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Overview

• Lecture 1: Ultraproducts and continuous logic
• Lecture 2: Some of the basics and II1 factors
• Lecture 3: Definable sets and nuclearity
• Lecture 4: Ultrapowers of separable II1 factors

See www.math.mcmaster.ca/∼bradd/IrvineCMT.html for the slides
and links to other resources.



Filters and Ultrafilters
Definition
If X is a set and F ⊆ P(X ) then F is said to be a filter if
• ∅ 6∈ F ,
• if A,B ∈ F then A ∩ B ∈ F , and
• if A ∈ F and A ⊆ B ⊆ X then B ∈ F .

Lemma
G ⊆ P(X ) is contained in a filter iff G has the finite intersection
property i.e. for every finite G0 ⊆ G,

⋂
G0 6= ∅.

Definition
An ultrafilter on X is a filter F such that for every A ⊆ X , either A ∈ F
or X \ A ∈ F .

Lemma
• If F is a filter on X then F is an ultrafilter iff it is a maximal filter.
• Any filter on X can be extended to an ultrafilter.



Ultralimits

Now suppose U is an ultrafilter on a set I and r = 〈ri : i ∈ I〉 is an
I-indexed family of real numbers. We define the ultralimit of r with
respect to U as follows:

lim
i→U

ri = r iff for every ε > 0, {i ∈ I : |r − ri | < ε} ∈ U .

Lemma
If r is bounded then
• lim

i→U
ri exists and is unique.

• lim
i→U

ri = inf{B : {i ∈ I : ri < B} ∈ U}.

• lim
i→U

ri = sup{B : {i ∈ I : ri > B} ∈ U}.



Ultraproducts of metric spaces

Fix an index set I, an ultrafilter U on I and uniformly bounded metric
spaces (Xi ,di ) for i ∈ I i.e. there is some B so that for all i and all
x , y ∈ Xi , di (x , y) ≤ B. Define d on

∏
i∈I

Xi as follows:

d(x , y) = lim
i→U

di (xi , yi )

Lemma
d is a pseudo-metric on

∏
i∈I

Xi .

Definition
The ultraproduct of the Xi ’s with respect to U ,

∏
U Xi , is the metric

space obtained by quotienting
∏

i∈I Xi by d . If all the Xi ’s are equal to
a fixed X we will often write XU for this ultraproduct and call it the
ultrapower.



Metric structures

• We want to add more structure to a (bounded) metric space; for
now let’s consider a single additional function f .

• So we will have a bounded metric space (X,d) and a function f
say of one variable. We do want that the ultraproduct of these
structures is still a structure of the same kind. So how do we
define f on the ultrapower of X?

• f must be continuous!
• f must be uniformly continuous!
• There is nothing special about one variable; these arguments

apply to functions of many variables.



Metric structures cont’d

• What about relations? Imagine that we have a one-variable
relation R (taking values somewhere) on a metric space and we
want to make sense of it in the ultrapower.

• Its range must be compact and R must be uniformly continuous.
• There is really no loss in assume that the range of R is [0,1] or

some other compact interval in the reals.
• Again there is nothing special about one-variable; we can have

relations of many variables.



The language of a metric structure

A language L will consist of
• a set S called sorts;
• F , a family of function symbols. For each f ∈ F we specify the

domain and range of f : dom(f ) =
∏n

i=1 Si where S1, . . . ,Sn ∈ S
and rng(f ) = S where S ∈ S. Moreover, we also specify a
continuity modulus. That is, we are given δf : [0,1]→ [0,1]; and

• R, a family of relation symbols. For each R ∈ R we are given the
domain dom(R) =

∏n
i=1 Si where S1, . . . ,Sn ∈ S and the

rng(R) = KR for some closed interval KR . Moreover, for each i ,
we specify a continuity modulus δR : [0,1]→ [0,1].

• For each S ∈ S, we have one special relation symbol dS with
domain S × S and range of the form [0,Bs]. It’s continuity moduli
is the identity function.



Definition of a metric structure

A metric structureM interprets a language L; it will consist of
• an S-indexed family of complete bounded metric spaces

(SM,dMS ) with bound BS for S ∈ S;
• a family of functions fM for every f ∈ F such that

dom(fM) = S̄M =
∏n

i=1 SMi where dom(f ) =
∏n

i=1 Si and
rng(fM) = SM where rng(f ) = S. fM is uniformly continuous as
specified by the uniform continuity moduli associated to f ; that is
if for every ε > 0 and δ = δf (ε), if ā, b̄ ∈ S̄M and dS̄M (ā, b̄) < δ
then

dMS (fM(ā), fM(b̄)) ≤ ε;

• a family of relations RM for every R ∈ R such that
dom(RM) =

∏n
i=1 SMi where dom(R) =

∏n
i=1 Si and

rng(RM) = KR . RM is uniformly continuous as specified by the
uniform continuity moduli associated to R as above.



Examples of metric structures

Some simple examples:
• Any complete bounded metric space (X ,d). This has the empty

family of functions and relations although we often count the
metric as a relation (why is it uniformly continuous?)

• Any ordinary first order structure M with some collection of
functions and relations. To see this as a metric structure, we put
the discrete {0,1}-valued metric on M to make it a bounded
metric space. All functions become uniformly continuous.
Relations which are usually thought of as subsets of Mn become
{0,1}-valued functions - again they are uniformly continuous.



C∗-algebras as metric structures

• Fix a C∗-algebra A. We introduce sorts Bn for each n ∈ N.
• Let Bn(A) be the ball of radius n centered at 0; Bn(A) is a

bounded complete metric space with respect to the metric
induced by the operator norm.

• There are inclusion maps between Bn and Bm if n ≤ m.
• 0 is a constant (our functions can have arity 0!) in B1 and if A is

unital then 1 is in B1 as well.
• For scalars λ and for every n, there is a unary function λn which

is scalar multiplication by λ on Bn; this function has range in Bm
where m is the least integer greater than or equal to n|λ|.

• The operation of addition has to be similarly divided up: for
m,n ∈ N, there is an operation +m,n which takes Bm × Bn to
Bm+n.

• Multiplication is similarly divided up depending on the balls as is
the adjoint operation.



C∗-algebras, cont’d

• The metric is given via the operator norm as dn(x , y) = ‖x − y‖
on Bn.

• So formally a C∗-algebra will be thought of as a metric structure
by considering

• The family of bounded metric spaces Bn for all n ∈ N with metrics
dn, as well as

• the family of functions 0, λn for scalars λ and n ∈ N, inclusion maps
between the sorts, and +m,n, ·m,n and ∗

n for all m, n ∈ N.

• It is routine to check that all of these functions are uniformly
continuous (the only issue is multiplication and this holds
because we have restricted the norm).

• The sorts are complete since C∗-algebras are complete.
• In what sense do these metric structures capture the class of

C∗-algebras? We need to introduce a little more model theory to
answer this question.



Ultraproducts of metric structures

Fix a language L, an index set I, an ultrafilter U on I and L-structures
Mi for i ∈ I.

Definition
The ultraproduct of theMi ’s with respect to U ,

∏
UMi is the

L-structureM defined as follows:
1. for every sort S, SM =

∏
U SMi with metric dMS = lim

i→U
dMi

S ,

2. for every function symbol f with range S

fM(x̄) = 〈fMi (x̄i ) : i ∈ I〉/dMS , and

3. for every relation symbol R,

RM = lim
i→U

RMi .

If all of theMi ’s are a fixed N , we call this the ultrapower and write
NU .



C∗-algebraic ultraproducts

• A dead give-away that model theory is involved is that operator
algebraists are using ultraproducts.

• Suppose Ai are C∗-algebras for all i ∈ I and that U is an ultrafilter
on I. Consider the bounded product∏bAi := {ā ∈

∏
Ai : lim

i→U
‖ai‖ <∞}

and the two-sided ideal cU

{ā ∈
∏bAi : lim

i→U
‖ai‖ = 0}.

The ultraproduct,
∏
U Ai is defined as

∏b Ai/cU .
• One checks that multiplication, addition and the adjoint are

well-defined coordinatewise modulo cU .



Terms and formulas
For a language L, terms are defined inductively from function symbols
and variables by composition exactly as in discrete logic. The only
wrinkle is that one needs to keep track of the continuity modulus of
terms determined by composition. Formulas are defined inductively.

Definition
• Suppose R is a relation symbol in L with dom(R) =

∏n
i=1 Si and

rng(R) = KR , and τi are terms where rng(τi ) = Si for all i . Then
R(τ1, . . . , τn) is a formula. The domain, range and continuity
moduli are those obtained by composition.

• Suppose ϕi (x) is a formula with range Kϕi for all i ≤ n and
f : Rn → R is a continuous function. Then f (ϕ1, . . . , ϕn) is a
formula with range f (

∏n
i=1 Kϕi ) and domain and continuity moduli

determined by composition.
• If ϕ is a formula and x is a variable then supx ϕ and infx ϕ are

both formulas. The sort of x is removed from the domain; the
range and continuity moduli for the remaining variables stay the
same.



Interpretations
Fix a metric structureM for a language L.
• Terms are interpreted by composition inductively as usual.
• For the formula R(τ1(x), . . . , τn(x)) where R is a relation in L and
τ1, . . . , τn are terms, its interpretation is given, for every
appropriate a ∈M, by

RM(τM1 (a), . . . , τMn (a))

• If ϕi (x) is a formula for all i ≤ n and f : Rn → R is a continuous
function then if ψ is the formula f (ϕ1, . . . , ϕn) then
ψM := f (ϕM1 , . . . , ϕMn ).

• Suppose ϕ(x , y) is a formula and a ∈M is a tuple appropriate
for the variables y and x is of sort S. Then

(supx ϕ(x ,a))M := sup{ϕM(b,a) : b ∈ SM}

and
(infx ϕ(x ,a))M := inf{ϕM(b,a) : b ∈ SM}.



Basic properties

In an L-structureM
• the interpretations of terms inM are uniformly continuous

functions with continuity modulus specified by the definition of
the term, and

• all formulas when interpreted inM, define uniformly continuous
functions with domains, range and continuity modulus specified
by the definition of the formula.

• A sentence is a formula with no free variables. Any sentence in L
takes on a value in an L-structure in a compact interval specified
by L and this interval is independent of the given structure.

• An L-structureM satisfies a sentence ϕ if ϕM = 0.
• If T is a set of L-sentences then the class of all L-structures

which satisfy all sentences in T is called Mod(T ), the models of
T . T is called a set of axioms for this class. A class of
L-structures is called an elementary class if it is Mod(T ) for
some T .



Łoś’ Theorem

Theorem
SupposeMi are L-structures for all i ∈ I, U is an ultrafilter on I, ϕ(x)

is an L-formula and a ∈M :=
∏
i∈I

Mi/U then

ϕM(a) = lim
i→U

ϕMi (ai ).

Corollary
Elementary classes are closed under ultraproducts.



Axioms for C∗-algebras
• There are many universal axioms expressing that a C∗-algebra is

a Banach *-algebra. These involve saying that two terms are
equal or that some norm or other is equal to or less than
something else.

• For instance, to say τ(x̄) = σ(x̄) we need to write
supx̄ d(τ(x̄), σ(x̄)) which is awful so we write the first and mean
the second.

• For the metric, we have d(x ,0) = ‖x‖ and d(x , y) = ‖x − y‖.
One can now write out the axioms for a Banach space.

• Include ‖x∗‖ = ‖x‖ and the C∗-identity, ‖x∗x‖ = ‖x‖2.
• Now comes the fussy bits about using balls: we have

sup
x∈B1

‖x‖ ≤ 1 and sup
x∈Bn

min{1 .− ‖x‖, inf
y∈B1

‖x − y‖}.

Theorem
These axioms completely capture the class of metric structures
associated to C∗-algebras.


