

Agenda

Spectral Interpolation

General Formulation

Aliasing

Cardinal Functions

Spectral Differentiation

Method I

Method II

Solution of Model Elliptic Problem

Galerkin Approach

Collocation Approach

- **INTERPOLATION** is a way of determining an expansion of a function u in terms of some **ORTHONORMAL BASIS FUNCTIONS** alternative to Galerkin spectral projections
- Assuming that $S_N = \text{span}\{e^{i0k}, \dots, e^{\pm iNx}\}$, we can determine an **INTERPOLANT** $v \in S_N$ of u , such that v coincides with u at $2N + 1$ points $\{x_j\}_{|j| \leq N}$ defined by

$$x_j = jh, \quad |j| \leq N, \quad \text{where} \quad h = \frac{2\pi}{2N+1}$$

- For the interpolant we set $v(x) = \sum_{|k| \leq N} a_k e^{ikx}$ where the coefficients a_k , $k = 1, \dots, N$ can be determined by solving the algebraic system

$$\sum_{|k| \leq N} e^{ikx_j} a_k = u(x_j), \quad |j| \leq N$$

with the matrix $\mathbb{A}_{kj} = e^{ikx_j}$, $k, j = -N, \dots, N$

- ▶ The system can be rewritten as

$$\sum_{|k| \leq N} W^{jk} a_k = u(x_j), \quad |j| \leq N$$

where $W = e^{ih} = e^{\frac{2i\pi}{2N+1}}$ is the principal root of order $(2N+1)$ of unity (since $W^{jk} = (e^{ih})^{jk}$)

Theorem

The matrix $[\mathbb{W}]_{jk} = W^{jk}$ is **unitary**, i.e. $\mathbb{W}^T \overline{\mathbb{W}} = \mathbb{I}(2N+1)$

Proof.

Examine the expression

$$\frac{1}{2N+1} \mathbb{W}^T \overline{\mathbb{W}} = \mathbb{I} \implies \frac{1}{2N+1} \sum_{|j| \leq N} W^{jk} W^{-jl} = \delta_{kl}$$

- If $k = l$, then $W^{jk} W^{-jl} = W^{j(k-l)} = W^0 = 1$
- If $k \neq l$, define $\omega = W^{k-l}$, then

$$\frac{1}{2N+1} \sum_{|j| \leq N} W^{jk} W^{-jl} = \frac{1}{2N+1} \sum_{|j| \leq N} \omega^j = \frac{1}{M} \sum_{j'=0}^{M-1} \omega^{j'}$$

where $M = 2N + 1$, $j' = j$ if $0 \leq j \leq N$ and $j' = j + M$ if $-N \leq j < 0$, so that $\omega^{j+M} = \omega^j$. The proof is completed by using the expression for the sum of a finite geometric series

$$(1 - \omega) \sum_{j'=0}^{M-1} \omega^{j'} = 1 - \omega^M = 0.$$

- ▶ Since the matrix \mathbb{W} is unitary and hence its **INVERSE** is given by its **TRANSPOSE**, the Fourier coefficients of the **INTERPOLANT** of u in S_N can be calculated as follows:

$$a_k = \frac{1}{2N+1} \sum_{|j| \leq N} z_j W^{-jk}, \text{ where } z_j = u(x_j)$$

- ▶ The mapping

$$\{z_j\}_{|j| \leq N} \longrightarrow \{a_k\}_{|k| \leq N}$$

is referred to as **DISCRETE FOURIER TRANSFORM (DFT)**

- ▶ Straightforward evaluation of the expressions for a_k , $k = -N, \dots, N$ (matrix–vector products) would result in the computational cost $\mathcal{O}(N^2)$; clever factorization of this operation, known as the **FAST FOURIER TRANSFORMS (FFT)**, reduces this cost down to $\mathcal{O}(N \log(N))$
- ▶ See www.fftw.org for one of the best publicly available implementations of the FFT.

- Let $P_C : C_p^0(I) \rightarrow S_N$ be the mapping which associates with u its interpolant $v \in S_N$. Let $(\cdot, \cdot)_N$ be the **GAUSSIAN QUADRATURE** approximation of the inner product (\cdot, \cdot)

$$(u, v) = \int_{-\pi}^{\pi} u \bar{v} \, dx \cong \frac{1}{2N+1} \sum_{|j| \leq N} u(x_j) \bar{v(x_j)} \triangleq (u, v)_N$$

- By construction, the operator P_C satisfies:

$$(P_C u)(x_j) = u(x_j), \quad |j| \leq N$$

and therefore also (orthogonality of the defect to S_N)

$$(u - P_C u, v_N)_N = 0, \quad \forall v_N \in S_N$$

- By the definition of P_N we have

$$(u - P_N u, v_N)_N = 0, \quad \forall v_N \in S_N$$

- Thus, $P_C u(x) = \sum_{k=-N}^N (u, e^{ikx})_N e^{ikx}$ can be obtained analogously to $P_N u(x) = \sum_{k=-N}^N (u, e^{ikx}) e^{ikx}$ by replacing the scalar product (\cdot, \cdot) with the **DISCRETE SCALAR PRODUCT** $(\cdot, \cdot)_N$

Corollary

Thus, the INTERPOLATION COEFFICIENTS a_k are equivalent to the FOURIER SPECTRAL COEFFICIENTS \hat{u}_k when the latter are evaluated using the GAUSSIAN QUADRATURES .

Theorem

The two scalar products coincide on S_N , i.e.

$$(u_N, v_N) = (u_N, v_N)_N, \quad \forall u_N, v_N \in S_N,$$

hence for $u \in S_N$, $\hat{u}_k = a_k$, $k = -N, \dots, N$.

Proof.

Examine the numerical integration formula $\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx \cong \frac{1}{2N+1} \sum_{|j| \leq N} f(x_j)$; then for every $f = \sum_{k=-N}^N \hat{u}_k e^{ikx} \in S_N$ we have

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{ikx} dx = \frac{1}{2N+1} \sum_{|j| \leq N} e^{ikx_j} = \frac{1}{2N+1} \sum_{|j| \leq N} W^{jk} = \begin{cases} 1 & k = 0 \\ 0 & \text{otherwise} \end{cases}$$

Thus, for the uniform distribution of x_j , the Gaussian (trapezoidal) formula is EXACT for $f \in S_N$. □

Relation between Fourier coefficients \hat{u}_k of a function $u(x)$ and Fourier coefficients a_k of its interpolant; assume that $u(x) \notin S_N$

$$\hat{u}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} u \overline{W}_k \, dx, \quad W_k(x) = e^{ikx}$$
$$a_k = \frac{1}{2N+1} \sum_{|j| \leq N} u(x_j) \overline{W_k(x_j)}$$

Theorem

For $u \in C_p^0(I)$ we have the relation

$$a_k = \sum_{l \in \mathbb{Z}} \hat{u}_{k+IM}, \quad \text{where } M = 2N + 1$$

Proof.

Consider the set of basis functions (in $L_2(I)$) $U_k = e^{ikx}$. We have:

$$(U_k, U_n)_N = \frac{1}{2N+1} \sum_{|j| \leq N} U_k(x_j) \overline{U_n(x_j)} = \frac{1}{2N+1} \sum_{|j| \leq N} W^{j(k-n)} = \begin{cases} 1 & k = n \pmod{M} \\ 0 & \text{otherwise} \end{cases}$$

Since $P_C u = \sum_{|j| \leq N} a_j W_j$, we infer from $(P_C u, W_k)_N = (u, W_k)_N$ that

$$a_k = (P_C u, W_k)_N = (u, W_k)_N = \left(\sum_{n \in \mathbb{Z}} \hat{u}_n W_n, W_k \right)_N = \sum_{n \in \mathbb{Z}} \hat{u}_n (W_n, W_k)_N = \sum_{l \in \mathbb{Z}} \hat{u}_{k+IM}$$

□

► Thus

$$u(x_j) = v(x_j) = \sum_{k=-\infty}^{\infty} \hat{u}_k e^{ikx_j} = \sum_{|k| \leq N} a_k e^{ikx_j} = \sum_{|k| \leq N} \left(\hat{u}_k + \sum_{l \in \mathbb{Z} \setminus \{0\}} \hat{u}_{k+IM} \right) e^{ikx_j}$$

Corollary (Extremely Important Corollary Concerning Interpolation)

two trigonometric polynomials $e^{ik_1 x}$ and $e^{ik_2 x}$ with different frequencies k_1 and k_2 are equal at the collocation points x_j , $|j| \leq N$ when

$$k_2 - k_1 = l(2N + 1), \quad l = 0, \pm 1, \dots$$

Therefore, given a set of values at the collocation points x_j , $|j| \leq N$, it is impossible to distinguish between $e^{ik_1 x}$ and $e^{ik_2 x}$. This phenomenon is referred to as ALIASING .

Note, however, that the modes appearing in the alias term correspond to frequencies larger than the cut-off frequency N .

Theorem (Error Estimates in $H_p^s(I)$)

Suppose $s \leq r$, $r > \frac{1}{2}$ are given, then there exists a constant C such that if $u \in H_p^r(I)$, we have

$$\|u - P_C u\|_s \leq C(1 + N^2)^{\frac{s-r}{2}} \|u\|_r$$

Outline of the proof.

Note that P_C leaves S_N invariant, therefore $P_C P_N = P_N$ and we may thus write

$$u - P_C u = u - P_N u + P_C (P_N - I) u$$

Setting $w = (I - P_N)u$ and using the “triangle inequality” we obtain

$$\|u - P_C u\|_s \leq \|u - P_N u\|_s + \|P_C w\|_s$$

- ▶ The term $\|u - P_N u\|_s$ is upper-bounded using an earlier theorem
- ▶ Need to estimate $\|P_C w\|_s$ — straightforward, but tedious ...

- ▶ Until now, we defined the Discrete Fourier Transform for an **ODD** number $(2N + 1)$ of grid points
- ▶ FFT algorithms generally require an **EVEN** number of grid points
- ▶ We can define the discrete transform for an **EVEN** number of grid points by constructing the interpolant in the space \tilde{S}_N for which we have $\dim(\tilde{S}_N) = 2N$. To do this we choose:

$$\tilde{x}_j = j\tilde{h}, \quad -N + 1 \leq j \leq N, \quad \tilde{h} = \frac{\pi}{N}$$

- ▶ All results presented before can be established in the case with $2N$ grid points with only minor modifications
- ▶ However, now the N -th Fourier mode \hat{u}_N does not have its complex conjugate! This coefficient is usually set to zero ($\hat{u}_N = 0$) to avoid an uncompensated imaginary contribution resulting from differentiation
- ▶ **ODD** or **EVEN** collocation depending on whether $M = 2N + 1$ or $M = 2N$

- ▶ Before we focused on representing the **INTERPOLANT** as a Fourier series $v(x_j) = \sum_{k=-N}^N a_k e^{ikx_j}$
- ▶ Alternatively, we can represent the **INTERPOLANT** using the nodal values as (assuming, for the moment, infinite domain $x \in \mathbb{R}$)

$$v(x) = \sum_{j=-\infty}^{\infty} u(x_j) C_j(x),$$

where $C_j(x)$ is a **CARDINAL FUNCTION** with the property that $C_j(x_i) = \delta_{ij}$ (i.e., generalization of the **LAGRANGE POLYNOMIAL** for infinite domain)

- ▶ In an infinite domain we have the **WHITTAKER CARDINAL** or **SINC** function

$$C_k(x) = \frac{\sin[\pi(x - kh)/h]}{\pi(x - kh)/h} = \text{sinc}[(x - kh)/h],$$

where $\text{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$

Proof.

The Fourier transform of δ_{j0} is $\hat{\delta}(k) = h$ for all $k \in [-\pi/h, \pi/h]$; hence, the interpolant of δ_{j0} is $v(x) = \frac{h}{2\pi} \int_{-\pi/h}^{\pi/h} e^{ikx} dk = \frac{\sin(\pi x/h)}{\pi x/h}$ □

- ▶ Thus, the spectral interpolant of a function in an **INFINITE** domain is a linear combination of **WHITTAKER CARDINAL** functions
- ▶ In a **PERIODIC DOMAIN** we still have the representation

$$v(x) = \sum_{j=0}^{N-1} u(x_j) S_j(x),$$

but now the **CARDINAL FUNCTIONS** have the form

$$S_j(x) = \frac{1}{N} \sin \left[\frac{N(x - x_j)}{2} \right] \cot \left[\frac{(x - x_j)}{2} \right]$$

- ▶ Proof — similar to the previous (unbounded) case, except that now the interpolant is given by a **DISCRETE** Fourier Transform
- ▶ The relationship between the Cardinal Functions corresponding to the **PERIODIC** and **UNBOUNDED** domains

$$S_0(x) = \frac{1}{2N} \sin(Nx) \cot(x/2) = \sum_{m=-\infty}^{\infty} \operatorname{sinc} \left(\frac{x - 2\pi m}{h} \right)$$

- ▶ Two ways to calculate the derivative $w(x_j) = u'(x_j)$ based on the values $u(x_j)$, where $0 \leq j \leq 2N + 1$; denote $U = [u_0, \dots, u_{2N+1}]^T$ and $U' = [u'_0, \dots, u'_{2N+1}]^T$
- ▶ **METHOD ONE** — approach based on differentiation in Fourier space:
 - ▶ calculate the vector of Fourier coefficients $\hat{U} = \mathbb{T}U$
 - ▶ apply the diagonal differentiation matrix $\hat{U}' = \hat{\mathbb{D}}\hat{U}$
 - ▶ return to real space via inverse Fourier transform $U = \mathbb{T}^T \hat{U}$
- ▶ **REMARK** — formally we can write

$$U' = \mathbb{T}^T \hat{\mathbb{D}} \mathbb{T} U,$$

however in practice matrix operations are replaced by FFTs

► **METHOD TWO** — approach based on differentiation (in real space) of the interpolant $u'(x_j) = v'(x_j) = \sum_{j=0}^{N-1} u(x_j) S'_j(x)$, where the cardinal function has the following derivatives

$$S'(x_j) = \begin{cases} 0, & j = 0 \pmod{N} \\ \frac{1}{2}(-1)^j \cot(jh/2), & j \neq 0 \pmod{N} \end{cases}$$

► Thus, since the interpolant is a linear combination of shifted Cardinal Functions, the differentiation matrix has the form of a **TOEPLITZ CIRCULANT** matrix

$$\mathbb{D} = \begin{bmatrix} 0 & & & & -\frac{1}{2} \cot[(1h)/2] \\ -\frac{1}{2} \cot[(1h)/2] & \ddots & & & \frac{1}{2} \cot[(2h)/2] \\ \frac{1}{2} \cot[(2h)/2] & \ddots & & & -\frac{1}{2} \cot[(3h)/2] \\ -\frac{1}{2} \cot[(3h)/2] & \ddots & & & \vdots \\ \vdots & \ddots & \ddots & & \frac{1}{2} \cot[(1h)/2] \\ \frac{1}{2} \cot[(1h)/2] & & & & 0 \end{bmatrix}$$

► Higher-order derivatives obtained calculating $S^{(p)}(x_i)$

- ▶ We are interested in a **PARTIAL DIFFERENTIAL EQUATION** (a boundary value problem) of the general form $\mathcal{L}u = f$
- ▶ We will look for solutions in the form:

$$\begin{aligned}u_N(x) &= \sum_{|k| \leq N} \hat{u}_k e^{ikx}, \\&= \sum_{j=1}^{2N+1} u(x_j) S_j(x),\end{aligned}$$

where $S_j(x)$ is the periodic cardinal function centered at x_j

- ▶ For the above model problem we will analyze:
 - ▶ spectral Galerkin method
 - ▶ spectral Collocation method
 - ▶ variant with the **FOURIER COEFFICIENTS** \hat{u}_k as the unknowns
 - ▶ variant with the **NODAL VALUES** $u(x_j)$ as the unknowns

- ▶ Consider the following 1D second-order elliptic problem in a periodic domain $\Omega = [0, 2\pi]$

$$\mathcal{L}u \triangleq \nu u'' - au' + bu = f,$$

where ν , a and b are constant and $f = f(x)$ is a smooth 2π -periodic function.

- ▶ For $\nu = 10$, $a = 1$, $b = 5$ and the RHS function

$$f(x) = e^{\sin(x)} [\nu(\cos^2(x) - \sin(x)) - a \cos(x) + b]$$

the solution is

$$u(x) = e^{\sin(x)}$$

- ▶ For the **GALERKIN** approach we are interested in 2π -periodic solutions in the form

$$u_N(x) = \sum_{|k| \leq N} \hat{u}_k e^{ikx}$$

► RESIDUAL

$$R_N(x) = \mathcal{L}u_N - f = \sum_{|k| \leq N} \hat{u}_k \mathcal{L}e^{ikx} - f$$

- Cancellation of the residual in the mean (setting the projections on the basis functions $W_n(x) = e^{inx}$ equal to zero)

$$(R_N, W_n) = \sum_{k=-N}^N \hat{u}_k (\mathcal{L}e^{ikx}, e^{inx}) - (f, e^{inx}) = 0, \quad n = -N, \dots, N$$

- Noting that $\mathcal{L}e^{ikx} = (-\nu k^2 - iak + b)e^{ikx} \triangleq \mathcal{G}_k e^{ikx}$ we obtain

$$\sum_{k=-N}^N \mathcal{G}_k \hat{u}_k \int_0^{2\pi} e^{i(k-n)} dx = \hat{f}_n, \quad n = -N, \dots, N$$

- ▶ Assuming $\mathcal{G}_k \neq 0$, we obtain the **GALERKIN EQUATIONS** for \hat{u}_k

$$\mathcal{G}_k \hat{u}_k = \hat{f}_k, \quad k = -N, \dots, N$$

- ▶ The Galerkin equations are **DECOUPLED**
- ▶ Since u is real, it is necessary to calculate \hat{u}_k for $k \geq 0$ only

- **RESIDUAL** (with the expansion coefficients \hat{u}_k as unknowns)

$$R_N(x) = \mathcal{L}u_N - f = \sum_{|k| \leq N} \hat{u}_k \mathcal{L}e^{ikx} - f$$

- Cancelling the residual pointwise at the collocation points x_j ,
 $j = 1, \dots, M$

$$\sum_{k=-N}^N (\mathcal{G}_k \hat{u}_k - \tilde{f}_k) e^{ikx_j} = 0, \quad j = 1, \dots, M$$

where (note the **ALIASING ERROR**) $\tilde{f}_k = \hat{f}_k + \sum_{l \in \mathbb{Z} \setminus \{0\}} \hat{f}_{k+IM}$

- Thus, the **COLLOCATION EQUATIONS** for the Fourier coefficients

$$\mathcal{G}_k \hat{u}_k = \tilde{f}_k = \hat{f}_k + \sum_{l \in \mathbb{Z} \setminus \{0\}} \hat{f}_{k+IM}, \quad k = -N, \dots, N$$

- Formally, the **GALERKIN** and **COLLOCATION** methods are **DISTINCT**
- In practice, the projection (f, e^{ikx}) is evaluated using FFT and therefore also involves aliasing errors. Therefore, for the present problem, the two approaches are **NUMERICALLY EQUIVALENT** .

- ▶ **RESIDUAL** (with the nodal values $u_N(x_j)$, $j = 1, \dots, M$, as unknowns)

$$R_N(x) = \mathcal{L}u_N - f$$

- ▶ Cancelling the residual pointwise at the collocation points x_j , $j = 1, \dots, M$

$$[R_N(x_1), \dots, R_N(x_M)]^T = \mathbb{L}U_N - F = (\nu\mathbb{D}_2 - a\mathbb{D}_1 + b\mathbb{I})U_N - F = 0,$$

where $U_N = [u_N(x_1), \dots, u_N(x_M)]^T$ and \mathbb{D}_1 and \mathbb{D}_2 are the differentiation matrices.

- ▶ Derivation of the **DIFFERENTIATION MATRICES**

$$\left. \begin{aligned} u_N^{(p)}(x_j) &= \sum_k (ik)^p \hat{u}_k e^{ikx_j} \\ \hat{u}_k &= \frac{1}{M} \sum_{j=1}^M u_N(x_j) e^{-ikx_j} \end{aligned} \right\} \implies u_N^{(p)}(x_i) = \sum_{j=1}^M d_{ij}^{(p)} u_N(x_j)$$

- ▶ Differentiation Matrices (for even collocation, i.e.,
 $I_N = -N + 1, \dots, N$ and $M = 2N$)

$$d_{ij}^{(1)} = \begin{cases} \frac{1}{2}(-1)^{i+j} \cot(h_{ij}) & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}, \quad d_{ij}^{(2)} = \begin{cases} \frac{1}{4}(-1)^{i+j}N + \frac{(-1)^{i+j+1}}{2\sin^2(h_{ij})} & \text{if } i \neq j \\ -\frac{(N-1)(N-2)}{12} & \text{if } i = j \end{cases}$$

- ▶ Remarks:
 - ▶ The differentiation matrices are full (and not so well-conditioned ...), so the system of equations for $u_N(x_j)$ is now **COUPLED**
 - ▶ For constant coefficient PDEs the present approach is therefore inferior to the first collocation approach with the Fourier coefficients used as unknowns
 - ▶ Note the relationship to the banded matrices obtained when approximating differential operators using finite differences
- ▶ **QUESTION** — Derive the above differentiation matrices, also for the case of odd collocation

Nyquist-Shannon Sampling Theorem

- ▶ If a periodic function $f(x)$ has a Fourier transform $\hat{f}_k = 0$ for $|k| > M$, then it is completely determined by providing the function values at a series of points spaced $\Delta x = \frac{1}{2M}$ apart. The values $f_n = f\left(\frac{n}{2M}\right)$ are called the **SAMPLES OF $f(x)$** .
- ▶ The minimum sampling frequency that allows for reconstruction of the original signal, that is $2M$ samples per unit distance, is known as the **NYQUIST FREQUENCY**. The time in between samples is called the **NYQUIST INTERVAL**.
- ▶ The **NYQUIST-SHANNON SAMPLING THEOREM** is a fundamental tenet in the field of **INFORMATION THEORY** (originally formulated by Nyquist in 1928, but formally proved by Shannon only in 1949)