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I Consider an approximation of u ∈ L2ω(I ) in terms of a truncated
Chebyshev series uN(x) =

∑N
k=0 ûkTk(x)

I Cancel the projections of the residual RN = u − uN on the N + 1 first
basis function (i.e., the Chebyshev polynomials)

(RN ,Tl)ω =

∫ 1

−1

(
uTlω −

N∑
k=0

ûkTkTlω

)
dx = 0, l = 0, . . . ,N

I Taking into account the orthogonality condition, expressions for the
Chebyshev expansions coefficients are obtained

ûk =
2

πck

∫ 1

−1
uTkω dx ,

which can be evaluated using, e.g., the
Gauss-Lobatto-Chebyshev quadratures .

I Question — What happens on the boundary?
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Theorem
Let PN : L2ω(I )→ PN be the orthogonal projection on the subspace PN of
polynomials of degree ≤ N. For all µ and σ such that 0 ≤ µ ≤ σ, there
exists a constant C such that

‖u − PNu‖µ,ω < CNe(µ,σ)‖u‖σ,ω

where e(µ, σ) =


2µ− σ − 1

2
for µ > 1,

3

2
µ− σ for 0 ≤ µ ≤ 1

“Philosophy” of the proof.

1. First establish continuity of the mapping u → ũ, where
ũ(θ) = u(cos(θ)), from the weighted Sobolev space Hm

ω (I ) into the
corresponding periodic Sobolev space Hm

p (−π, π)

2. Then leverage analogous approximation error bounds established for
the case of trigonometric basis functions
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I Consider an approximation of u ∈ L2ω(I ) in terms of a truncated
Chebyshev series (expansion coefficients as the unknowns)
uN(x) =

∑N
k=0 ûkTk(x)

I Cancel the residual RN = u − uN on the set of
Gauss-Lobatto-Chebyshev collocation points xj , j = 0, . . . ,N
(one could choose other sets of collocation points as well)

u(xj) =
N∑

k=0

ûkTk(xj), j = 0, . . . ,N

I Noting that Tk(xj) = cos
(
k cos−1(cos( jπN ))

)
= cos(k jπ

N ) and

denoting uj , u(xj) we obtain

uj =
N∑

k=0

ûk cos

(
k
πj

N

)
, j = 0, . . . ,N

I The above system of equations can be written as U = T Û, where U
and Û are vectors of grid values and expansion coefficients,
respectively.
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I In fact, the matrix T is invertible and

[T −1]jk =
2

c jckN
cos

(
kπj

N

)
, j , k = 0, . . . ,N

I Consequently, the expansion coefficients can be expressed as follows

ûk =
2

ckN

N∑
j=0

1

c j
uj cos

(
kπj

N

)
=

2

ckN

N∑
j=0

1

c j
uj<

[
e i(

kπj
N )
]
, k = 0, . . . ,N

Note that this expression is nothing else than the cosine
transform of U which can be very efficiently evaluated using a
cosine FFT

I The same expression can be obtained by

I multiplying each side of uj =
∑N

k=0 ûkTk(xj) by
Tl (xj )
c j

I summing the resulting expression from j = 0 to j = N
I using the discrete orthogonality relation

π
N

∑N
j=0

1
c j
Tk(ξ̃j)Tl(ξ̃j) = πck

2 δkl
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I Note that the expression for the Discrete Chebyshev
Transform

ûk =
2

ckN

N∑
j=0

1

c j
uj cos

(
kπj

N

)
, k = 0, . . . ,N

can also be obtained by using the Gauss-Lobatto-Chebyshev
quadrature to approximate the continuous expressions

ûk =
2

πck

∫ 1

−1
uTkω dx , k = 0, . . . ,N,

Such an approximation is exact for u ∈ PN

I Analogous expressions for the Discrete Chebyshev Transforms can be
derived for other set of collocation points (Gauss, Gauss-Radau)

I Note similarities with respect to the case periodic functions and the
Discrete Fourier Transform
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I As was the case with Fourier spectral methods, there is a very close
connection between collocation-based interpolation and
Galerkin approximation

I Discrete Chebyshev Transform can be associated with an
interpolation operator PC : C 0(I )→ RN defined such that
(PCu)(xj) = u(xj), j = 0, . . . ,N (where xj are the Gauss-Lobatto
collocation points)

I Theorem
Let s > 1

2 and σ be given and 0 ≤ σ ≤ s. There exists a constant C such
that

‖u − PCu‖σ,ω < CN2σ−s‖u‖s,ω
for all u ∈ Hs

ω(I ).

I Outline of the Proof.
Changing the variables to ũ(θ) = u(cos(θ)) we convert this problem to a
problem already analyzed in the context of the Fourier interpolation for
periodic functions
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I Relation between the Galerkin and collocation coefficients, i.e.,

ûek =
2

πck

∫ 1

−1
u(x)Tk(x)ω(x) dx , k = 0, . . . ,N

ûck =
2

ckN

N∑
j=0

1

c j
uj cos

(
kπj

N

)
, k = 0, . . . ,N

I Using the representation u(x) =
∑∞

l=0 û
e
l Tl(x) in the latter

expression and invoking the discrete orthogonality relation we obtain

ûc
k =

2

ckN

N∑
l=0

ûe
l

[
N∑
j=0

1

c j
Tk(xj)Tl(xj)

]
+

2

ckN

∞∑
l=N+1

ûe
l

[
N∑
j=0

1

c j
Tk(xj)Tl(xj)

]
,

= ûe
k +

2

ckN

∞∑
l=N+1

ûe
l Ckl

where Ckl =
N∑
j=0

1

c j
Tk (xj )Tl (xj ) =

N∑
j=0

1

c j
cos

(
kjπ

N

)
cos

(
ljπ

N

)

=
1

2

N∑
j=0

1

c j

[
cos

(
k − l

N
jπ

)
+ cos

(
k + l

N
jπ

)]
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I Using the identity

N∑
j=0

cos

(
piπ

N

)
=


N + 1, if p = 2mN, m = 0,±1,±2, . . .

1

2
[1 + (−1)p] otherwise

we can calculate Ckl which allows us to express the relation between
the Galerkin and collocation coefficients as follows

ûck = ûek +
1

ck

 ∞∑
m=1

2mN>N−k

ûek+2mN +
∞∑
m=1

2mN>N+k

ûe−k+2mN


I The terms in square brackets represent the aliasing errors .

Their origin is precisely the same as in the Fourier (pseudo)-spectral
method.

I Aliasing errors can be removed using the 3/2 approach in the same
way as in the Fourier (pseudo)-spectral method
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I expressing the first N Chebyshev polynomials as functions of xk ,
k = 1, . . . ,N T0(x) = 1,

T1(x) = x ,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x ,

T4(x) = 8x4 − 8x2 + 1

which can be written as V = KX , where [V ]k = Tk(x), [X ]k = xk ,
and K is a lower-triangular matrix

I Solving this system (trivially!) results in the following reciprocal
relations 1 = T0(x),

x = T1(x),

x2 =
1

2
[T0(x) + T2(x)],

x3 =
1

4
[3T1(x) + T3(x)],

x4 =
1

8
[3T0(x) + 4T2(x) + T4(x)]
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I Find the best polynomial approximation of order 3 of f (x) = ex on [−1, 1]

I Construct the (Maclaurin) expansion

ex = 1 + x +
1

2
x2 +

1

6
x3 +

1

24
x4 + . . .

I Rewrite the expansion in terms of Chebyshev polynomials using the
reciprocal relations

ex =
81

64
T0(x) +

9

8
T1(x) +

13

48
T2(x) +

1

24
T3(x) +

1

192
T4(x) + . . .

I Truncate this expansion to the 3rd order and translate the expansion back to
the xk representation

I Truncation error is given by the magnitude of the first truncated term; Note
that the Chebyshev Expansion coefficients are much smaller than
the corresponding Taylor expansion coefficients !

I How is it possible – the same number of expansion terms, but higher
accuracy?
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I Assume function approximation in the form uN(x) =
∑N

k=0 ûkTk(x)

I First, note that Chebyshev projection and differentiation
do not commute, i.e., PN(dudx ) 6= d

dx (PNu)

I Sequentially applying the recurrence relation 2Tk =
T ′k+1

k+1 −
T ′k−1

k−1 we
obtain

T ′k(x) = 2k
K∑

p=0

1

ck−1−2p
Tk−1−2p(x), where K =

[
k − 1

2

]
I Consider the first derivative

u′N(x) =
N∑

k=0

ûkT
′
k(x) =

N∑
k=0

û
(1)
k Tk(x)

where, using the above expression for T ′k(x), we obtain the expansion
coefficients as

û
(1)
k =

2

ck

N∑
p=k+1

(p+k) odd

pûp, k = 0, . . . ,N − 1, and û
(1)
N = 0
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I Spectral differentiation (with the expansion coefficients as unknowns)
can thus be written as

Û(1) = D̂Û,

where Û = [û0 . . . , ûN ]T , Û(1) = [û
(1)
0 . . . , û

(1)
N ]T , and D̂ is an

upper-triangular matrix with entries deduced based on the
previous expression

I For the second derivative one obtains similarly

u′′N(x) =
N∑

k=0

û
(2)
k Tk(x)

û
(2)
k =

1

ck

N∑
p=k+2

(p+k) even

p(p2 − k2)ûp, k = 0, . . . ,N − 2

and û
(2)
N = û

(2)
N−1 = 0

I Question — What is the structure of the second-order
differentiation matrix?

B. Protas MATH745, Fall 2014



Chebyshev Approximation (I)
Chebyshev Approximation (II)

Implementation of Boundary Conditions

Spectral Differentiation
Differentiation in Real Space

I Assume the function u(x) is approximated in terms of its nodal
values, i.e.,

u(x) ∼= uN(x) =
N∑
j=0

u(xj)Cj(x),

where {xj} are the Gauss-Lobatto-Chebyshev points and Cj(x)
are the associated Cardinal Functions

Cj(x) = (−1)j+1 (1− x2)

cjN2(x − xj)

dTN(x)

dx
=

2

Npj

N∑
m=0

1

pm
Tm(xj)Tm(x),

where

pj =

{
2 for j = 0,N,

1 for j = 1, . . . ,N − 1
, cj =

{
2 for j = N,

1 for j = 0, . . . ,N − 1

I The Differentiation Matrix D(p) relating the nodal values of

the p-th derivative u
(p)
N to the nodal values of u is obtained by

differentiating the cardinal function appropriate number of times

u
(p)
N (xj) =

N∑
k=0

d (p)Ck(xj)

dx (p)
u(xk) =

N∑
k=0

d
(p)
jk u(xk), j = 0, . . . ,N
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I Expressions for the entries of the Differentiation Matrix d
(1)
jk

at the the Gauss-Lobatto-Chebyshev collocation points

d
(1)
jk =

c j
ck

(−1)j+k

xj − xk
, 0 ≤ j , k ≤ N, j 6= k,

d
(1)
jj = − xj

2(1− x2j )
, 1 ≤ j ≤ N − 1,

d
(1)
00 = −d (1)

NN =
2N2 + 1

6
,

I Thus in the matrix (operator) notation

U(1) = DU

I Note that Rows of the differentiation matrix D are in fact equivalent
to N-th order asymmetric finite-difference formulas on a nonuniform
grid; in other words, spectral differentiation using nodal values as
unknowns is equivalent to finite differences employing all N grid
points available
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I Expressions for the entries of Second-Order Differentiation

Matrix d
(2)
jk at the the Gauss-Lobatto-Chebyshev collocation

points (U(2) = D(2)U)

d
(2)
jk =

(−1)j+k

ck

x2j + xjxk − 2

(1− x2j )(xj − xk )2
, 1 ≤ j ≤ N − 1, 0 ≤ k ≤ N, j 6= k

d
(2)
jj = −

(N2 − 1)(1− x2j ) + 3

3(1− x2j )
2

, 1 ≤ j ≤ N − 1,

d
(2)
0k =

2

3

(−1)k

ck

(2N2 + 1)(1− xk )− 6

(1− xk )2
, 1 ≤ k ≤ N

d
(2)
Nk =

2

3

(−1)N+k

ck

(2N2 + 1)(1 + xk )− 6

(1 + xk )2
,0 ≤ k ≤ N − 1

d
(2)
00 = d

(2)
NN =

N4 − 1

15
,

I Note that d
(2)
jk =

∑N
p=0 d

(1)
jp d

(1)
pk

I Interestingly, D2 is not a Symmetric matrix ...
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I Consider an elliptic boundary value problem (BVP) :

− νu′′ + au′ + bu = f , in [−1, 1]

α−u + β−u
′ = g− x = −1

α+u + β+u
′ = g+ x = 1

I Chebyshev polynomials do not satisfy homogeneous boundary
conditions, hence standard Galerkin approach is not directly
applicable.

I Basis Recombination :
I Convert the BVP to the corresponding form with homogeneous

boundary conditions
I Take linear combinations of Chebyshev polynomials to construct a new

basis satisfying homogeneous Dirichlet boundary conditions
ϕk(±1) = 0

ϕk(x) =

{
Tk(x)− T0(x) = Tk − 1, k − even

Tk(x)− T1(x), k − odd

Note that the new basis preserves orthogonality
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I The Tau method (Lanczos, 1938) consists in using a Galerkin
approach in which explicit enforcement of the boundary conditions
replaces projections on some of the test functions

I Consider the residual

RN(x) = −νu′′N + au′N + buN − f ,

where uN(x) =
∑N

k=0 ûkTk(x)
I Cancel projections of the residual on the first N − 2 basis functions

(RN ,Tl)ω =
N∑

k=0

(
−νû(2)

k + aû
(1)
k + bûk

)∫ 1

−1

TkTlω dx −
∫ 1

−1

fTlω dx , l = 0, . . . ,N − 2

I Thus, using orthogonality, we obtain

−νû(2)k + aû
(1)
k + bûk = f̂k , k = 0, . . . ,N − 2

where f̂k =
∫ 1
−1 f Tk ω dx
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I Noting that Tk(±1) = (±1)k and T ′k(±1) = (±1)k+1k2, the
boundary conditions are enforced by supplementing the residual
equations with N∑

k=0

(−1)k(α− − β−k2)ûk = g−

N∑
k=0

(−1)k(α+ + β+k
2)ûk = g+

I Expressing û
(2)
k and û

(1)
k in terms of ûk via the Chebyshev spectral

differentiation matrices we obtain the following system

AÛ = F̂

where Û = [û0, . . . , ûN ]T , F = [f̂0, . . . , f̂N−2, g−, g+] and the matrix
A is obtained by adding the two rows representing the boundary
conditions (see above) to the matrix A1 = −νD̂2 + aD̂ + bI .

I When the domain boundary is not just a point (e.g., in 2D / 3D),
formulation of the Tau method becomes somewhat more involved
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I Consider the residual

RN(x) = −νu′′N + au′N + buN − f ,

where uN(x) =
∑N

k=0 ûkTk(x)

I Cancel this residual at N − 1 Gauss-Lobatto-Chebyshev
collocation points located in the interior of the domain

−νu′′N(xj) + au′N(xj) + buN(xj) = f (xj), j = 1, . . . ,N − 1

I Enforce the two boundary conditions at endpoints

α−uN(xN) + β−u
′
N(xN) = g−

α+uN(x0) + β+u
′
N(x0) = g−

Note that this shows the utility of using the
Gauss-Lobatto-Chebyshev collocation points
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I Consequently, the following system of N + 1 equations is obtained

N∑
k=0

(−νd (2)
jk + ad

(1)
jk )uN(xj) + buN(xj) = f (xj), j = 1, . . . ,N − 1

α−uN(xN) + β−

N∑
k=0

d
(1)
Nk uN(xk) = g−

α+uN(x0) + β+

N∑
k=0

d
(1)
0k uN(xk) = g+

which can be written as AcU = F , where [Ac ]jk = [Ac0]jk ,
j , k = 1, . . . ,N − 1 with Ac0 given by

Ac0 = (−νD2 + aD + bI)U

and the boundary conditions above added as the rows 0 and N
of Ac

B. Protas MATH745, Fall 2014



Chebyshev Approximation (I)
Chebyshev Approximation (II)

Implementation of Boundary Conditions

Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method
Collocation Method

I Note that the matrix corresponding to this system of equations may
be poorly conditioned , so special care must be exercised when
solving this system for large N.

I Similar approach can be used when the nodal values u(xj), rather
than the Chebyshev coefficients ûk are unknowns
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I When the equation has nonconstant coefficients , similar
difficulties as in the Fourier case are encountered (evaluation of
convolution sums )

I Consequently, the collocation (pseudo-spectral) approach is
preferable along the guidelines laid out in the case of the Fourier
spectral methods

I Assuming a = a(x) in the elliptic boundary value problem, we need to
make the following modification to Ac :

A′c0 = (−νD2 + D′ + bI)U,

where D′ = [a(xj)d
(1)
jk ], j , k = 1, . . . ,N

I For the Burgers equation ∂tu + 1
2∂xu

2 − ν∂2xu we obtain at every
time step n

(I−∆t ν D(2))Un+1 = Un − 1

2
∆t DW n,

where [W n]j = [Un]j [U
n]j ; Note that an algebraic system has to be

solved at each time step
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Epilogue — Domain Decomposition
I Motivation:

I treatment of problem in irregular domains
I stiff problems

I Philosophy — partition the original domain Ω into a number of
subdomains {Ωm}Mm=1 and solve the problem separately on each
those while respecting consistency conditions on the interfaces

I Spectral Element Method
I consider a collection of problems posed on each subdomain Ωm

Lum = f

um−1(am) = um(am), um(am+1) = um+1(am+1)

I Transform each subdomain Ωm to I = [−1, 1]
I use a separate set of Nm orthogonal polynomials to approximate

the solution on every subinterval
I boundary conditions on interfaces provide coupling between problems

on subdomains
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