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Introduction
What is Numerical Analysis?

I Development of Computational Algorithms for
solutions of problems in algebra and analysis

I Use of methods of mathematical analysis to determine
a priori properties of these algorithms such as:

I convergence,
I accuracy,
I stability

I REMARK — Application of these methods to solve actual
problems arising in practice is usually considered outside the
scope of Numerical Analysis (=⇒ Scientific Computing)
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PART I

Differentiation with Finite

Differences
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I Assumptions :
I f : Ω→ R is a smooth function, i.e. is continuously

differentiable sufficiently many times,

I the domain Ω = [a, b] is discretized with a uniform grid
{x1 = a, . . . , xN = b}, such that xj+1 − xj = hj = h (extensions
to nonuniform grids are straightforward)

I Problem — given the nodal values of the function f, i.e.,
fj = f (xj), j = 1, . . . ,N approximate the nodal values of the
function derivative

df

dx
(xj) = f ′(xj) =: f ′j , j = 1, . . . ,N

I The symbol
(
δf
δx

)
j

will denote the approximation of the

derivative f ′(x) at x = xj
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I The simplest approach — Derivation of finite difference
formulae via Taylor–series expansions

fj+1 = fj + (xj+1 − xj)f
′
j +

(xj+1 − xj)
2

2!
f ′′j +

(xj+1 − xj)
3

3!
f ′′′j + . . .

= fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

I Rearrange the expansion

f ′j =
fj+1 − fj

h
− h

2
f ′′j + · · · =

fj+1 − fj
h

+O(h),

where O(hα) denotes the contribution from all terms with powers of
h greater or equal α (here α = 1).

I Neglecting O(h), we obtain a first order
forward–difference formula :(

δf

δx

)
j

=
fj+1 − fj

h

B. Protas MATH745, Fall 2014



Standard Finite Differentces — A Review
Finite Differences — an Operator Perspective

Miscellanea

Basic Definitions
Polynomial–Based Approach
Taylor Table

I Backward difference formula is obtained by expanding fj−1 about xj
and proceeding as before:

f ′j =
fj − fj−1

h
− h

2
f ′′j + . . . =⇒

(
δf

δx

)
j

=
fj − fj−1

h

I Neglected term with the lowest power of h is the leading–order

approximation error , i.e., Err =
∣∣∣f ′(xj)− ( δfδx )j ∣∣∣ ≈ Chα

I The exponent α of h in the leading–order error represents the
order of accuracy of the method — it tells how quickly
the approximation error vanishes when the resolution is refined

I The actual value of the approximation error depends on the
constant C characterizing the function f

I In the examples above Err = − h
2 f
′′
j , hence the methods are

first–order accurate
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Higher–Order Formulas (I)

I Consider two expansions:

fj+1 = fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

fj−1 = fj − hf ′j +
h2

2
f ′′j −

h3

6
f ′′′j + . . .

I Subtracting the second from the first:

fj+1 − fj−1 = 2hf ′j +
h3

3
f ′′′j + . . .

I Central Difference Formula

f ′j =
fj+1 − fj−1

2h
− h2

6
f ′′′j + . . . =⇒

(
δf

δx

)
j

=
fj+1 − fj−1

2h
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Higher–Order Formulas (II)

I The leading–order error is h2

6 f ′′′j , thus the method is
second–order accurate

I Manipulating four different Taylor series expansions one can
obtain a fourth–order central difference formula :(

δf

δx

)
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12h
, Err =

h4

30
f (v)
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Approximation of the Second Derivative

I Consider two expansions:

fj+1 = fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j + . . .

fj−1 = fj − hf ′j +
h2

2
f ′′j −

h3

6
f ′′′j + . . .

I Adding the two expansions

fj+1 + fj−1 = 2fj + h2f ′′j +
h4

12
f ivj + . . .

I Central difference formula for the second derivative:

f ′′j =
fj+1 − 2fj + fj−1

h2
− h2

12
f

(iv)
j + . . . =⇒

(
δ2f

δx2

)
j

=
fj+1 − 2fj + fj−1

h2

I The leading–order error is h2

12 f
(iv)
j , thus the method is

second–order accurate
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I An alternative derivation of a finite–difference scheme:
I Find an N–th order accurate interpolating function p(x) which

interpolates the function f (x) at the nodes xj , j = 1, . . . ,N, i.e., such
that p(xj) = f (xj), j = 1, . . . ,N

I Differentiate the interpolating function p(x) and evaluate at the nodes
to obtain an approximation of the derivative p′(xj) ≈ f ′(xj),
j = 1, . . . ,N

I Example:
I for j = 2, . . . ,N − 1, let the interpolant have the form of a quadratic

polynomial pj(x) on [xj−1, xj+1] (Lagrange interpolating polynomial)

pj(x) =
(x − xj)(x − xj+1)

2h2
fj−1 +

−(x − xj−1)(x − xj+1)

h2
fj +

(x − xj−1)(x − xj)

2h2
fj+1

p′j (x) =
(2x − xj − xj+1)

2h2
fj−1 +

−(2x − xj−1 − xj+1)

h2
fj +

(2x − xj−1 − xj)

2h2
fj+1

I Evaluating at x = xj we obtain f ′(xj) ≈ p′j(xj) =
fj+1−fj−1

2h
(i.e., second–order accurate center–difference formula)
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I Generalization to higher–orders straightforward

I Example:
I for j = 3, . . . ,N − 2, one can use a fourth–order polynomial as

interpolant pj(x) on [xj−2, xj+2]
I Differentiating with respect to x and evaluating at x = xj we

arrive at the fourth–order accurate finite–difference formula(
δf

δx

)
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12h
, Err =

h4

30
f (v)

I Order of accuracy of the finite–difference formula is one less
than the order of the interpolating polynomial

I The set of grid points needed to evaluate a finite–difference
formula is called stencil

I In general, higher–order formulas have larger stencils
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I A general method for choosing the coefficients of a finite
difference formula to ensure the highest possible order of
accuracy

I Example: consider a one–sided finite difference formula∑2
p=0 apfj+p, where the coefficients ap, p = 0, 1, 2 are to be

determined.

I Form an expression for the approximation error

f ′j −
2∑

p=0

apfj+p = ε

and expand it about xj in the powers of h
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I Expansions can be collected in a Taylor table

fj f ′j f ′′j f ′′′j

f ′j 0 1 0 0
−a0fj −a0 0 0 0

−a1fj+1 −a1 −a1h −a1
h2

2
−a1

h3

6

−a2fj+2 −a2 −a2(2h) −a2
(2h)2

2
−a2

(2h)3

6

I the leftmost column contains the terms present in the
expression for the approximation error

I the corresponding rows (multiplied by the top row) represent
the terms obtained from expansions about xj

I columns represent terms with the same order in h — sums of
columns are the contributions to the approximation error with
the given order in h

I The coefficients ap, p = 0, 1, 2 can now be chosen to cancel
the contributions to the approximation error with the lowest
powers of h

B. Protas MATH745, Fall 2014



Standard Finite Differentces — A Review
Finite Differences — an Operator Perspective

Miscellanea

Basic Definitions
Polynomial–Based Approach
Taylor Table

I Setting the coefficients of the first three terms to zero:
−a0 − a1 − a2 = 0

−a1h − a2(2h) = −1

−a1
h2

2
− a2

(2h)2

2
= 0

=⇒ a0 = − 3

2h
, a1 =

2

h
, a2 = − 1

2h

I The resulting formula:(
δf

δx

)
j

=
−fj+2 + 4fj+1 − 3fj

2h

I The approximation error — determined the evaluating the
first column with non–zero coefficient:(

−a1
h3

6
− a2

(2h)3

6

)
f ′′′j =

h2

3
f ′′′j

The formula is thus second–order accurate
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I Normed spaces X : ∃‖ · ‖ : X → R such that ∀x , y ∈ X

‖x‖ ≥ 0,

‖x + y‖ ≤ ‖x‖+ ‖y‖,
‖x‖ = 0 ⇔ x ≡ 0

I Banach spaces

I vector spaces: finite–dimensional (RN) vs.
infinite–dimensional (lp)

I function spaces (on Ω ⊆ RN): Lebesgue spaces Lp(Ω),
Sobolev spaces W p,q(Ω)

I Hilbert spaces: inner products, orthogonality & projections,
bases, etc.

I Linear Operators: operator norms, functionals, Riesz’ Theorem
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I Assume that f and f ′ belong to a function space X ;
Differentiation d

dx : f → f ′ can then be regarded as a Linear

Operator d
dx : X → X

I When f and f ′ are approximated by their nodal values as
f = [f1 f2 . . . fN ]T and f ′ = [f ′1 f ′2 . . . f ′N ]T , then the differential
operator d

dx can be approximated by a differentiation matrix
A ∈ RN×N such that f ′ = A f ; How can we determine this matrix?

I Assume for simplicity that the domain Ω is periodic, i.e., f0 = fN and
f1 = fN+1; then differentiation with the second–order center difference
formula can be represented as the following matrix–vector product

f ′1

...

f ′N

 =
1

h


0 1

2
− 1

2
− 1

2
0

. . .
. . .

. . .

0 1
2

− 1
2

− 1
2

0




f1

...

fN
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I Using the fourth–order center difference formula we would
obtain a pentadiagonal system ⇒ increased order of accuracy
entails increased bandwidth of the differentiation matrix A

I A is a Toeplitz matrix , since is has constant entries
along the the diagonals; in fact, it a also a circulant
matrix with entries aij depending only on (i − j)(modN)

I Note that the matrix A defined above is singular (has a
zero eigenvalue λ = 0) — Why?

I This property is in fact inherited from the original
“continuous” operator d

dx which is also singular and has a
zero eigenvalue

I A singular matrix A does not have an inverse (at least, not in
the classical sense); what can we do to get around this
difficulty?
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I Matrix singularity ⇔ linearly dependent rows ⇔ the LHS
vector does not contain enough information to determine
uniquely the RHS vector

I Matrix Desingularization — incorporating additional
information into the matrix, so that its argument can be
determined uniquely

I Example — desingularization of the second–order center
difference differentiation matrix:

I in a center difference formula, even and odd nodes are
decoupled

I knowing f ′j , j = 1, . . . ,N and f1, one can recover fj ,
j = 3, 5, . . . (i.e., the odd nodes) only ⇒ f2 must also be
provided

I hence, the zero eigenvalue has multiplicity two

I when desingularizing the differentiation matrix one must
modify at least two rows (see, e.g., sing diff mat 01.m)
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I What is wrong with the differentiation operator?

I The differentiation operator d
dx is unbounded !

One usually cannot find a constant C ∈ R independent of f , such that∥∥∥ d

dx
f (x)

∥∥∥
X
≤ C ‖f ‖X , ∀f ∈X

For instance, f (x) = e ikx , so that |C | = k →∞ for k →∞ ...

I Unfortunately, finite–dimensional emulations of the differentiation
operator (the differentiation matrices ) inherit this property

I Operator Norm for matrices

‖A‖2
2 = max

‖x‖=1
‖Ax‖2

2 = max
x

(Ax,Ax)

(x, x)
= max

x

(x,ATAx)

(x, x)
= λmax(ATA) = σ2

max(A)

Thus, the 2–norm of a matrix is given by the square root of its largest
Singular Value σmax(A)
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I As can be rigorously proved in many specific cases, ‖A‖2

grows without bound as N →∞ (or, h→ 0) ⇒ this is a
reflection of the unbounded nature of the underlying ∞–dim
operator

I The loss of precision when solving the system Ax = b is
characterized by the Condition Number (with respect to
inversion) κp(A) = ‖A‖p‖A−1‖p

I for p = 2, κ2(A) = σmax (A)
σmin(A)

I when the condition number is “large”, the matrix is said to be
Ill–Conditioned — solution of the system Ax = b is
prone to round–off errors

I if A is singular, κp(A) = +∞
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Subtractive Cancellation Errors

I Subtractive cancellation errors — when comparing
two numbers which are almost the same using finite–precision
arithmetic , the relative round–off error is proportional to the
inverse of the difference between the two numbers

I Thus, if the difference between the two numbers is decreased
by an order of magnitude, the relative accuracy with which
this difference may be calculated using finite–precision
arithmetic is also decreased by an order of magnitude.

I Problems with finite difference formulae when h→ 0 — loss
of precision due to finite–precision arithmetic ( subtractive
cancellation ), e.g., for double precision:

1.0000000000012345− 1.0≈1.2e − 12 (2.8% error)

1.0000000000001234− 1.0≈1.0e − 13 (19.0% error)

. . .
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I Consider the complex extension f (z), where z = x + iy , of
f (x) and compute the complex Taylor series expansion

f (xj + ih) = fj + ihf ′j −
h2

2
f ′′j − i

h3

6
f ′′′j +O(h4)

Need to assume that f (z) is analytic ! Then f ′ = df (z)
dz

I Take imaginary part and divide by h

f ′j =
=(f (xj + ih))

h
+

h2

6
f ′′′j +O(h3) =⇒

(
δf

δx

)
j

=
=(f (xj + ih))

h

I Note that the scheme is second order accurate — where is
conservation of complexity?

I The method doesn’t suffer from cancellation errors, is easy to
implement and quite useful

I Reference:
I J. N. Lyness and C. B.Moler, “Numerical differentiation of

analytical functions”, SIAM J. Numer Anal 4, 202-210, (1967)
B. Protas MATH745, Fall 2014



Standard Finite Differentces — A Review
Finite Differences — an Operator Perspective

Miscellanea

Complex Step Derivarive
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I General Idea — include in the finite–difference formula
not only the function values , but also the values of the
function derivative at the adjacent nodes, e.g.:

b−1f
′
j−1 + f ′j + b1f

′
j+1 −

1∑
p=−1

apfj+p = ε

I Construct the Taylor table using the following expansions:

fj+1 = fj + hf ′j +
h2

2
f ′′j +

h3

6
f ′′′j +

h4

24
f

(iv)
j +

h5

120
f

(v)
j + . . .

f ′j+1 = f ′j + hf ′′j +
h2

2
f ′′′j +

h3

6
f

(iv)
j +

h4

24
f

(v)
j + . . .

note — need an expansion for the derivative and a higher
order expansion for the function (more coefficient to
determine)
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I The Taylor table

fj f ′j f ′′j f ′′′j f
(iv)
j f

(v)
j

b−1f ′j−1 0 b−1 b−1(−h) b−1
(−h)2

2
b−1

(−h)3

6
b−1

(−h)4

24
f ′j 0 1 0 0 0 0

b1f ′j+1 0 b1 b1h b1
h2

2
b1

h3

6
b1

h4

24

−a−1fj−1 −a−1 −a−1(−h) −a−1
(−h)2

2
−a−1

(−h)3

6
−a−1

(−h)4

24
−a−1

(−h)5

120
−a0fj −a0 0 0 0 0 0

−a1fj+1 −a1 −a1h −a1
h2

2
−a1

h3

6
−a1

h4

24
−a1

h5

120

I The algebraic system:


0 0 −1 −1 −1
1 1 h 0 −h
−h h −h2/2 0 −h2/2
h2/2 h2/2 h3/6 0 −h3/6
−h3/6 h3/6 −h4/24 0 −h4/24



b−1

b1

a−1

a0

a1

 =


0
−1
0
0
0

 =⇒


b−1

b1

a−1

a0

a1

 =


1/4
1/4

3/(4h)
0

−3/(4h)
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I The Padé approximation:

1

4

(
δf

δx

)
j+1

+

(
δf

δx

)
j

+
1

4

(
δf

δx

)
j−1

=
3

4h
(fj+1 − fj−1)

Leading–order error h4

30 f
(v)
j ( fourth–order accurate )

I The approximation is nonlocal , in that it requires
derivatives at the adjacent nodes which are also unknowns;
Thus all derivatives must be determined at once via the
solution of the following algebraic system


. . .

. . .
. . .

1/4 1 1/4
. . .

. . .
. . .





...(
δf
δx

)
j−1(

δf
δx

)
j(

δf
δx

)
j+1

...


=



...

...
3

4h
(fj+1 − fj−1)

...

...
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I Closing the system at endpoints (where neighbors are not
available) —
use a lower–order one–sided (i.e., forward or backward)
finite–difference formula

I The vector of derivatives can thus be obtained via solution of
the following algebraic system

B f ′ =
3

2
A f =⇒ f ′ =

3

2
B−1 A f

where
I B is a tri–diagonal matrix with bi,i = 1 and

bi,i−1 = bi,i+1 = 1
4 , i = 1, . . . ,N

I A is a second–order accurate differentiation matrix
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I How do finite differences perform at different wavelengths ?

I Finite–Difference formulae applied to the Fourier mode
f (x) = e ikx with the (exact) derivative f ′(x) = ike ikx

I Central–Difference formula:(
δf

δx

)
j

=
fj+1 − fj−1

2h
=

e ik(xj+h) − e ik(xj−h)

2h
=

e ikh − e−ikh

2h
e ikxj = i

sin(hk)

h
fj = ik ′fj ,

where the modified wavenumber k ′ , sin(hk)
h

I Comparison of the modified wavenumber k ′ with the actual
wavenumber k shows how numerical differentiation errors affect
different Fourier components of a given function
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I Fourth-order central difference formula(
δf

δx

)
j

=
−fj+2 + 8fj+1 − 8fj−1 + fj−2

12h
=

2

3h

(
e ikh − e−ikh

)
fj −

1

12h

(
e ik2h − e−ik2h

)
fj

= i

[
4

3h
sin(hk)−

1

6h
sin(2hk)

]
fj = ik ′fj

where the modified wavenumber
k ′ ,

[
4

3h sin(hk)− 1
6h sin(2hk)

]
I Fourth–order Padé scheme:

1

4

(
δf

δx

)
j+1

+

(
δf

δx

)
j

+
1

4

(
δf

δx

)
j−1

=
3

4h

(
fj+1 − fj−1

)
,

where(
δf
δx

)
j+1

= ik ′e ikxj+1 = ik ′e ikhfj and
(
δf
δx

)
j−1

= ik ′e ikxj−1 = ik ′e−ikhfj .

Thus:

ik ′
(

1

4
e ikh + 1 +

1

4
e−ikh

)
fj =

3

4h

(
e ikh − e−ikh

)
fj

ik ′
(

1 +
1

2
cos(kh)

)
fj = i

3

2h
sin(hk)fj =⇒ k ′ ,

3 sin(hk)

2h + h cos(hk)
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