning
- As can be rigorously proved in many specific cases, ||A||₂ grows without bound as N → ∞ (or, h → 0) ⇒ this is a reflection of the unbounded nature of the underlying ∞-dim operator
- The loss of precision when solving the system Ax = b is characterized by the CONDITION NUMBER (with respect to inversion) κ_p(A) = ||A||_p ||A⁻¹||_p

• for
$$p = 2$$
, $\kappa_2(\mathbf{A}) = \frac{\sigma_{max}(\mathbf{A})}{\sigma_{min}(\mathbf{A})}$

 when the condition number is "large", the matrix is said to be <u>ILL-CONDITIONED</u> — solution of the system Ax = b is prone to round-off errors

• if **A** is singular,
$$\kappa_p(\mathbf{A}) = +\infty$$

Complex Step Derivarive Padé Approximation Modified Wavenumber Analysis

Subtractive Cancellation Errors

. . .

- SUBTRACTIVE CANCELLATION ERRORS when comparing two numbers which are almost the same using finite-precision arithmetic , the relative round-off error is proportional to the inverse of the difference between the two numbers
- Thus, if the difference between the two numbers is decreased by an order of magnitude, the relative accuracy with which this difference may be calculated using finite-precision arithmetic is also decreased by an order of magnitude.
- ▶ Problems with finite difference formulae when h → 0 loss of precision due to finite-precision arithmetic (SUBTRACTIVE CANCELLATION), e.g., for double precision:

$1.000000000012345 - 1.0 \approx 1.2e - 12$	(2.8% error)
$1.000000000001234 - 1.0 {pprox} 1.0e - 13$	(19.0% error)

Standard Finite Differentces — A Review	Complex Step Derivarive
Finite Differences — an Operator Perspective	Padé Approximation
Miscellanea	Modified Wavenumber Analysis

Consider the complex extension f(z), where z = x + iy, of f(x) and compute the complex Taylor series expansion

$$f(x_j + ih) = f_j + ihf'_j - \frac{h^2}{2}f''_j - i\frac{h^3}{6}f'''_j + \mathcal{O}(h^4)$$

Need to assume that f(z) is ANALYTIC ! Then $f' = \frac{df(z)}{dz}$

► Take imaginary part and divide by h

$$f_j' = \frac{\Im(f(x_j + ih))}{h} + \frac{h^2}{6}f_j''' + \mathcal{O}(h^3) \implies \left(\frac{\delta f}{\delta x}\right)_j = \frac{\Im(f(x_j + ih))}{h}$$

- Note that the scheme is second order accurate where is conservation of complexity?
- The method doesn't suffer from cancellation errors, is easy to implement and quite useful
- ► Reference:
 - J. N. Lyness and C. B.Moler, "Numerical differentiation of analytical functions", SIAM J. Numer Anal 4, 202-210, (1967)

B. Protas MATH745, Fall 2014

Standard Finite Differentces — A Review Finite Differences — an Operator Perspective Miscellanea Modified Wavenumber Analysis

 GENERAL IDEA — include in the finite-difference formula not only the function values, but also the values of the FUNCTION DERIVATIVE at the adjacent nodes, e.g.:

$$b_{-1}f'_{j-1} + f'_j + b_1f'_{j+1} - \sum_{p=-1}^1 a_pf_{j+p} = \epsilon$$

Construct the Taylor table using the following expansions:

$$f_{j+1} = f_j + hf'_j + \frac{h^2}{2}f''_j + \frac{h^3}{6}f'''_j + \frac{h^4}{24}f_j^{(iv)} + \frac{h^5}{120}f_j^{(v)} + \dots$$

$$f'_{j+1} = f'_j + hf''_j + \frac{h^2}{2}f'''_j + \frac{h^3}{6}f_j^{(iv)} + \frac{h^4}{24}f_j^{(v)} + \dots$$

NOTE — need an expansion for the derivative and a higher order expansion for the function (more coefficient to determine)

Standard Finite Differentces — A Review	Complex Step Derivarive
Finite Differences — an Operator Perspective	Padé Approximation
Miscellanea	Modified Wavenumber Analysis

The Taylor table

The algebraic system:

$$\begin{bmatrix} 0 & 0 & -1 & -1 & -1 \\ 1 & 1 & h & 0 & -h \\ -h & h & -h^2/2 & 0 & -h^2/2 \\ h^2/2 & h^2/2 & h^3/6 & 0 & -h^3/6 \\ -h^3/6 & h^3/6 & -h^4/24 & 0 & -h^4/24 \end{bmatrix} \begin{bmatrix} b_{-1} \\ b_{1} \\ a_{-1} \\ a_{0} \\ a_{1} \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \implies \begin{bmatrix} b_{-1} \\ b_{1} \\ a_{-1} \\ a_{0} \\ a_{1} \end{bmatrix} = \begin{bmatrix} 1/4 \\ 1/4 \\ 3/(4h) \\ 0 \\ -3/(4h) \end{bmatrix}$$

Standard Finite Differentces — A Review Complex Step Derivarive Finite Differences — an Operator Perspective Miscellanea Modified Wavenumber Analysis

The Padé approximation:

$$\frac{1}{4}\left(\frac{\delta f}{\delta x}\right)_{j+1} + \left(\frac{\delta f}{\delta x}\right)_{j} + \frac{1}{4}\left(\frac{\delta f}{\delta x}\right)_{j-1} = \frac{3}{4h}\left(f_{j+1} - f_{j-1}\right)$$

Leading-order error $\frac{\hbar^4}{30}f_j^{(v)}$ (FOURTH-ORDER ACCURATE)

The approximation is NONLOCAL, in that it requires derivatives at the adjacent nodes which are also unknowns; Thus all derivatives must be determined at once via the solution of the following algebraic system

Standard Finite Differentces — A Review	Complex Step Derivarive
Finite Differences — an Operator Perspective	Padé Approximation
Miscellanea	Modified Wavenumber Analysis

Closing the system at ENDPOINTS (where neighbors are not available) —
use a lower-order one-sided (i.e., forward or backward)
finite-difference formula

 The vector of derivatives can thus be obtained via solution of the following algebraic system

$$\mathbf{B} \mathbf{f}' = \frac{3}{2} \mathbf{A} \mathbf{f} \qquad \Longrightarrow \qquad \mathbf{f}' = \frac{3}{2} \mathbf{B}^{-1} \mathbf{A} \mathbf{f}$$

where

- ▶ **B** is a tri-diagonal matrix with $b_{i,i} = 1$ and $b_{i,i-1} = b_{i,i+1} = \frac{1}{4}$, i = 1, ..., N
- A is a second-order accurate differentiation matrix

- Standard Finite Differentces A Review
 Complex Step Derivarive

 Finite Differences an Operator Perspective
 Padé Approximation

 Miscellanea
 Modified Wavenumber Analysis
- ► How do finite differences perform at different WAVELENGTHS ?
- ► Finite–Difference formulae applied to THE FOURIER MODE $f(x) = e^{ikx}$ with the (exact) derivative $f'(x) = ike^{ikx}$
- Central–Difference formula:

$$\left(\frac{\delta f}{\delta x}\right)_{j} = \frac{f_{j+1} - f_{j-1}}{2h} = \frac{e^{ik(x_{j}+h)} - e^{ik(x_{j}-h)}}{2h} = \frac{e^{ikh} - e^{-ikh}}{2h}e^{ikx_{j}} = i\frac{\sin(hk)}{h}f_{j} = ik'f_{j},$$

where the modified wavenumber $k' \triangleq \frac{\sin(hk)}{h}$

• Comparison of the modified wavenumber k' with the actual

wavenumber k shows how numerical differentiation errors affect different Fourier components of a given function

Standard Finite Differentces — A Review Finite Differences — an Operator Perspective Miscellanea Miscellan

Fourth-order central difference formula

$$\left(\frac{\delta f}{\delta x}\right)_{j} = \frac{-f_{j+2} + 8f_{j+1} - 8f_{j-1} + f_{j-2}}{12h} = \frac{2}{3h} \left(e^{ikh} - e^{-ikh}\right) f_{j} - \frac{1}{12h} \left(e^{ik2h} - e^{-ik2h}\right)$$
$$= i \left[\frac{4}{3h} \sin(hk) - \frac{1}{6h} \sin(2hk)\right] f_{j} = ik'f_{j}$$

where the modified wavenumber $k' \triangleq \left[\frac{4}{3h}\sin(hk) - \frac{1}{6h}\sin(2hk)\right]$

Fourth–order Padé scheme:

$$\frac{1}{4}\left(\frac{\delta f}{\delta x}\right)_{j+1} + \left(\frac{\delta f}{\delta x}\right)_{j} + \frac{1}{4}\left(\frac{\delta f}{\delta x}\right)_{j-1} = \frac{3}{4h}\left(f_{j+1} - f_{j-1}\right),$$

where

$$\left(\frac{\delta f}{\delta x}\right)_{j+1} = ik'e^{ikx_{j+1}} = ik'e^{ikh}f_j$$
 and $\left(\frac{\delta f}{\delta x}\right)_{j-1} = ik'e^{ikx_{j-1}} = ik'e^{-ikh}f_j$.
Thus:

$$ik'\left(\frac{1}{4}e^{ikh}+1+\frac{1}{4}e^{-ikh}\right)f_j = \frac{3}{4h}\left(e^{ikh}-e^{-ikh}\right)f_j$$
$$ik'\left(1+\frac{1}{2}\cos(kh)\right)f_j = i\frac{3}{2h}\sin(hk)f_j \implies k' \triangleq \frac{3\sin(hk)}{2h+h\cos(hk)}$$