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Convergence of approximation schemes for weakly nonlocal second order equations
Parsiad Azimzadeh* (University of Waterloo) and Erhan Bayraktar (University of Michigan)

A large number of interesting financial phenomena, continuous time games, motion by mean curvature, front
propagation of surfaces, etc. are captured by nonlinear second order elliptic partial differential equations
(PDEs). Such PDEs do not generally admit smooth solutions. As such, we look for other meaningful
solutions, such as (nonsmooth) viscosity solutions. In order to compute viscosity solutions (e.g., via finite
difference, volume, or element methods) one can invoke the seminal result that a monotone, stable, and
consistent numerical scheme converges to the viscosity solution if the limiting PDE satisfies a maximum
(a.k.a. comparison) principle. However, this result is established only for local PDEs and can be applied
only to certain special nonlocal PDEs. In this talk, we extend this result to weakly nonlocal PDEs in a
very general manner and give a financially motivated example from optimal stochastic impulse control.

A conservative finite volume scheme for Poisson-Nernst-Planck equations on adaptive moving
mesh grids
Xiulei Cao (York)
We deal with the numerical investigation of Poisson-Nernst-Planck (PNP) equations which describe the
dynamics of ion transport in ion channels. We present a finite volume discretization for solving the PNP
equations. To decrease the computational cost, an adaptive moving mesh method is employed. We propose
two monitor functions in the moving mesh partial differential equations to increase the accuracy of the
implementation. This discretization scheme guarantees positivity property of the numerical solution and
keeps the concentration of ions conservative. In the final part, numerical experiments are conducted to
confirm the theoretical analysis.

Multigrid methods for the Monge-Ampère equations
Yangang Chen (Waterloo)
Monge-Ampre Equations arise from mass transport, image processing, mesh generation, etc. Multigrid
methods are efficient fast solvers for elliptic PDEs. We propose multigrid methods for convergent mixed
finite difference discretization for two dimensional Monge-Ampre equation. Numerical experiments show
that the convergence rates of the proposed multigrid methods are mesh-independent.
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Valuing of two-asset option: comparison between numerical PDE and analytical approach
Yuwei Chen (Toronto)
We consider the pricing of two-asset options by numerical Partial Differential Equation (PDE) methods,
and compare the results with certain analytical formulae. Two cases of options are discussed: exchange
option and spread option. For exchange options, the analytical formula considered is the (exact) Margrabe
formula. For spread options, we considered the approximated analytical solutions, Kirk’s formula and
the formula by Li and Deng. For both of exchange option and spread options, the basic numerical PDE
model is the two-dimensional Black-Scholes PDE. Different types of boundary conditions are studied and
compared to analytical formulae. The effect of the boundary conditions on the solution at various points
of the grid is studied. Furthermore, various types of non-uniform grids are considered, aiming at reducing
the error at certain areas of the grid. The experiments indicate that the numerical PDE computed price
and Greeks are second-order, for appropriately chosen grid discretization. We also discuss the effect of
certain problem parameters to the accuracy and convergence of the solutions.

Numerical functional integration on GPUs: how we may actually calculate the incalculable!
Nike Dattani (McMaster)
Feynman’s path integral is equivalent to the Schrdinger equation, which is the poster equation for quantum
mechanics from which Newton’s laws can be derived from first principles. The Schrdinger equation is a
differential equation, whereas the Feynman integral is an integral of a functional over all possible functions
within a space. For example, an integral of F[f(x)] over all possible functions f(x) is the uncountably
infinite dimensional integral over all variables x0, ..., xi, ..., xn, where ”i” is any real number between 0
and n, which is the domain over which f(x) is defined. The dynamics of a quantum system is defined by
a “double Feynman integral”, which is an integral of a functional of two functions: F [f(x), g(y)], or an
integral that has an infinite number of integration variables xi, and another infinite number of integration
variables yi.

For simple systems (free particle, harmonic oscillator, hydrogen atom, etc.) these Feynman integrals can
be calculated analytically, but analytic expressions don’t exist for the vast majority of systems. One might
imagine discretizing x and y into a *finite* number N of points each and doing the 2N dimensional integral
using Monte Carlo, but since the functional integrand is complex valued, and rapidly oscillating, Monte
Carlo methods suffer from the famous ”sign problem”.

With the advent of powerful computers, we can finally calculate these seemingly impossible Feynman
integrals by deterministic, numerical methods, which turn out to be perfect for GPU parallelization. We
observe factors of 16x speed-up on the GPU compared to the CPU, and ironically, numerical evaluation of
Feynman integrals turns out to be easier than solving the Schrdinger differential equation in many cases!

We present applications to quantum computing, chemical reaction rates, and transfer of solar energy in
photosynethesis.

Rigorous defect control and the numerical solution of ODEs
John Ernsthausen (McMaster)
Corless and Corliss proposed rigorous defect control of ODE initial value problems over 25 years ago. This
talk concerns the implementation and validation of this algorithm. Advances in software and compiler
technologies enable efficient, automatic, and rigorous computation of a tight upper bound on the sup-norm
for the true defect.
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Modern ODE solvers construct a continuously differentiable approximate solution. Evaluating the differ-
ential equation at this approximate solution defines the true defect. A defect control approach selects a
stepsize such that a measure of the defect is bounded by a user specified tolerance on each step, and, hence,
the defect is bounded globally by this tolerance parameter.

Our goal is to know to mathematical certainty that the sup-norm of the true defect is bounded by a user
specified tolerance. Given a continuously differentiable approximate solution z of the local ODE initial
value problem x′ = f(t, x) subject to the initial condition x(ti) = xi, we evaluate a rigorous polynomial
approximation (Tk, [−d, d]) of the true defect ∆z(t) = z′(t)−f(t, z(t)); that is, we compute a Taylor model
of the true defect. Then, we compute the sup-norm of the degree k polynomial Tk. We then have a
tight, mathematically rigorous upper bound on the sup-norm for the true defect over the step. We use the
SOLLYA software package to compute rigorous Taylor models and sup-norms.

Mixing LSMC and PDE methods to Price Bermudan Options
David Farahany (Toronto)
In this talk, we develop a mixed least squares Monte Carlo-partial differential equation (LSMC-PDE)
method for pricing Bermudan style options in the context of stochastic volatility models. The algorithm
is formulated for an arbitrary number of assets and volatility processes, and its probabilistic convergence
is established. Our numerical examples focus on the Heston model and we compare the hybrid algorithm
with a standard LSMC approach. Using Fourier methods, we are able to derive FFT based solutions,
and we demonstrate that our algorithm greatly reduces the variance in the computed prices and optimal
exercise boundaries. We also compare the early exercise boundaries and prices computed by our hybrid
algorithm with those produced by finite difference methods and find excellent agreement.

This is joint work with Kenneth Jackson and Sebastian Jaimungal.

Comparison of higher order accurate hybridizable and embedded space-time discontinuous
Galerkin methods
Tamas Horvath (Waterloo)
The space-time Discontinuous Galerkin (DG) method is an excellent method to discretize problems on
deforming domains. This method uses DG to discretize both in the spatial and temporal direction allowing
for an arbitrarily high order approximation in space and time. Furthermore, this method automatically
satisfies the geometric conservation law which is essential for accurate solutions on time dependent domains.
However, the number of unknowns increase significantly when discretizing in 4D space-time. Therefore, we
are developing higher-order accurate Hybridizable or Embedded Discontinuous Galerkin (HDG and EDG)
methods, because these methods have significantly less degrees of freedom than a standard DG method.
We will present some comparisons between these methods.

Learning minimum variance discrete hedging directly from market
Nian Ke (Waterloo)
Option hedging is a critical risk management problem in finance. In the Black-Scholes model, it has
been recognized that computing hedging position from the sensitivity of the calibrated model option value
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function is inadequate in minimizing variance of the option hedge risk, as it fails to capture the model
parameter dependence on the underlying price. In this talk we demonstrate that this issue can exist
generally when determining hedging position from the sensitivity of the option function, either calibrated
from a parametric model from current option prices or estimated nonparametricaly from historical option
prices. Consequently the sensitivity of the estimated model option function typically does not minimize
variance of the hedge risk, even instantaneously. We propose a data driven approach to directly learn a
hedging function from the market data by minimizing variance of the local hedge risk. Using the S&P 500
index daily option data for more than a decade ending in August 2015, we show that the proposed method
outperforms the parametric minimum variance hedging method proposed by Hull and White as well as
minimum variance hedging corrective techniques based on stochastic volatility or local volatility models.

Furthermore, we show that the proposed approach achieves significant gain over the implied BS delta
hedging for weekly and monthly hedging.

A Data Assimilation Scheme for the One-dimensional Shallow Water Equations
Ramsha Khan (McMaster)
In ocean wave modelling, information on the system dynamics and full initial and/or boundary data is
required. When the latter is not fully available the primary objective is to find an optimal estimate
of these conditions, using available information. Data Assimilation is a methodology used to optimally
integrate observed measurements into a mathematical model, to generate a better estimate of some control
parameter, such as the initial condition of the wave, or the sea floor bathymetry. In this study, we
considered the shallow water equations in both linear and non-linear form as an approximation for ocean
wave propagation, and derived a data assimilation scheme to optimise some distorted form of the initial
condition to generate predictions converging to the exact initial data. The error between measurements
and observation data was sufficiently minimised across all cases. A relationship was found between the
number of measurement points and the error, dependent on the choice of where measurements were taken.

Applying Langevin Based MCMC methods to Radial Velocity Data
Rejean Leblanc (Toronto)

A Variable Step Size Implicit-Explicit Scheme for the Solution of the Poisson-Nernst-Planck
Equations
Mary Pugh (Toronto)

Load balancing distributed branch-and bound computations using lowest common ancestors
and controlled branching Srinivas Tamvada (McMaster)

4



Developments and Opportunities in Summation-by-Parts Operators
David Zingg (University of Toronto Institute for Aerospace Studies)
Spatial discretizations of partial differential equations that have the summation-by-parts (SBP) property
can often be provably stable. This property has recently been generalized to accommodate operators
applied as element-type operators, greatly extending the applicability of the concept. In particular, this
generalization extends to multiple dimensions such that SBP operators can be developed for unstructured
meshes in addition to the traditional tensor-product form applicable only to structured meshes. These
generalizations of SBP operators provide numerous opportunities for the development of robust high-order
methods for the solution of partial differential equations such as the Navier-Stokes equations governing
fluid flow.

Structural analysis of integral-algebraic equations
Reza Zolfaghari (McMaster)
Abstract: We consider the linear integral algebraic equation (IAE) of the general form. Since the Jacobian
is singular, the compatibility condition is not always sufficient for consistency. Differentiating some or even
all of the equations produces new equations that must also be satisfied by the initial condition. In general
it is difficult to determine hidden constraints and hidden compatibility conditions needed for solvability.
Also, there are some difficulties in applying discretization methods for integral equations directly to IAEs.
We extend the Signature method for DAEs to analyze the structure of an IAE. Our structural approach
analyzes the properties of an IAE based on its sparsity pattern and the ν-smoothing property of Volterra
integral operators. As a result, we determine which equations and how many times to be differentiated to
reveal useful information such as hidden constraints and compatibility conditions.
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