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Satisfiability

Definition
• We say a set of sentences Σ in a language L is satisfied if there

is an L-structureM such that for every sentence in Σ holds inM
i.e. for every ϕ ∈ Σ, ϕM = 0.

• We say such a Σ is finitely satisfied if every finite subset of Σ is
satisfied.

• For a set of sentence Σ and ε > 0, the ε-approximation of Σ is

{|ϕ| .− ε : ϕ ∈ Σ}

• Σ is approximately finitely satisfied if for every ε > 0, the
ε-approximation of Σ is finitely satisfiable.



Compactness

Theorem
TFAE for a set of sentences Σ in a language L

• Σ is satisfiable.
• Σ is finitely satisfiable.
• Σ is approximately finitely satisfiable.



A metric on formulas

Fix a language L and fix a tuple of variables x from a sequence of
sorts S. We define a pseudo-metric on the formulas with free
variables x as follows: we define the distance between ϕ(x) and ψ(x)
to be

sup{|ϕM(a)− ψM(a)| :M, an L-structure, and a ∈M}

We will call this space FS. This can also be relativized to all
structures satisfying a fixed theory.



Density character

Definition
We say that the density character of a topological space X is the
infinum of the cardinality of a dense subset of X . We will write χ(X )
for the density character of X .
Note: An infinite separable space has countable density character.

Proposition
If L is countable i.e. there are only countably many relation and
function symbols, then for any tuple of sorts S, FS is separable.

Notation: χ(L) will mean
∑

S

χ(FS).



Embeddings and elementary submodels

• Suppose thatM and N are L-structures such that the universe
ofM is a closed subset of N . M is called a submodel if all
functions and relations from L onM are the restriction of those
from N . We writeM⊆ N .

• ForM⊆ N ,M is an elementary submodel if, for every
L-formula ϕ(x) and every a ∈M, ϕM(a) = ϕN (a). We write
M≺ N .

• An embedding between metric structures is a map which
preserves the functions and relations. An embedding is
elementary if its image is an elementary submodel of the range.

Notice that by Łoś’ Theorem, any metric structureM embeds
elementarily into its ultrapowerMU for any ultrafilter U via the
diagonal embedding.



Downward Löwenheim-Skolem

Proposition (Tarski-Vaught)
IfM⊆ N thenM is an elementary submodel if for every formula
ϕ(x , y), r ∈ R and a ∈M, if (infx ϕ(x ,a))N < r then there is b ∈M
such that (ϕ(b,a))N < r .

Theorem (DLS)
Suppose that N is an L-structure and A is a subset of N . Then there
is an elementary submodelM⊆ N such that

1. A is contained inM and
2. for every sort S,

χ(SM) ≤ χ(L) + χ(A)



Some abstract model theory

Theorem
For a class of L-structures C, TFAE

1. C is an elementary class.
2. C is closed under isomorphisms, ultraproducts and elementary

submodels.
3. C is closed under isomorphisms, ultraproducts and ultraroots.



Tracial ultraproducts

Suppose Mi are von Neumann algebras with faithful normal traces τi
for all i ∈ I and U is an ultrafilter on I. Again, the bounded product is∏bMi := {ā ∈

∏
Mi : lim

i→U
‖ai‖ <∞}

and now consider the two-sided ideal

cU = {ā ∈
∏bMi : lim

i→U
τi (a∗i ai ) = 0}.

The ultraproduct,
∏
U Mi , is defined as

∏b Mi/cU . It is a tracial von
Neumann algebra with the trace given by τ(x̄) = limi→U τi (xi ).



Tracial vNas as metric structures

• The tracial ultraproducts actually guide us in figuring out how to
see tracial von Neumann algebras as metric structures.

• As with C*-algebras, we introduce sorts for the balls of operator
norm n for each n ∈ N. The big difference is that the operator
norm will NOT be in the language.

• The basic functions are again considered as partitioned across
the sorts together with the necessary inclusion maps. We also
have the trace which formally we have to break into its real and
imaginary parts.

• Remember that on a tracial von Neumann algebra, there is a
faithful normal trace and we can define a norm, the 2-norm, by
taking ‖x‖2 =

√
τ(x∗x).

• The metric on each ball is induced by the 2-norm; it is complete
on each ball. It is critical that the 2-norm is restricted to a
bounded ball.



Do tracial vNas form an elementary class?
• Let K be the class of metric structures arising from tracial von

Neumann algebras as on the previous slide. Is K an elementary
class? Let’s check this semantically.

• For both ultraproducts of tracial von Neumann algebras and
ultraroots, one must see that the resulting structures are tracial
von Neumann algebras in their own right. So suppose that A is
either an ultraproduct or ultraroot of something from K.

• Any such A can be identified with a *-algebra with a faithful trace
τ by taking the direct limit of its sorts.

• Using the trace, we create an inner product on A by
〈x , y〉 = tr(y∗x). Let H be the associated Hilbert space.

• A acts on H by left multiplication; this is the standard
representation of A and so we can think of A as a *-subalgebra of
B(H).

• The fact that the unit ball is closed in the sense of the 2-norm
implies that it is closed in the weak topology on B(H).

• Enter Kaplansky density.



Kaplansky density

Theorem (Kaplansky)
Suppose that A is a *-subalgebra of B(H) then

(A
w

)1 = A1
w
.

That is, the process of taking the weak closure and the unit ball
commute for *-subalgebras.
K and the class of tracial von Neumann algebras are naturally
bijective is taken care of using the same trick as with C∗-algebras.



II1 factors

• A von Neumann algebra whose centre is C is called a factor.
• A tracial factor is type I if all its projections have rational trace

and is type II1 if the range of the trace on projections is [0,1].
• R, RU ,

∏
U Mn(C) and L(Fn) are all II1 factors.

Theorem (FHS)
The class of II1 factors viewed as metric structures is an elementary
class.



Proof that II1 factors forms an elementary class

• II1 factors form a subclass of tracial von Neumann algebras. It
suffices then to see that being type II1 factor is preserved under
ultraproducts and elementary submodels.

• To see this, note the following inequality that holds in II1 factor
M: for all x ∈M1,

‖x − τ(x) · 1‖2 ≤ sup
y∈M1

‖[x , y ]‖2.

Any structure in which this sentence holds is in fact a factor.
• Once we know that tracial factors form an elementary class, we

can use the range of the trace to see that both an ultraproduct of
II1 factors is type II1 and the same is true of an elementary
submodel.


