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Elliptic Problems
Parabolic Problems

I Classification of linear PDEs in 2D: consider u : Ω2 → R and
A,B,C ∈ R such that

A
∂2u

∂x2
+ B

∂2u

∂x ∂y
+ C

∂2u

∂y2
+ f (x , y , u) = 0

I Elliptic Problems : B2 − 4AC < 0
I Poisson equation: ∂2u

∂x2
+
∂2u

∂y2
= g(x , y)

I Parabolic Problems : B2 − 4AC = 0
I Heat equation:

∂u

∂t
= a

(
∂2u

∂x2
+
∂2u

∂y2

)
+ g(x , y)

I Hyperbolic Problems : B2 − 4AC > 0
I Wave equation:

∂2u

∂t2
= a

(
∂2u

∂x2
+
∂2u

∂y2

)
+ g(x , y)
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Elliptic Problems
Parabolic Problems

I Poisson equation

∆u =
∂2u

∂x2
+
∂2u

∂y2
= g(x , y) in Ω, Ω ⊂ R2

I Assuming ∆x = ∆y = h, the discrete Laplacian

∆u =
ui+1,j + ui ,j+1 − 4ui ,j + ui−1,j + ui ,j−1

h2
+O(h2)

where ui ,j = u(i∆x , j∆y), i , j = 1, . . . ,N

I Thus

ui+1,j + ui ,j+1 − 4ui ,j + ui−1,j + ui ,j−1 = h2 gi ,j , i , j = 1, . . . ,N

I After incorporating boundary conditions (Dirichlet, Neumann) and
vectorizing the variables ( g̃i+(N−1)j = gi ,j ), we obtain a sparse
algebraic problems with a diagonally-dominant pentadiagonal
matrix =⇒ straightforward to solve
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Elliptic Problems
Parabolic Problems

I Heat equation
∂u

∂t
=
∂2u

∂x2
in [0,T ]× [a, b]

I Crank–Nicolson Method (xj = j∆x ,j = 1, . . . ,M, t = n∆t,
n = 1, . . . ,N):

I spatial derivative:
(
∂2u
∂x2

)n
j

=
un
j+1−2un

j +un
j−1

(∆x)2 +O((∆x)2)

I time derivative:(
∂u

∂t

)n+1

j

=
un+1
j − un

j

∆t
+O(∆t) =

1

2

[(
∂2u

∂x2

)n+1

j

+

(
∂2u

∂x2

)n

j

]
+O((∆t))

un+1
j − un

j =
∆t

2(∆x)2

(
un+1
j+1 − 2un+1

j + un+1
j−1 + un

j+1 − 2un
j + un

j−1

)
+O

(
(∆x)2 + (∆t)2

)
I thus, defining r = ∆t

(∆x)2 ,we have at every time step n

−run+1
j+1 + 2(1 + r)un+1

j − run+1
j−1 = runj+1 + 2(1− r)unj + runj−1

which for Un = [un1 , . . . , u
n
M ]T can be written as an algebraic system

(2I− A)Un+1 = (2I + A)Un , where A is a tridiagonal matrix
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I θ Method
I allow for a more general approximation in time of the RHS (θ ∈ [0, 1])(

∂u

∂t

)n+1

j

=
un+1
j − unj

∆t
+O(∆t) =

1

2

[
θ

(
∂2u

∂x2

)n+1

j

+ (1− θ)

(
∂2u

∂x2

)n

j

]
+O(∆t)

I special cases
I θ = 0 =⇒ Explicit method: Un+1 = A0U

n

I θ = 1
2

=⇒ Crank–Nicolson method (see previous slide)

I θ = 1 =⇒ Implicit method: A1U
n+1 = Un

I Stability:
I The Explicit Scheme is stable for r = ∆t

(∆x)2 <
1
2

I The Crank–Nicolson and Implicit Scheme are stable for all r
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Galerkin approach
Collocation approach & Aliasing Removal
Hybrid Integration Schemes for ODEs

I From now on we will focus on time-dependent (evolution) PDEs
and as a model problem will consider the Burgers equation{

∂tu + u∂xu − ν∂xxu = 0 in [0, 2π]× [0,T ]

u(x) = u0(x) at t = 0

Note that steady problems can sometimes be solved as a steady limit
of certain time-dependent problems.

I Looking for solution in the form uN(x , t) =
∑N

k=−N ûk(t)e ikx .
Note that the expansion coefficients ûk(t) are now functions of
time

I Denote by unN the approximation of uN at time tn = n∆t,
n = 0, 1, . . .
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I Time-discretization of the residual RN(x , t)

Rn
N =

un+1
N − unN

∆t
+ unN∂xu

n
N − ν∂xxun+1

N

Points to note:
I explicit treatment of the nonlinear term avoids costly iterations
I implicit treatment of the linear viscous term allows one to mitigate

the stability restrictions on the time step ∆t
I here using for simplicity first-order accurate explicit/implicit Euler —

can do much better than that

I System of equations obtained by applying the Galerkin
formalism(

1

∆t
+ νk2

)
ûn+1
k =

1

∆t
ûnk − i

N∑
p,q=−N

p+q=k

qûnp û
n
q , k = −N, . . . ,N

Note truncation of higher modes in the nonlinear term.
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I Evaluation of the nonlinear i
∑N

p,q=−N

p+q+k
q ûnp û

n
q term in Fourier space

results in a convolution sum which requires O(N2) operations –
can we do better that that?

I Pseudospectral approach — perform differentiation in
Fourier space and evaluate products in real space ; transition
between the two representations is made using FFTs which cost
”only” O(N log(N))
Outline of the algorithm:

1. calculate (using inverse FFT) unN(xj), j = 1, . . . ,M from ûnk ,
k = −N . . . ,N,

2. calculate (using inverse FFT) ∂xu
n
N(xj), j = 1, . . . ,M from ikûnk ,

k = −N . . . ,N,
3. calculate the product wn

N(xj) = unN(xj)∂xu
n
N(xj), j = 1, . . . ,M

4. Calculate (using FFT) w̃n
k , k = −N . . . ,N from wn

N(xj), j = 1, . . . ,M

I Note that, because of the aliasing phenomenon , the quantity w̃n
k

is different from ŵn
k = i

∑N
p,q=−N

p+q=k
q ûnp û

n
q
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I Analysis of aliasing in the pseudospectral calculation of the nonlinear
term

wn
N(xj) =

N∑
k=−N

w̃n
k e

ikxj , where wn
N(xj) = un

N(xj)∂xu
n
N(xj)

I The Discrete Fourier Transform

w̃n
k =

1

M

M∑
j=1

wn
N(xj)e

−ikxj =
1

M

M∑
j=1

 N∑
p=−N

ûn
pe

ipxj

 N∑
q=−N

iqûn
qe

iqxj

 e−ikxj

=
1

M

M∑
j=1

N∑
p,q=−N

iq ûn
p û

n
q e

i(p+q−k)xj =
1

M

N∑
p,q=−N

iq ûn
p û

n
q

M∑
j=1

e i(p+q−k)xj

= ŵn
k + i

N∑
p,q=−N

p+q=k+M

qûn
p û

n
q + i

N∑
p,q=−N

p+q=k−M

qûn
p û

n
q k = −N . . . ,N

The term ŵn
k is the convolution sum obtained by truncating the fully

spectral Galerkin approach. The terms in red are the aliasing errors .

I Thus, the pseudospectral Galerkin equations are(
1

∆t
+ νk2

)
ûn+1
k =

1

∆t
ûn
k − w̃n

k , k = −N, . . . ,N
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I Looking for the solution in the form uN(x , t) =
∑N

k=−N ûk(t)e ikx ,
i.e., with the Fourier coefficients ûkas unknowns

I Time-discretization of the residual RN(x , t)

Rn
N =

un+1
N − unN

∆t
+ unN∂xu

n
N − ν∂xxun+1

N

I Canceling the residual at the collocation points xj

1

∆t

[
un+1
N (xj)− unN(xj)

]
+unN(xj)∂Xu

n
N(xj)−ν∂xxun+1

N (xj) = 0, j = 1, . . . ,M

I Straightforward calculation shows that the equation for the Fourier
coefficients ûk is the same as in the pseudospectral Galerkin
approach . Thus the two methods are numerically equivalent.

I Question — Show equivalence of pseudospectral Galerkin and
collocation approaches to a nonlinear PDE
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I “3/2 rule” — extend the wavenumber range (the “spectrum”),
and therefore also the number of collocation points, of the quantities
involved in the products, so that the aliasing errors arising in
pseudospectral calculations are not present.

I Algorithm — consider two 2π-periodic functions

aN(x) =
N∑

k=−N
âke

ikx , bN(x) =
N∑

k=−N
b̂ke

ikx

Calculated in a naive way, the Fourier coefficients of the product
w(x) = a(x)b(x) are

w̃k = ŵk +
N∑

p,q=−N

p+q=k+M

âpb̂q +
N∑

p,q=−N

p+q=k−M

âpb̂q, k = −N, . . . ,N

where ŵk are the coefficients of the truncated convolution sum that
we want to keep (only)
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1. Extend the spectra âk and b̂k to â′k and b̂′k according to

â′k =

{
âk if |k| ≤ N

0 if N < |k| ≤ N ′
, b̂′k =

{
b̂k if |k| ≤ N

0 if N < |k| ≤ N ′

The number N ′ will be determined later.

2. Calculate (via FFT) aN′ and bN′ in real space on the extended grid

x ′j = 2πj
M′ , j = 1, . . . ,M ′, where M ′ = 2N ′ + 1

aN′(x
′
j ) =

N′∑
k=−N′

â′ke
ikx′j , bN′(x

′
j ) =

N′∑
k=−N′

b̂′ke
ikx′j

3. Multiply aN′(x
′
j ) and bN′(x

′
j ): w ′(x ′j ) = aN′(x

′
j ) bN′(x

′
j ), j = 1, . . . ,M ′

4. Calculate (via FFT) the Fourier coefficients of w ′(x ′j )

w̃ ′k =
1

M ′

M′∑
j=1

w(x ′j )e−ikx′j , k = −N ′, . . . ,N ′, M ′ = 2N ′ + 1

Taking the latter quantity for k = −N, . . . ,N gives an expression for the
convolution sum free of aliasing errors
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I Making a suitable choice for N ′

w̃ ′k = ŵk +
N′∑

p,q=−N′
p+q=k+M′

â′p b̂
′
q +

N′∑
p,q=−N′

p+q=k−M′

â′p b̂
′
q

= ŵk +
N∑

p,q=−N
p+q=k+M′

âp b̂q +
N∑

p,q=−N
p+q=k−M′

âp b̂q

because â′p, b̂
′
q = 0 for |p|, |q| > N

I The alias terms will vanish, when one of the frequencies p or q
appearing in each term of the sum is larger than N. Observe that in
the first alias term q = M ′ + k − p = 2N ′ + 1 + k − p, therefore

min
|k|,|p|≤N

(q) = min
|k|,|p|≤N

(2N ′ + 1 + k − p) = 2N ′ + 1− 2N > N

Hence 2N ′ > 3N − 1. One may take N ′ ≥ 3N/2 (the “3/2 rule” )
[see the diagram on page 212 in Boyd (2001)]

I Analogous argument for the second aliasing error sum.
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I Consider a model ODE problem

y′ = r(y) + Ay

I One would like to use a higher-order ODE integrator with
I explicit treatment of nonlinear terms
I implicit treatment of linear terms (with high-order derivatives)

I Combining a three-step Runge-Kutta method with the
Crank-Nicolson method results in the following approach:(

I − hrk
2
A

)
yrk+1 = yrk+

hrk
2
Ayrk+hrkβrkr(yrk)+hrkζrkr(yrk−1), rk = 1, 2, 3

where
h1 =

8

15
∆t h2 =

2

15
∆t h3 =

1

3
∆t

β1 = 1 β2 =
25

8
β3 =

9

4

ζ1 = 0 ζ2 = −17

8
ζ3 = −5

4
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