Numerical Optimization of Partial Differential Equations

Part III: applications

Bartosz Protas

Department of Mathematics & Statistics
McMaster University, Hamilton, Ontario, Canada
URL: http://www.math.mcmaster.ca/bprotas

Rencontres Normandes sur les aspects théoriques et numériques des EDP
5–9 November 2018, Rouen
Optimal Open–Loop Control
 PDE–Constrained Optimization
 Determination of the Gradient ∇J via Adjoint System
 Results

Inverse Problem of Vortex Reconstruction
 Euler System & Inverse Formulation
 Solution Approach
 Results

Geometry Optimization in Heat Transfer
 Motivation & Mathematical Model
 Optimization Problem
 Results
PART I

Optimal Open–Loop Control via Adjoint–Based Optimization
Motivation — Applications of Flow Control

- Wake Hazard

- Fluid–Structure Interaction
Statement of the Problem (I)

Flow Domain

Assumptions:
- viscous, incompressible flow
- plane, infinite domain
- $Re = 150$
Statement of the Problem (II)

Find \(\dot{\varphi}_{opt} = \arg\min_{\varphi} \mathcal{J}(\varphi) \), where

\[
\mathcal{J}(\varphi) = \frac{1}{2} \int_{0}^{T} \left\{ \left[\text{power related to the drag force} \right] + \left[\text{power needed to control the flow} \right] \right\} dt
\]

\[
= \frac{1}{2} \int_{0}^{T} \int_{\Gamma_0} \left\{ \left[p(\dot{\varphi})n - \mu n \cdot D(v(\dot{\varphi})) \right] \cdot \left[\dot{\varphi} (e_z \times r) + v_\infty \right] \right\} d\sigma dt
\]

Subject to:

\[
\begin{cases}
\left[\begin{array}{c}
\frac{\partial v}{\partial t} + (v \cdot \nabla)v - \mu \Delta v + \nabla p \\
\nabla \cdot v
\end{array} \right] = \left[\begin{array}{c}
0 \\
0
\end{array} \right] & \text{in } \Omega \times (0, T), \\
v = 0 & \text{at } t = 0, \\
v = \dot{\varphi}_{opt} \tau & \text{on } \Gamma
\end{cases}
\]
Abstract Framework (I)

- Constrained optimization problem

\[
\begin{aligned}
\min_{(x,\varphi)} \tilde{J}(x, \varphi) \\
S(x(\varphi), \varphi) = 0
\end{aligned}
\]

- Equivalent \textbf{UNCONSTRAINED} optimization problem (note that \(x = x(\varphi)\))

\[
\min_{\varphi} \tilde{J}(x(\varphi), \varphi) = \min_{\varphi} J(\varphi)
\]

- First–Order \textbf{OPTIMALITY CONDITIONS} (\(\mathcal{U} - \) Hilbert space of controls)

\[
\forall \varphi' \in \mathcal{U} \quad \mathcal{J}'(\varphi; \varphi') = (\nabla \mathcal{J}, \varphi')_{\mathcal{U}} = 0,
\]

with the \textbf{Gâteaux differential}

\[
\mathcal{J}'(\varphi; \varphi') = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} [\mathcal{J}(\varphi + \varepsilon \varphi') - \mathcal{J}(\varphi)].
\]
Abstract Framework (II)

- Minimization of $J(\varphi)$ with a **descent algorithm** in U \(\implies\) solution to a **steady state** of the ODE in U

\[
\begin{cases}
\frac{d\varphi}{d\tau} = -Q \nabla \varphi J(\varphi) & \text{on } \tau \in (0, \infty) \text{ (pseudo–time)}, \\
\varphi = \varphi_0 & \text{at } \tau = 0.
\end{cases}
\]

- Typically well–behaved (quadratic) cost functionals
- Typically ill–behaved constraints: **the Navier–Stokes system**
 - nonlinear, nonlocal, multiscale, evolutionary PDE,
- Dimensions:
 - state: $10^6 - 10^7$ DoF \times $10^2 - 10^3$ time levels
 - control: $10^4 - 10^5$ DoF \times $10^2 - 10^3$ time levels
- No hope of using “matrix” formulation ...
- Formulation equivalent to Lagrange Multipliers
The cost functional:

\[J(\dot{\varphi}) = \frac{1}{2} \int_{0}^{T} \left\{ \begin{array}{l}
\text{power related to the drag force} \\
\text{power needed to control the flow}
\end{array} \right\} dt
\]

\[= \frac{1}{2} \int_{0}^{T} \int_{\Gamma_0} \left\{ [p(\varphi)n - \mu n \cdot D(v(\varphi))] \cdot [\varphi(e_z \times r) + v_\infty] \right\} d\sigma dt, \]

Expression for the Gâteaux differential:

\[J'(\dot{\varphi}; h) = \frac{1}{2} \int_{0}^{T} \int_{\Gamma_0} \left\{ [p'(h)n - \mu n \cdot D(v'(h))] \cdot [\varphi(e_z \times r) + v_\infty] + \\
[p(\varphi)n - \mu n \cdot D(v(\varphi))] \cdot (e_z \times r) h \right\} d\sigma dt = B_1 \]

\[= (\nabla J(t), h)_{L^2([0,T])} \]

The fields \(\{v'(h), p'(h)\} \) solve the linearized perturbation system.

How to calculate the \textbf{Gradient} \(\nabla J \)?
Sensitivities and Adjoint States

- The linearized perturbation system

\[
\begin{aligned}
\mathcal{N} \begin{bmatrix} v' \\ p' \end{bmatrix} &= \begin{bmatrix} \frac{\partial v'}{\partial t} + (v \cdot \nabla) v' + (v' \cdot \nabla) v - \mu \Delta v' + \nabla p' \\ -\nabla \cdot v' \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{in } \Omega \times (0, T), \\
v' &= 0 \\
v' &= h_T
\end{aligned}
\]

- Duality pairing defining the adjoint operator

\[
\langle \mathcal{N} \begin{bmatrix} v' \\ p' \end{bmatrix}, \begin{bmatrix} v^* \\ p^* \end{bmatrix} \rangle_{L_2(0,T;L_2(\Omega))} = \langle \begin{bmatrix} v' \\ p' \end{bmatrix}, \mathcal{N}^* \begin{bmatrix} v^* \\ p^* \end{bmatrix} \rangle_{L_2(0,T;L_2(\Omega))} + B_1 + B_2
\]

- The adjoint system (TERMINAL VALUE PROBLEM!!)

\[
\begin{aligned}
\mathcal{N}^* \begin{bmatrix} v^* \\ p^* \end{bmatrix} &= \begin{bmatrix} -\frac{\partial v^*}{\partial t} - v \cdot [\nabla v^* + (\nabla v^*)^T] - \mu \Delta v^* + \nabla p^* \\ -\nabla \cdot v^* \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \text{in } \Omega \times (0, T), \\
v^* &= 0 \\
v^* &= r \times (\dot{\varphi} e_z) + v_\infty \quad \text{on } \Gamma \times (0, T)
\end{aligned}
\]
Cost Functional Gradient

The ADJOINT STATE and DUALITY PAIRING can now be used to re-express the cost functional differential as:

\[\mathcal{J}'(\dot{\varphi}; h) = \frac{1}{2} \int_0^T \int_\Gamma \left\{ \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}^*) \cdot \mathbf{\tau} + \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}(\varphi)) \cdot (\mathbf{e}_z \times \mathbf{r}) \right\} h \, d\sigma \, dt \]

Identification of the COST FUNCTIONAL GRADIENT

\[\mathcal{J}'(\dot{\varphi}; h) = (\nabla \mathcal{J}(t), h)_{L^2([0,T])} = \int_0^T \nabla \mathcal{J}(t) \, h \, dt \]

\[\nabla \mathcal{J}(t) = \frac{1}{2} \int_\Gamma \left\{ \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}^*) \cdot \mathbf{\tau} + \mu \mathbf{n} \cdot \mathbf{D}(\mathbf{v}(\varphi)) \cdot (\mathbf{e}_z \times \mathbf{r}) \right\} \, d\sigma \]
Optimality (KKT) system

- Complete optimality system for \(\dot{\phi}_{opt}, [v_{opt}, p_{opt}] \), and \([v^*, p^*]\)

\[
\frac{1}{2} \int_{\Gamma} \left\{ \mu R n \cdot D(v^*) \cdot \tau + \mu n \cdot D(v(\dot{\phi}_{opt})) \cdot (e_z \times r) \right\} \, d\sigma = 0
\]

\[
\begin{cases}
\frac{\partial v}{\partial t} + (v \cdot \nabla)v - \mu \Delta v + \nabla p = 0 & \text{in } \Omega \times (0, T), \\
v = 0 & \text{at } t = 0, \\
v = \dot{\phi}_{opt} \tau & \text{on } \Gamma \\
N^* \left[\begin{array}{c} v^* \\ p^* \end{array} \right] = \left[-\frac{\partial v^*}{\partial t} - v \cdot [\nabla v^* + (\nabla v^*)^T] - \mu \Delta v^* + \nabla p^* \right] = 0 & \text{in } \Omega \times (0, T), \\
v^* = 0 & \text{at } t = T, \\
v^* = r \times (\dot{\phi}_{opt} e_z) + v_\infty & \text{on } \Gamma
\end{cases}
\]

- A counterpart of the Euler–Lagrange equation
- Solved with an iterative Gradient Algorithm (e.g., Conjugate Gradients, quasi–Newton, etc.)
An Iterative Optimization Procedure

0. provide initial guess $\dot{\phi}^0$
1. Solve for $\{\mathbf{v}(\dot{\phi}^i); p(\dot{\phi}^i)\}$ on $[0, T]$
2. Solve for $\{\mathbf{v}^*(\dot{\phi}^i); p^*(\dot{\phi}^i)\}$ on $[0, T]$
3. Use $\{\mathbf{v}(\dot{\phi}^i); p(\dot{\phi}^i)\}$ and $\{\mathbf{v}^*(\dot{\phi}^i); p^*(\dot{\phi}^i)\}$ to compute $\nabla \mathcal{J}^i(t)$ on $[0, T]$
4. update control according to $\dot{\phi}^{i+1}(t) = \dot{\phi}^i(t) - \alpha_i \gamma_i (\nabla \mathcal{J}(t))$
5. iterate 1. through 4. until convergence, i.e. until $\nabla \mathcal{J}^i(t) \simeq 0$
Primal and Adjoint Simulations for Cylinder Rotation as Control
Results

- No Control

- Flow Pattern Modifications due to Control ($T = 6$)

- Optimal Control $\dot{\phi}_{opt}$, drag coefficient c_D, transverse velocity v
PART II
Inverse Problem of Vortex Reconstruction

joint work Ionut Danaila (Université de Rouen)
Ubiquitous Vortex Rings

Models of Vortex Rings:
- Based on linearized equations (Kaplanski & Rudi, 1999, 2005)
- Obtained with perturbation techniques (Fukumoto, 2010)
- Inviscid models: Hill’s and Norbury-Fraenkel’s vortices

Present Approach:
Optimal Vortex Rings via Inverse Formulation
Inviscid vortex ring in a moving frame of reference

\[\frac{\omega}{r} = \begin{cases} f(\psi) & \text{in } \Omega_b, \\ 0 & \text{elsewhere} \end{cases} \]

\(f(\psi) \) — Vorticity Function (unspecified)

3D Axisymmetric Euler System

\[\mathcal{L}\psi = -r f(\psi) \quad \text{in } \Omega, \]
\[\psi = 0 \quad \text{on } \gamma. \]

where \(\mathcal{L} := \frac{\partial}{\partial z} \left(\frac{1}{r} \frac{\partial}{\partial z} \right) + \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \right) = \nabla \cdot \left(\frac{1}{r} \nabla \right) \) and \(\nabla := \left[\frac{\partial}{\partial z}, \frac{\partial}{\partial r} \right]^T \).

Special solutions:

- \(f(\psi) = C \text{ in } \Omega_b \implies \text{Hill’s vortex} \)
- \(f(\psi) = C \text{ for all } \psi > k \) and \(f(\psi) = 0 \text{ for all } \psi \leq k \implies \text{Norbury-Fraenkel’s vortex} \)
Key Idea: determine vorticity function $f(\psi)$ to match some observation data \implies Inverse Problem

Measurements of the tangential velocity component

\[m := v \cdot n_\perp = \frac{1}{r} \frac{\partial \psi}{\partial n} \]
on boundary segments γ_z and γ_b

Cost Functional

\[\mathcal{J}(f) := \frac{\alpha_b}{2} \int_{\gamma_b} \left(\frac{1}{r} \frac{\partial \psi}{\partial n} \bigg|_{\gamma_b} - m \right)^2 d\sigma + \frac{\alpha_z}{2} \int_{\gamma_z} \left(\frac{1}{r} \frac{\partial \psi}{\partial n} \bigg|_{\gamma_z} - m \right)^2 d\sigma, \]

Variational Minimization Problem:

\[\hat{f} := \arg \min_{f \in H^1(\mathcal{I})} \mathcal{J}(f) \]

nonnegativity constraint $f(\psi) \geq 0 \ \forall \psi$
Inverse problem with unusual structure — reconstruction of a nonlinear source term $f(\psi)$

Assumptions

1. **domain:** $f : \mathcal{I} \to \mathbb{R}, \mathcal{I} := [0, \psi_{\text{max}}]$ — identifiability interval
2. **smoothness:** $f \in H^1(\mathcal{I})$ (square-integrable derivatives)

Optimality condition: $\forall f' \in H^1(\mathcal{I}) \quad J'(\hat{f}; f') = 0$

Gradient iterations

$$\hat{f} = \lim_{k \to \infty} f^{(k)}$$

$$f^{(k+1)} = f^{(k)} - \tau_k \nabla J(f^{(k)}), \quad k = 1, 2, \ldots$$

$$f^{(1)} = f_0,$$

f_0 — initial guess, τ_k — step size at k-th iteration

Positivity enforcement via transformation

$$f_+ = (1/2)g^2, \quad J_g(g) := J((1/2)g^2)$$
Gradient Expression — sensitivity of cost functional $\mathcal{J}(f)$ with respect to perturbations of the vorticity function $f(\psi)$

$$\nabla^2_{L^2} \mathcal{J}(s) = - \int_{\gamma_s} \psi^* r \left(\frac{\partial \psi}{\partial n} \right)^{-1} d\sigma, \quad s \in [0, \psi_{\text{max}}].$$

$$\gamma_s := \{ x \in \Omega : \psi(x) = s \}$$ — streamfunction level sets
ψ* — solution of adjoint system

\[
\nabla \cdot \left(\frac{1}{r} \nabla \psi^* \right) + r f_\psi(\psi) \psi^* = 0 \quad \text{in } \Omega,
\]

\[
\psi^* = \alpha_b \left(\frac{1}{r} \frac{\partial \psi}{\partial n} \bigg|_{\gamma_b} - m \right) \quad \text{on } \gamma_b,
\]

\[
\psi^* = \alpha_z \left(\frac{1}{r} \frac{\partial \psi}{\partial n} \bigg|_{\gamma_z} - m \right) \quad \text{on } \gamma_z,
\]

Smoothness ensured via Sobolev gradients:

\[
\mathcal{J}'(f; f') = \left\langle \nabla^{L_2} \mathcal{J}(f), f' \right\rangle_{L_2(\mathcal{I})} = \left\langle \nabla^{H^1} \mathcal{J}(f), f' \right\rangle_{H^1(\mathcal{I})} \quad \Rightarrow \quad \left(I - \varphi^2 \frac{d^2}{ds^2} \right) \nabla^{H^1} \mathcal{J} = \nabla^{L_2} \mathcal{J} \quad \text{in } \mathcal{I},
\]

\[
\nabla^{H^1} \mathcal{J} = 0 \quad \text{at } s = 0,
\]

\[
\frac{d}{ds} \nabla^{H^1} \mathcal{J} = 0 \quad \text{at } s = \psi_{\max},
\]

Algorithm easily implemented in FreeFEM++
Reconstruction of Hill’s Vortex

\[\frac{J(f(k))}{J(f(0))} \]

\[\frac{\Gamma(f(k))}{\Gamma_{\text{Hill}}^{-1}} , \frac{I(f(k))}{I_{\text{Hill}}^{-1}}, \frac{E(f(k))}{E_{\text{Hill}}^{-1}} \]

\[\psi(\rho) \]

\[f(\rho) \]

\[f_0 \]

\[\frac{f(\psi)}{f_{\text{Hill}}} \]

\[\frac{\psi_{\max}}{\psi_{\text{Hill}}} \]

\[f(\psi) \]

\[f(\rho) \]
Reconstruction of Vortex Rings from DNS Data ($Re = 17,000$)

... DNS data \[\text{---} \text{ empirical fit } f_{DNS}\] \[\text{---} \text{ optimal reconstruction } \hat{f}\]
Reconstruction of Vortex Rings from DNS Data ($Re = 17,000$)

Vorticity distribution in space
PART III

GEOMETRY OPTIMIZATION IN HEAT TRANSFER

joint work Xiaohui Peng and Katya Niakhai
(former Master’s students at McMaster)
Problem: Efficient cooling of a battery system

Goal: determine optimal shape of cooling channels for a prescribed heat distribution

Few mathematically precise results in literature \(\Rightarrow\) need to develop new tools
2D thermally isolated domain

time–independent

heat conduction only

cooling channel — line heat sink modelled with Newton’s law of cooling

\[S = \gamma (u - u_0) \]

\[u_0(s) = T_a + \frac{T_b - T_a}{L} s, \quad s \in [0, L], \]

want to maintain prescribed temperature \(\bar{u} \) in the subdomain \(\Omega \) (revised optimization objective)
Governing System

\[-k \Delta u_1 = q \quad \text{in } \Omega_1,
\]
\[-k \Delta u_2 = q \quad \text{in } \Omega_2,
\]
\[u_1 = u_2 \quad \text{on } C
\]
\[\frac{\partial u_2}{\partial n} - \frac{\partial u_1}{\partial n} = \gamma (u_1 - u_0) \quad \text{on } C
\]
\[\frac{\partial u_2}{\partial n} = 0 \quad \text{on } \partial \Omega,
\]

where

- Ω_1 — the *interior* of the curve C,
- Ω_2 — the *exterior* of the curve C,
- $u_i(x)$ is the temperature distribution u restricted in the domain Ω_i, for $i = 1, 2$,
- k is the heat conductivity coefficient (a known material property),
- q is the distribution of heat sources (battery heating),
- n are the unit outer normal on C and $\partial \Omega$.
Assuming:
- a given distribution of heat sources \(q(x) \),
- heat transfer described by governing equation,
- a fixed length \(L = \oint_C ds \) of the cooling channel \(C \),

find the shape of the curve \(C \) which ensures that over the subdomain \(A \) the actual temperature \(u(x, y) \) is as close as possible to the prescribed temperature \(\bar{u} \).

Define
\[
\mathcal{J}(C) = \int_A (u - \bar{u})^2 \, d\Omega
\]

Formal statement of optimization problem
\[
\max_C \mathcal{J}(C),
\]
subject to: Governing System,
\[
\oint_C ds = L
\]
Optimal shape \tilde{C} characterized by the condition

$$J'(\tilde{C}, Z) = 0 \quad \text{for all shape perturbations } Z$$

Gradient descent algorithm

$$x_C^{(n+1)} = x_C^{(n)} - \tau_n \mathbf{n} \nabla J(C^{(n)}), \quad n = 1, 2, \ldots,$$

$$x_C^{(0)} = x_{C_0},$$

where $\nabla J(C^{(n)})$ is the gradient of the cost functional.
Problem of **SHAPE OPTIMIZATION** (contour geometry),

SHAPE CALCULUS: parametrization of geometry

\[x(t, \mathbf{Z}) = x + t\mathbf{Z} \quad \text{for} \quad x \in \Gamma_{SL}(0), \]

where \(\mathbf{Z} : \Omega_{SL} \to \mathbb{R}^2 \) is the perturbation "velocity" field.

Gâteaux Shape Differential

\[\mathcal{J}'(\Gamma_{SL}(0); \mathbf{Z}) \triangleq \lim_{t \to 0} \frac{\mathcal{J}(\Gamma_{SL}(t, \mathbf{Z})) - \mathcal{J}(\Gamma_{SL}(0))}{t}. \]

Main Theorem [shape–differentiation of integrals w.r.t. the shape of the domain]:

\[
\left(\int_{\Omega(t, \mathbf{Z})} f \, d\Omega + \int_{\partial\Omega(t, \mathbf{Z})} g \, ds \right)' = \int_{\Omega(0)} f' \, d\Omega + \int_{\partial\Omega(0)} g' \, ds + \\
+ \int_{\partial\Omega(0)} \left(f + \kappa g + \frac{\partial g}{\partial n} \right) \mathbf{Z} \cdot \mathbf{n} \, ds,
\]

How to compute the gradient \(\nabla \mathcal{J} \) ?
L₂ Gradient \(\nabla^{L₂} J(C^{(n)}) \) computed as follows

\[
\nabla^{L₂} J(C^{(n)}) = \frac{\gamma}{k}(u₁ - u₀) \left(\frac{\partial u₁^*}{\partial n} - \kappa u₁^* \right) - \frac{\gamma}{k} \frac{\partial u₂}{\partial n} u₁^* - \lambda \kappa \quad \text{on } C^{(n)}
\]

where \(u₁^* \) and \(u₂^* \) are solutions of the following ADJOINT SYSTEM

\[
\begin{align*}
kΔu₁^* &= (u - \overline{u}) \chi_{A_1} \quad \text{in } Ω₁, \\
kΔu₂^* &= (u - \overline{u}) \chi_{A_2} \quad \text{in } Ω₂, \\
u₁^* - u₂^* &= 0 \quad \text{on } C^{(n)}, \\
k \left(\frac{\partial u₂^*}{\partial n} - \frac{\partial u₁^*}{\partial n} \right) &= -\gamma u₁^* \quad \text{on } C^{(n)}, \\
\frac{\partial u₂^*}{\partial n} &= 0 \quad \text{on } ∂Ω₂
\end{align*}
\]

Optimal step size \(τ_n \) computed via line–minimization (using Brent’s method)

\[
τ_n = \arg\min_{τ > 0} \{ J(C^{(n)}) - τ \nabla J(C^{(n)}) \}
\]
Incorporation of the Length Constraint

\[\oint_{C} ds = L_0 \]

Modified (augmented) cost functional:

\[J_\alpha(C) := J(C) + \frac{\alpha}{2} \left(\oint_{C} ds - L_0 \right)^2, \]

where \(\alpha \in \mathbb{R} \) is a parameter

After shape–differentiating the constraint, modified gradient

\[\nabla^{L^2} J_\alpha(C) = \nabla^{L^2} J(C) + \alpha \left(\oint_{C^{(m)}} ds - L_0 \right) \kappa \]
Gradients obtained using Riesz Representation Theorem

\[\mathcal{J}'(C; \zeta n) = \left\langle \nabla^X \mathcal{J}, \zeta \right\rangle_{\mathcal{X}(C)} \]

\(\mathcal{X} \) — selected Hilbert space

What is the required regularity of the gradients \(\nabla \mathcal{J} \)?

- \(x_C(s) \) must be (at least) continuous
- \(L_2 \) gradients \(\nabla^{L_2} \mathcal{J}(C) \) \([\mathcal{X} = L_2(C)] \) may be discontinuous ...

Need Sobolev Gradients \([\mathcal{X} = H^1(C)] \)

\[\left\langle \nabla^{H^1} \mathcal{J}, \zeta \right\rangle_{H^1(C)} = \int_0^L \nabla^{H^1} \mathcal{J} \zeta + \ell^2 \frac{\partial \nabla^{H^1} \mathcal{J}}{\partial s} \frac{\partial \zeta}{\partial s} \, ds, \quad \forall \zeta \in H^1(C) \]

\[
\begin{cases}
\left(1 - \ell^2 \frac{\partial^2}{\partial s^2}\right) \nabla^{H^1} \mathcal{J} = \nabla^{L_2} \mathcal{J} & \text{on } (0, L), \\
\text{Periodic boundary conditions } (P1), \\
\left. \frac{\partial}{\partial s} \nabla^{H^1} \mathcal{J} \right|_{s=0,L} = 0 & (P2).
\end{cases}
\]
Reformulation of the Governing System:

\[u = u_p + u_h \quad \text{in} \ \Omega, \]

where \(\forall x \in \Omega \backslash C \quad u_h(x) = -\frac{1}{2\pi} \oint_C \ln |x - x_C| \mu(x_C) \, d\sigma. \)

The new dependent variables \(\{u_p(x), x \in \Omega; \mu(x), x \in C\} \) satisfy

\[-k \Delta u_p = q \quad \text{in} \ \Omega, \]

\[\mu(x) + \frac{\gamma}{2\pi k} \oint_C \ln |x - x_C| \mu(x_C) \, d\sigma = \frac{\gamma}{k} (u_p + u_h - u_0) \quad \text{on} \ C, \]

\[\frac{\partial u_p}{\partial n} = -\frac{\partial u_h}{\partial n} \quad \text{on} \ \partial\Omega. \]

Analogously for the Adjoint System with \(\{u_p^*(x), x \in \Omega; \mu^*(x), x \in C\} \)
Two coupled subproblems:

- Poisson equation for \(u_p \) (resp., \(u_p^* \))
- Singular Boundary Integral Equation for \(\mu \) (resp., \(\mu^* \))
Optimal discretization for each subproblem:

- spectral Chebyshev method for \(u_p \) (resp., \(u_p^* \)) in \(\Omega \)

\[
\Delta^N U = f + q,
\]

- spectral boundary-integral method with an analytic treatment of the singular kernel for \(\mu \) (resp., \(\mu^* \)) on \(C \)

\[
\left(I + \frac{\gamma}{k} K_1 + \frac{\gamma}{k} K_2 \right) m + \frac{\gamma}{k} P U = \frac{\gamma}{k} u_0 1,
\]

- spectral interpolation \(P \) to couple \(u_p \) and \(\mu \) (resp., \(u_p^* \) and \(\mu^* \))

\[
\begin{bmatrix}
-\Delta^N & B \\
\frac{\gamma}{k} P & I + \frac{\gamma}{k} K_1 + \frac{\gamma}{k} K_2
\end{bmatrix}
\begin{bmatrix}
U \\
m
\end{bmatrix} = \frac{1}{k}
\begin{bmatrix}
q \\
\gamma u_0 1
\end{bmatrix}.
\]
CASE I: $\alpha = 0$

- $q(x, y)$
- \overline{u}
- $\mathcal{J}(C^{(m)})$
- $C^{(m)}$
- Initial Solution u
- Final Solution u
CASE II: $\alpha = 0$

- $q(x, y)$
- \bar{u}
- $J(C^{(m)})$
- $C^{(m)}$
- Initial Solution u
- Final Solution u
CASE III: $\alpha = 0, 1, 10, 10^2, 10^3; L_0 = 2.3$
Conclusions

- Formulation of PDE control and estimation problems as constrained optimization
 - PDE–constrained gradients via Adjoint Equations
 - Vorticity form of the adjoint equations
 - Optimization of free boundary problems via shape–differential calculus

- Inverse Problem of Vortex Reconstruction
 - Nonintuitive insights revealed by reconstruction from DNS data
 - Big Question: what are the fundamental accuracy limits for representation of real flows in terms of inviscid models?

- Shape-optimization approach for a model of 2D steady heat transfer
 - Shape calculus
 - Spectrally-accurate solution of the governing and adjoint PDE systems
References Part I — Open–Loop Control:

References Part II — Inverse Problem of Vortex Reconstruction:

References Part III — Shape Optimization: