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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

» INTERPOLATION is a way of determining an expansion of a function
u in terms of some ORTHONORMAL BASIS FUNCTIONS alternative to
Galerkin spectral projections

» Assuming that Sy = span{e’®< ... e®™"*] we can determine an
INTERPOLANT v € Sy of u, such that v coincides with v at 2N + 1
points {x;}|j<n defined by

. . 27
xj =jh, |j| <N, where h=

2N +1

> For the interpolant we set v(x) = >_ -y axe™  where the
coefficients ax, k = 1,..., N can be determined by solving the
algebraic system

Y e*a=u(x), Lil<N
|k|<N

with the matrix Ay = ek j=—N,...,N
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

» The system can be rewritten as

> Wa=u(x), Lij<N
[kI<N

where W = eh = €281 s the principal root of order (2N + 1) of

unity (since W/ = (eih)jk)

Theorem
The matrix W]y = WSk is unitary , i.e. WT W =1(2N + 1)
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

Proof.

Examine the expression

1 — 1 o

Ww=1 = wWikw=i = 5

2N +1 2N+1|§V .
RS

> If k=1 then WikW—I = Wwilk=l) — W0 =1
> If k #£ 1, define w = Wk=! then
1 1 1 M
Whkw= = = - N "= =)W
2N + 1 Z 2N +1 Z MJZ}O

LI<n lil<N

where M =2N+1,j//=jif0<j<Nand ) =+ Mif
—N < j <0, so that w/tM = /. The proof is completed by using
the expression for the sum of a finite geometric series

M—-1 ]
1-w)d ' =1-w"=0.
j'=0
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

» Since the matrix W is unitary and hence its INVERSE is given by its
TRANSPOSE , the Fourier coefficients of the INTERPOLANT of u in
Sy can be calculated as follows:

1

kT oONF1

Wik - .
g ziW™*, where z; = u(x;)
<N

» The mapping
{ziti<n — {aktik<n
is referred to as DISCRETE FOURIER TRANSFORM (DFT)

» Straightforward evaluation of the expressions for ax, k = —N,..., N
(matrix—vector products) would result in the computational cost
(’)(N2); clever factorization of this operation, known as the FAST
FOURIER TRANSFORMS (FFT) , reduces this cost down to
O(Nlog(N))

> See www.fftw.org for one of the best publicly available
implementations of the FFT.

B. Protas MATH745, Fall 2014



Spectral Interpolation General Formulation

Aliasing
Cardinal Functions

> Let Pc: CS(I) — Sy be the mapping which associates with u its
interpolant v € Sy. Let (-,-)y be the GAUSSIAN QUADRATURE
approximation of the inner product (-, -)

)= [T uwde S S u)vs) £ (0

- liI<N

> By construction, the operator P¢ satisfies:
(Pcu)(x) = u(x), LI<N
and therefore also (orthogonality of the defect to Sy)
(u— Pcu,vy)n =0, Yvn € Sy
> By the definition of Py we have
(u— Pyu,vy) =0, Vv € Sy

» Thus, Pcu(x) = ZQI:_N(U, e™)ye™™ can be obtained analogously to

Pyu(x) = ZLVZ_N(U, e )e®™ by replacing the scalar product (-,-) with the
DISCRETE SCALAR PRODUCT (-, )n
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Spectral Interpolation General Formulation
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Corollary

Thus, the INTERPOLATION COEFFICIENTS ak are equivalent to the FOURIER
SPECTRAL COEFFICIENTS Uy when the latter are evaluated using the GAUSSIAN
QUADRATURES .

Theorem
The two scalar products coincide on Sy, i.e.

(un, vnv) = (un, va)n, Vun, v € Sy,

hence for u € Sy, O = ax, k=—N,..., N.
Proof.
Examine the numerical integration formula 5= [ f(x) dx = Wlﬂ 2iji<n FO);
then for every f = ZQI:_N i e™ e Sy we have

1 7r ik 1 ik 1 ik 1 k=0
— e dx = e = W =
2r J_ . 2N +1 \j\;N 2N +1 Z 0 otherwise

lilsN

Thus, for the uniform distribution of x;, the Gaussian (trapezoidal) formula is
EXACT for f € Sy. O
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

Relation between Fourier coefficients @i, of a function u(x) and Fourier
coefficients ay of its interpolant; assume that u(x) ¢ Sy

~ 1 T ikx
by = - g uW . dx, Wik (x) = e’
1 I

LI<N
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Spectral Interpolation General Formulation
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Theorem
For u € CJ(I) we have the relation

ax = Z Okaiv, where M =2N +1
ez

Proof. _
Consider the set of basis functions (in La(/)) Ux = e*. We have:

1 k=n (mod M)
j(k—n) __
(Ui, Un)w = 2N+1 D Udlo)Unl) = 2N+1 > w { i

i< < 0 otherwise

Since Pcu =}, <y ajW;, we infer from (Pcu, Wi)n = (u, Wi)n that

ax = (Pcu, W)y = (u, Wiy = (Z i, W, Wk) = Z i (W, Wk Z Dktm
N

nEZ neZ ez
O
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Spectral Interpolation General Formulation
Aliasing
Cardinal Functions

U(XJ —v )<j 2 uke’kxf _ 2 ake’kxf _ 2 ak+ E akJrlM eIka

k=—o00 [k|<N [k|<N 1€Z:\{0}

Corollary (Extremely Important Corollary Concerning Interpolation)

two trigonometric polynomials e*1* and e™>* with different frequencies ki
and ky are equal at the collocation points x;, |j| < N when

k2—k1:/(2/\/+1), [=0,=+1,....

Therefore, given a set of values at the collocation points x;, |j | <N, itis
impossible to distinguish between e’ and e’ . This phenomenon is
referred to as ALIASING .

Note, however, that the modes appearing in the alias term correspond to
frequencies larger than the cut—off frequency N.
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

Theorem (Error Estimates in H3(/))

Suppose s <r, r > % are given, then there exists a constant C such that
if ue Hy(1), we have

lu = Peulls < C(1+ N?)"2" [|u],
Outline of the proof.

Note that P leaves Sy invariant, therefore PcPy = Py and we may thus
write
u—Pcu=u—Pyu+ Pc(Py—1u

Setting w = (/ — Py)u and using the “triangle inequality” we obtain
|u— Pculls < [[u—= Pnulls + [|[Pcwls

» The term ||u — Pyul|s is upper—bounded using an earlier theorem
» Need to estimate ||Pcw||s — straightforward, but tedious ...
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» Until now, we defined the Discrete Fourier Transform for an ODD
number (2N + 1) of grid points

» FFT algorithms generally require an EVEN number of grid points

» We can define the discrete transform for an EVEN number of grid

points by constructing the interpolant in the space Sy for which we
have dim(Sy) = 2N. To do this we choose:
T

G =Jh, ~N+1<j<N, h=g

13

» All results presented before can be established in the case with 2N
grid points with only minor modifications

» However, now the N-th Fourier mode i1y does not have its complex
conjugate! This coefficient is usually set to zero (&iy = 0) to avoid an
uncompensated imaginary contribution resulting from differentiation

» ODD or EVEN collocation depending on whether M = 2N + 1 or
M =2N
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Aliasing
Cardinal Functions

» Before we focused on representing the INTERPOLANT as a Fourier
series v(x;) = ZLV:_N a e

> Alternatively, we can represent the INTERPOLANT using the nodal
values as (assuming, for the moment, infinite domain x € R)

e}

v(x) = ) ulx)Gx),

j=—00

where Cj(x) is a CARDINAL FUNCTION with the property that
Ci(xj) = 0jj (i.e., generalization of the LAGRANGE POLYNOMIAL for
infinite domain)
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Spectral Interpolation General Formulation
Aliasing

Cardinal Functions

» In an infinite domain we have the WHITTAKER CARDINAL or SINC
function
_sin[m(x — kh)/h]

Ck(x) = O — kh)/h = sinc[(x — kh)/h],

sin(mx)

where sinc(x) = =

Proof.
The Fourier transform of d;q is (k) = h for all k € [—7/h,7/h]; hence,
h

the interpolant of d;0 is v(x) = 5= fl/r//’h e dk = Si"g%h) O
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Spectral Interpolation General Formulation

Aliasing
Cardinal Functions

» Thus, the spectral interpolant of a function in an INFINITE domain is
a linear combination of WHITTAKER CARDINAL functions

» In a PERIODIC DOMAIN we still have the representation

V() = 3 %))

but now the CARDINAL FUNCTIONS have the form

Si(x) = %sin {N(Xz Xj)] ot [(xzxj)}

» Proof — similar to the previous (unbounded) case, except that now
the interpolant in given by a DISCRETE Fourier Transform

» The relationship between the Cardinal Functions corresponding to the
PERIODIC and UNBOUNDED domains

o0

m=—0o0
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Spectral Differentiation Method 11

» Two ways to calculate the derivative w(x;) = u/(x;) based on the
values u(x;), where 0 < j < 2N + 1; denote U = [uo, . . ., tan+1] "
and U’ = [up, ..., thy,q]”

» METHOD ONE — approach based on differentiation in Fourier
space:

» calculate the vector of Fourier coefficients U = TU
» apply the diagonal differentiation matrix I/ = DU

> return to real space via inverse Fourier transform U = T U

» REMARK — formally we can write
U =T"DTU,

however in practice matrix operations are replaced by FFTs
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Method |

Spectral Differentiation Method 11

» METHOD TwO — approach based on differentiation (in real space) of the
interpolant v'(x;) = v/(xj) = ZJ-N:Bl u(x;)S;(x), where the cardinal function
has the following derivatives

0, J =0 (mod N)

S'(x) = .
&) 21 cot(ih/2),  j#0 (mod )

» Thus, since the interpolant is a linear combination of shifted Cardinal
Functions, the differentiation matrix has the form of a TOEPLITZ
CIRCULANT matrix

r 0 —1 cot[(1h)/2]]
—Lleotjin)/2 - 1 cot](2h)/2]
o | Eeotl2n)/2) — 1 cot(3h)/2]

—1 cot[(3h)/2]

) : Co Leot[(1h)/2]
L 5 cot[(1h)/2] 0

» Higher—order derivatives obtained calculating S(P)(x;
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» We are interested in a PARTIAL DIFFERENTIAL EQUATION (a
boundary value problem) of the general form Lu = f

» We will look for solutions in the form:

~ikx

un(x) = E uge ™,
[k|<N
2N+1

= Y u(x)S(x),
j=1

where S;j(x) is the periodic cardinal function centered at x;
» For the above model problem we will analyze:

» spectral Galerkin method
» spectral Collocation method

» variant with the FOURIER COEFFICIENTS U, as the unknowns

> variant with the NODAL VALUES u(x;) as the unknowns
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» Consider the following 1D second—order elliptic problem in a periodic
domain Q = [0, 27]

Lutvd" —ad +bu="f,

where v, a and b are constant and f = f(x) is a smooth 27—periodic
function.

» For v =10, a=1, b=>5 and the RHS function
f(x) = "™ [p(cos(x) — sin(x)) — acos(x) + b]

the solution is
U(X) _ esin(x)

» For the GALERKIN approach we are interested in 2w—periodic
solutions in the form
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» RESIDUAL _
Ru(x) = Luy — =Y Le™ —f
[kI<N

» Cancellation of the residual in the mean (setting the projections on
the basis functions W,(x) = "™ equal to zero)

N
(R, Wa) = > i (Le™, &™) = (f,e™) =0, n==N,...,N
k=—N

» Noting that L = (—vk? — iak + b)e™ £ G, e we obtain

N 2 R
> G [t = n= NN
k=—N 0
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Galerkin Approach

Solution of Model Elliptic Problem Gzt (e

» Assuming Gi # 0, we obtain the GALERKIN EQUATIONS for Iy

Gl = fi, k=-N,...,N

» The Galerkin equations are DECOUPLED

» Since u is real, it is necessary to calculate &, for k > 0 only
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» RESIDUAL (with the expansion coefficients &I as unknowns)

Ru(x) = Luy — =Y Le™ —f
|k|<N
» Cancelling the residual pointwise at the collocation points Xx;,
j=1....M

Z (Gl — F)e™ =0, j=1,....M

=N . N ~
where (note the ALIASING ERROR ) fx = fi + E,EZ\{O} fetrim
» Thus, the COLLOCATION EQUATIONS for the Fourier coefficients

Gelk = =h+ Y Fm, k==N,...,N
1eZN\{0}
» Formally, the GALERKIN and COLLOCATION methods are DISTINCT
» In practice, the projection (f, e ) is evaluated using FFT and
therefore also involves aliasing errors. Therefore, for the present
problem, the two approaches are NUMERICALLY EQUIVALENT .
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» RESIDUAL (with the nodal values un(x;), j=1,..., M, as
unknowns)
RN(X) == ,CUN —f

» Cancelling the residual pointwise at the collocation points Xx;,
j=1,....M

[Rn(x1), ..., Ru(xm)]T = LUy — F = (uDy — ay + bI)Uy — F =0,

where Uy = [un(x1), ..., un(xm)] " and Dy and Dy are the
differentiation matrices.

» Derivation of the DIFFERENTIATION MATRICES
(p) _ AP, alkXi
uy () = Z(’k) uge™

k M
= uN (xi) Zd

M
o1 N ik —
b= un(xj)e j=
Jj=1
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Galerkin Approach
Collocation Approach

Solution of Model Elliptic Problem

» Differentiation Matrices (for even collocation, i.e.,
In=-N+1,...,Nand M =2N)

1 s 1(_1)i+j/\/+ﬂ if Q]
4 _ 5(_1)'ﬂ cot(hy) if i#j J@_)4 2sin’(hy) /
ij 0 if = y 7(N—1)(N72) i
12
» Remarks:

» The differentiation matrices are full (and not so well-conditioned ...),
so the system of equations for up(x;) is now COUPLED

» For constant coefficient PDEs the present approach is therefore inferior
to the first collocation approach with the Fourier coefficients used as
unknowns

» Note the relationship to the banded matrices obtained when
approximating differential operators using finite differences

» QUESTION — Derive the above differentiation matrices, also for the
case of odd collocation
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Galerkin Approach

Solution of Model Elliptic Problem EcliccaticniBnproach

Nyquist-Shannon Sampling Theorem

» If a periodic function f(x) has a Fourier transform Fi = 0 for
|k| > M, then it is completely determined by providing the function
values at a series of points spaced Ax = ﬁ apart. The values
fn = f(5py) are called the SAMPLES OF f(x) .

» The minimum sampling frequency that allows for reconstruction of
the original signal, that is 2M samples per unit distance, is known as
the NYQUIST FREQUENCY . The time in between samples is called
the NYQUIST INTERVAL .

» The NYQUIST-SHANNON SAMPLING THEOREM is a fundamental

tenet in the field of INFORMATION THEORY (originally formulated by
Nyquist in 1928, but formally proved by Shannon only in 1949)
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