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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» Consider an approximation of u € L2(/) in terms of a TRUNCATED
CHEBYSHEV SERIES up(x) = ZQ’ZO iy Tre(x)

» Cancel the projections of the residual Ry = u — up on the N + 1 first
basis function (i.e., the Chebyshev polynomials)

1 N
(RN,T/)W—/ uTw = T Tw | dx=0, 1=0,...,N
-t k=0

» Taking into account the orthogonality condition, expressions for the
Chebyshev expansions coefficients are obtained

2 1
Uy = — uTyw dx,
TCk J_1

which can be evaluated using, e.g., the
GAUSS-LOBATTO-CHEBYSHEV QUADRATURES .

» QUESTION — What happens on the boundary?
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

Theorem

Let Py : L2(I) — Py be the orthogonal projection on the subspace Py of
polynomials of degree < N. For all 1 and o such that 0 < u < o, there
exists a constant C such that

Ju — Pyl < CNEED| [y,

for > 1,
where e(pu,0) =
Plad for0<pu<1

“Philosophy” of the proof.

1. First establish continuity of the mapping v — @, where
() = u(cos(f)), from the weighted Sobolev space H/J'(/) into the
corresponding periodic Sobolev space H.'(—m, )

2. Then leverage analogous approximation error bounds established for
the case of trigonometric basis functions
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

» Consider an approximation of u € L2(/) in terms of a truncated
Chebyshev series (expansion coefficients as the unknowns)
un(x) = D240 ik Tk(x)

» Cancel the residual Ry = u — upy on the set of

GAUSS-LOBATTO-CHEBYSHEV collocation points x;, j =0,..., N
(one could choose other sets of collocation points as well)

N
u(x) = Zf’ka(Xj), j=0,...,N
k=0

» Noting that T(x;) = cos (k cosfl(cos(%))> = cos(k%) and

denoting u; £ u(x;) we obtain
N .
N ) .
uj = kgoukcos(kN>, j=0,...,N

» The above system of equations can be written as U = TU, where U
and U are vectors of grid values and expansion coefficients,

respectively.
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Note that this expression is nothing else than the COSINE
TRANSFORM of U which can be very efficiently evaluated using a
COSINE FFT
» The same expression can be obtained by
> multiplying each side of u; = S} i Ti(x) by 7%
» summing the resulting expression from j =0to j =N
> using the DISCRETE ORTHOGONALITY RELATION

N 2= 0 3 LT (G TI§) = Tk 6y
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Chebyshev Approximation (1) Galerkin Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

» Note that the expression for the DISCRETE CHEBYSHEV
TRANSFORM

can also be obtained by using the Gauss-Lobatto-Chebyshev
quadrature to approximate the continuous expressions

2 1
iy = — uTpwdx, k=0,...,N,
TCk J-1

Such an approximation is EXACT for u € Py

» Analogous expressions for the Discrete Chebyshev Transforms can be
derived for other set of collocation points (Gauss, Gauss-Radau)

» Note similarities with respect to the case periodic functions and the
Discrete Fourier Transform
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

» As was the case with Fourier spectral methods, there is a very close
connection between COLLOCATION-BASED INTERPOLATION and
(GALERKIN APPROXIMATION

» DISCRETE CHEBYSHEV TRANSFORM can be associated with an
INTERPOLATION OPERATOR Pc : CO(1) — RN defined such that
(Pcu)(xj) = u(x;), j=0,..., N (where x; are the Gauss-Lobatto
collocation points)

Theorem
Let s > % and o be given and 0 < o <'s. There exists a constant C such
that

|u— Pcullow < CN%isH””sw

for all u € H:(1).

Outline of the Proof.

Changing the variables to #i(f) = u(cos(#)) we convert this problem to a
problem already analyzed in the context of the Fourier interpolation for
periodic functions O
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Chebyshev Approximation (1) (ef: n Approach
Collocation Approach

Reciprocal Relations & Economization of Power Series

Relation between the GALERKIN and COLLOCATION coefficients, i.e.,

5 1
o= — u(x) Te(x)w(x) dx, k=0,...,N
TCk J_1
N
2 1 kmj
’\C: T —— k:o PR N

» Using the representation u(x) = >/2, if Ty(x) in the latter
expression and invoking the discrete orthogonality relation we obtain

N N o N
AC 2 e 1 2 . 1
p EkNZu’ [Zch()g)Tl()g) + =N Z o |:ZCJ,T‘<(XJ')TI(XJ):| 7

j=0 I=N+1 =0

A€

2 e
= Uk +E;(7N Z iy C

N N Kkjm lim
where Ck/:Z€Tk(Xj)T/(Xj):Z:COS N es Uy

j=0 4 j=0 Cj
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

> Using the identity
N-+1, if p=2mN, m=0,+1,42,...

N .
3 cos (’”) e
= N 5[1 + (=1)7] otherwise

we can calculate Cy; which allows us to express the relation between
the Galerkin and collocation coefficients as follows

1 o o
AC __ n~e ~ ~e
U = U + & E Ugiomn + E U kromn
m=1 m=1
2mN>N—k 2mN>N+k

> The terms in square brackets represent the ALTIASING ERRORS .
Their origin is precisely the same as in the Fourier (pseudo)-spectral
method.

» Aliasing errors can be removed using the 3/2 APPROACH in the same
way as in the Fourier (pseudo)-spectral method
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Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

» expressing the first N Chebyshev polynomials as functions of xX,

k=1,...,N To(x) =1,
Tl(X) =X,
To(x) =2x> -1,

Ts3(x) = 4x3 — 3x,

Ta(x) = 8x* —8x>+1
which can be written as V' = KX , where [V], = Tx(x), [X]x = x¥,
and K is a LOWER-TRIANGULAR matrix

» Solving this system (trivially!) results in the following RECIPROCAL
RELATIONS 1= To(x),

x = T1(x),
X = S[To(x) + To()
% = BT + Ts(,

1
x = §[3T0(X) + 4T(x) + Ta(x)]



Chebyshev Approximation (1) Galerkin Approach

Collocation Approach
Reciprocal Relations & Economization of Power Series

> Find the best polynomial approximation of order 3 of f(x) = €* on [—1,1]

» Construct the (Maclaurin) expansion

S xR
= X 2X 6X 24.X

> Rewrite the expansion in terms of CHEBYSHEV POLYNOMIALS using the
reciprocal relations

81 9 13 1 1
e* aTo( )+éTl(X)“‘@T2(X)+QT3(X)+@T4(X)+...

» Truncate this expansion to the 37 order and translate the expansion back to
the x* representation

> Truncation error is given by the magnitude of the first truncated term; Note
that the CHEBYSHEV EXPANSION COEFFICIENTS are much smaller than
the corresponding TAYLOR EXPANSION COEFFICIENTS !

» How is it possible — the same number of expansion terms, but higher
accuracy?
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Assume function approximation in the form up(x) = ZLV:o i T(x)
» First, note that CHEBYSHEV PROJECTION and DIFFERENTIATION
do not commute, i.e., PN(%) # d%'((PNu)

T, T, 4

» Sequentially applying the recurrence relation 2T, = kk“ — %7 Wwe
obtain
AN k—1
Ti(x) =2k Y  ———Ti 12p(x), where K = }
25 Ck-1-2p 2

» Consider the first derivative

-y aTie) - YT

k=0

where, using the above expression for T;(x), we obtain the expansion
coefficients as

Z pip, k=0,...,N—1, and () =0

p=k+1
( k) odd
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. . Spectral Differentiation
Chebyshev Approximation (11) Differentiation in Real Space

» Spectral differentiation (with the expansion coefficients as unknowns)
can thus be written as

00 — B,

r N N o 1 ~(1 A
where U = [y ..., 0oy]T, OO [u( ) ...,u,(V)]T, and D is an
UPPER-TRIANGULAR matrix with entries deduced based on the
previous expression

» For the second derivative one obtains similarly

N
up(x) = 3 0 Ti(x)
k=0
N
1
o = S p(P? K, k=0,...,N -2
Ck p=k+2
(p+k) even

and @ A(2) A(2)1 _
> QUESTION — What is the structure of the second-order
differentiation matrix?
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Assume the function u(x) is approximated in terms of its nodal
values, i.e., N

u(x) = un(x) = Z u(x;)G(x),

Jj=0 .
where {x;} are the GAUSS-LOBATTO-CHEBYSHEV points and Cj(x)
are the associated CARDINAL FUNCTIONS

o (1=x3) dTw(x) 2 &1
G(x) = (—1y** ( == N 2 T,.x)Tm
J(X) ( ) CJ‘Nz(X—Xj) dx NmeZ:O i (XJ) (X)7
where
o 2 for j =0, N, o 2 for j =N,
im0\ 1 for j=1,...,N—1" 9711 for j=0,...,N—1

» The DIFFERENTIATION MATRIX D(P) relating the nodal values of
the p-th derivative u(p) to the nodal values of u is obtained by
differentiating the cardlnal function approprlate number of times

d(P)Ckx ,
“5\7)()9):27] Z kUXk j=0,....,N
k=0
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

» Expressions for the entries of the DIFFERENTIATION MATRIX d.(kl)

J
at the the GAUSS-LOBATTO-CHEBYSHEV collocation points

. (—1Yt+k

g = SV gk, j4k
Ck Xj — Xk

dV—__ N 1<j<N-1,

gij 2(1—Xj2)

) ) 2N?+1

o' =~y =

» Thus in the matrix (operator) notation
Ut =pu

> Note that Rows of the differentiation matrix D are in fact equivalent
to N-th order asymmetric finite-difference formulas on a nonuniform
grid; in other words, spectral differentiation using nodal values as
unknowns is equivalent to finite differences employing ALL N GRID
POINTS AVAILABLE
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Spectral Differentiation
Differentiation in Real Space

Chebyshev Approximation (I1)

> Expressions for the entries of SECOND-ORDER DIFFERENTIATION

MATRIX dj(z) at the the GAUSS-LOBATTO-CHEBYSHEV collocation

points (U2 = DR)V)

1Ytk X2 4 xix — 2
g2 - GG 1<j<N-10<k<N,j#k

k S (L) =)
N2 —1)(1—x?)+3
(2 _ ( J j
4@ _ _ 1<j<N-1
i 3(1 7)(}2)2 ) J > )
_ 1)k 2 _ _
déi):g(il) (2N" +1)(1 — x) 6 1<k<N
3 Ck (1 *Xk)2
__ 1\WN+k 2 _
g = 2EDTTEN N0 )28 gy
3 Ck (1+X/<)2
2 2 N -1
) = o=,
(2 _ N (1) 41)
» Note that dJ = szo djp dpk

» Interestingly, D? is not a SYMMETRIC MATRIX
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Consider an ELLIPTIC BOUNDARY VALUE PROBLEM (BVP) :

—vu" +ad + bu="f, in [—1,1]
au+p =g x=-1
apu+ i =gy x=1

» Chebyshev polynomials do not satisfy homogeneous boundary
conditions, hence standard Galerkin approach is not directly
applicable.

» BASIS RECOMBINATION :

» Convert the BVP to the corresponding form with HOMOGENEOUS
BOUNDARY CONDITIONS
» Take linear combinations of Chebyshev polynomials to construct a new
basis satisfying HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS
(pk(:l:].) = 0
Ti(x) — To(x) = Ty — 1, k — even
i) = { Ti(x) — Ta(x), k — odd

Note that the new basis preserves orthogonality
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» THE TAU METHOD (Lanczos, 1938) consists in using a Galerkin
approach in which explicit enforcement of the boundary conditions
replaces projections on some of the test functions

» Consider the residual
Rn(x) = —vup + auy + buy — f,

where uy(x) = STh_ ik Tu(x)
» Cancel projections of the residual on the first N — 2 basis functions

N 1 1
(RN,T,)w=Z< vl + ai! —&—buk)/ TkT/wdx—/ fTiwdx, 1=0,...,N—2
k=0 -1 -1

» Thus, using orthogonality, we obtain
uu,(()—l—au(1)+buk = fk, k=0,....,N—2
where % = [1, f Ty wdx
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Noting that Tx(£1) = (£1)¥ and T} (£1) = (£1)k+1k2, the
BOUNDARY CONDITIONS are enforced by supplementing the residual

equations with N
Y (Do - Bk =g

k=0

N
Z(—l)k(%r + B k%) = gy

k=0

» Expressing ﬁ,(f) and l’,\ll((l) in terms of iy via the Chebyshev spectral

differentiation matrices we obtain the following system
AU=F

where U = [to,...,0n]T, F = [?0, e ?N_g,g,,g+] and the matrix
A is obtained by adding the two rows representing the boundary
conditions (see above) to the matrix A; = —vID? + alD + bl.

» When the domain boundary is not just a point (e.g., in 2D / 3D),
formulation of the Tau method becomes somewhat more involved
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Consider the residual
Rn(x) = —vup, + aujy + buy — f,

where uy(x) = STh_ i Tu(x)

» Cancel this residual at N —1 GAUSS-LOBATTO-CHEBYSHEV
collocation points located in the interior of the domain

—vuy(x) + auy(x) + bun(x) = f(x), j=1,....,N—1
» Enforce the two boundary conditions at endpoints
a—un(xn) + B-uy(xn) = g-
ayun(xo) + Bruy(x) = g-

Note that this shows the utility of using the
GAUSS-LOBATTO-CHEBYSHEV collocation points
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method
Collocation Method

Implementation of Boundary Conditions

» Consequently, the following system of N + 1 equations is obtained

N
S (vd? + adP)un(xg) + bun() = F(g), j=1,....N 1
k=0

N
a_uy(xn) + 8- dijun(xi) = g
k=0

N
atun(xo) + B+ Z dé;{) un(xk) = g+
k=0
which can be written as A U = F , where [A¢]j = [Aco]jk,
jok=1,...,N—1 with A given by
Aco = (—vD? 4 aD + bI)U

and the BOUNDARY CONDITIONS above added as the rows 0 and N
of A,
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method

» Note that the matrix corresponding to this system of equations may
be POORLY CONDITIONED , so special care must be exercised when
solving this system for large N.

» Similar approach can be used when the nodal values u(x;), rather
than the Chebyshev coefficients &, are unknowns
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method

Implementation of Boundary Conditions Collocation Method
When the equation has NONCONSTANT COEFFICIENTS , similar
difficulties as in the Fourier case are encountered (evaluation of
CONVOLUTION SUMS )

» Consequently, the COLLOCATION (pseudo-spectral) approach is
preferable along the guidelines laid out in the case of the Fourier
spectral methods

» Assuming a = a(x) in the elliptic boundary value problem, we need to
make the following modification to A.:

o= (—vD?+ D + bI)U,

where D' = [a(xj-)dj(kl)], S k=1,...,N

» For the Burgers equation 0iu + %8xu2 - u&%u we obtain at every

time step n 1
[—AtyD@)yumt =y — ZAtDW",
( 2

where [W"]; = [U"];[U"];; Note that an algebraic system has to be
solved at each time step
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Galerkin Approach & Basis Recombination
Galerkin Approach & Tau Method
Implementation of Boundary Conditions Collocation Method

Epilogue — Domain Decomposition

» Motivation:
» treatment of problem in IRREGULAR DOMAINS
» STIFF PROBLEMS
» PHILOSOPHY — partition the original domain € into a number of
SUBDOMAINS {Q,}M_. and solve the problem separately on each
those while respecting consistency conditions on the interfaces
» Spectral Element Method
» consider a collection of problems posed on each subdomain Q,,
Luy,=1"F
Un—1(am) = tm(am), Un(am+1) = Umy1(am1)

» Transform each subdomain Q,, to I =[-1,1]

> use a separate set of N,, ORTHOGONAL POLYNOMIALS to approximate
the solution on every subinterval

» boundary conditions on interfaces provide coupling between problems
on subdomains
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